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1. A general life insurance model

1.1 Introduction

The life insurance market offers a wide range of different policies. It is, without expert knowledge, hardly
possible to differentiate between all these policies. This is in particular due to the fact that the content
of a life insurance is an abstract good.

A life insurance can always be understood as a bet: either one gets a benefit or one pays the premium
without getting anything in return. From this point of view life insurance mathematics is a part of
probability theory.

Since a life insurance deals with monetary benefits and premiums it is also part of the financial market
and the economy. In this context one should note that insurances whose benefits are unit-linked, e.g. the
payout depends on the performance of a fond, actually rely on modern theory of financial markets.

Form a legal point of view a life insurance is a contract between the policy holder and the insurer.

As we have note above, life insurances is characterised by its abstract matter and its diversity. Since
its content is abstract its value is not intuitively obvious. This is particular due to the fact that a life
insurance is usually only bought once or twice during life time. In contrast, for example one buys a loaf
of bread on a regular basis, and thus one has acquired a feeling for its correct value.

A life insurance - in particular an individual policy - is a long term contract. Take for example a thirty
year old man who buys a permanent life insurance. Now suppose he dies when he reaches ninety, then
the contract period was sixty years.

Due to this long duration of the contract and the risks taken - think for example of changing fundamentals
- it is necessary to calculate the price of an insurance with care and foresight.

In this chapter we are going to explain classical types of insurance policies. Furthermore we introduce a
general model for life insurance, which can be used to price many of the available policies.

1.2 Examples

We start with a description of the most common types of life insurance and the different methods of
financing a policy.



2 1. A general life insurance model

1.2.1 Types of life insurance

It is characteristic for every life insurance that the insured event is strongly related to the health of the
insured. Thus one can classify life insurance as follows:

– insurance on life or death,

– insurance on permanent disability,

– health insurance.

For an insurance on life or death the essential event is the survival of the insured person up to a certain
date or the death before a certain date, respectively. Furthermore these insurance types can be classified
by the causes of death which yield a payout (e.g. a life insurance which pays only in the event of an
accidental death). Especially, various kinds of survivor’s pensions and pure endowments are insurances
on life or death.

For a permanent disability insurance the essential criterion is the (dis)ability of the insured at a given
date. These insurances have the special feature, that already a certain degree of disability might be
sufficient for a claim.

For insurances on health the payout depends on the health of the insured. This class of insurances contains
also modern types of policies, like a long term care insurance. The latter only provides benefits if the
insured is unable to meet his basic needs (e.g. he is unable to dress himself).

Besides a classification based on the insured event one can also classify the insurance based on the benefit.
This can either be paid in annuities or in a lump sum.

In the following we give some typical examples of life insurances.

Pension: A pension policy constitutes that the insurer has to pay annuities to the insured when he
reaches a certain age (age of maturity of the policy). Then the pension is paid until the death of
the insured. The payment of the annuities is usually done at regular intervals: monthly, quarterly or
yearly. Moreover the payment can be done in advance (at the beginning of each interval) or arrears
(at the and of each interval). Since the pension is only paid until death, one can additionally agree
upon a minimum payment period. In this case the pension is paid at least for the minimum period.
(This type of pension contract supplies the desire of the insured to get at least something back for
the premiums paid in.)

Pure endowment: A pure endowment insurance provides a payment from the insurer to the insured,
if he reaches the age of maturity of the policy. Otherwise there is no payment.

Term/permanent life insurance: A (term/permanent) life insurance is the counterpart to a pure
endowment insurance. In contrast to the latter a life insurance does not yield a payout to the insured
if the age of maturity of the policy is reached. In the popular case of a term life insurance there
is no payout at all if the insured reaches the age of maturity of the policy. But if the insured dies
before that age his heirs get a payment. A special case is the permanent life insurance, which yields
a payout to the heirs no matter how old the insured is at the time of his death. This insurance is in
some countries very popular, since it in a sense an investment into ones off springs.

Endowment: The endowment insurance is the classic example of a life insurance. It is the sum of a pure
endowment insurance and a term or permanent life insurance. This means that it yields a payout in
the case of an early death and also in the case of reaching the fixed age of maturity.

c©Michael Koller Skript AK LV 2012 Vers. 0.70



1.2 Examples 3

Widow’s pension: A widow’s pension is connected to the life of two persons. This is in contrast to the
previous examples, where only the life of one person was considered. For a widow’s pension there is
the insured (the person whose life is insured, e.g. husband) and the beneficiary person (e.g. spouse).
As long as both persons are alive no payment is due. If the insured dies and the beneficiary is still
alive, then the beneficiary gets a pension until death. Also for this kind of insurance it is possible to
fix a minimum period of payments in the policy.

Orphan’s pension: After the death of the father or the mother their child gets a pension until it is of
age or until death.

Insurance on two lives: For an insurance on two lives, as in the case of a widow’s or orphan’s pension,
one has to consider the lives of two persons. Here the policy fixes a payment depending on the state
of the two persons (insured, beneficiary)∈ {(∗∗), (∗†), (†∗), (††)}. Obviously, a widow’s or an orphan’s
pension is just a special case of the insurance on two lives. As before, also in this case one could agree
upon a minimum period of payments.

Refund guarantee: The refund guarantee is an additional insurance which is often sold together with
a pension or a pure endowment. It is a life insurance whose payment equals the paid-in premiums,
possibly reduced by the already received payments. The refund guarantee supplies the same want as
the minimum periods of payment for the pensions.

Now we have discussed the main insurance types on life and death. Next we want to give a short description
of insurances on permanent disability. For these the ability to work is the main criterion. In this context
one should note that the probability of becoming disabled strongly depends on the economic environment.
This is due to the fact that in a good economic environment everyone finds a job. But a person with
restricted health has a hard time finding a job during an economic downturn. In connection with disability
the following types of insurances are most common:

Disability pension: In the case of disability, after an initial waiting period, the insured gets a pension
until he reaches a fixed age (or until his death) or until he is able to work again. A disability pension
without fixed age for a final payment is called permanent disability pension. Often an initial waiting
period is introduced, since in most cases disability occurs after an accident or illness and the person
actually recovers quickly thereafter. Thus the initial waiting period reduces the price of these policies.
Typical waiting periods are three or six month and one or two years.

Disability capital: The disability capital insurance pays a lump sum to the insured in case of a per-
manent disability.

Premium waiver: The premium waiver is an additional insurance. It waives the obligation to pay
further premiums for the insured in the case of disability. Waiting periods are also common for this
type of insurance.

Disability children’s pension: This pension is similar to the orphan’s pension. The only difference is
that the cause for a payment is the disability of the mother or father instead of their death.

1.2.2 Methods of financing

Previously we looked at the different types of insurances. Now we are going to discuss the different financ-
ing methods and the ideas they are based on. The main principle of life insurances states that the value of
the benefits provided by the insurer is equivalent to the value of the policy for the insured. Obviously one
has to discuss this equivalence relation in more detail. We will do this in the next chapters and provide
a precise definition of the equivalence principle. Then it will be used to calculate the premiums, but for
now we get back to the methods of financing. The two common types are:
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4 1. A general life insurance model

– Financing by premiums,

– Financing by a single payment (single premium).

Financing by premiums requires the insured to pay premiums to the insurer at regular intervals. This
obligation usually ends either when the age of maturity of the policy is reached or if the insured dies.

The other option to finance a life insurance is a single payment. Often a policy incorporates a mixture of
both financing methods.

1.3 The insurance model

In this section we want to introduce the insurance model which we will use thereafter. We attempt to
describe the real world by a model. Thus it is important to use a model class which is flexible enough to
accommodate this. Figure 1.1 shows the general setup of an insurance model. Here we think of an insured
person who, at every time t, is in a state 1, 2, . . . , n. State 1 could for example indicate that the person is
alive. The state of the person is then given by the stochastic process X with Xt(ω) ∈ S = {1, 2, . . . , n}.
When the insured remains in one state or switches its state a payment, as defined in the insurance
policy, is due. For this there are functions ai(t) and aij(t) given which correspond to the lines in the
figure. They define the amount which the insured gets if he remains in state i (payment ai(t)) or if he
switches from state i to j at time t (payment aij(t)). In the following we are going to introduce the
necessary concepts for this setup. One distinguishes between the continuous time model, where (Xt)t∈T
is defined on an interval in R, and the discrete time model, where (Xt)t∈T is defined on a subset of N.
The continuous time model yields the more interesting statements whereas the discrete model is very
important in applications, therefore we will discuss both models.

Time t+ ∆t

aij(t)

Time t

ai(t)

.................................................................

........................................................................................................

........................................................................................................................................................................ ............................................................................................................................. ...

1

.......................................................................................................

................................................................

.............................................................................................................................................................................................................................................................

2

................................................................................................................................................................................................................................................................................................................

...................................................................................................................................................................................................................................................................

.................................................................

n

1 2 n

Figure 1.1. Policy setup from t to t+∆t
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1.3 The insurance model 5

Definition 1.3.1 (State space). We denote by S the state space which is used for the insurance policy.
S is finite set.

Example 1.3.2. For a life insurance or an endowment one often uses the state space S = {∗, †}.

Example 1.3.3. For a disability insurance one has to consider at least the states: alive (active), dead
and disabled. Often one uses more states to get a better model. For example in Switzerland a model
is used which uses the states {∗, †} and the family of states {person became disabled at the age of x
: x ∈ N}.

With the states defined, it is now possible to derive a mathematical model for the payments/benefits. To
define the model of the benefits, the so called policy functions, it is necessary to define the time set more
precisely. We will define two different time sets since a discrete time set is often used in applications, but
the continuous time set yields the neater results.

Definition 1.3.4. – ai(t) denotes the sum of the payments to the insured up to time t, given that we
know that he has always been in state i. The ai(t) are called the generalised pension payments. If this

pension function is of bounded variation (see Def. 2.1.5) we can also write ai(t) =
∫ t

0
dai(s).

– aij(t) denotes the payments which are due when the state switches from i to j at time t. These benefits
are called generalised capital benefits.

– In the case of a discrete time set aPre
i (t) denotes the pension payment which is due at time t, given

that the insured is at time t in i.

– In the case of a discrete time set aPost
ij (t) denotes the capital benefits which are due when switching

from i at time t to j at time t+ 1. We are going to assume that the payment is transferred at the end
of the time interval.

The functions ai(t) are different in the continuous time model and the discrete time model. In the former
ai(t) denotes the sum of the pension payments which are payed up to time t, similar to a mileage meter

in a car. In the latter aPre
i (t) denotes the single pension payment at time t.

The following example illustrates the interplay between the state space and the functions which define
the policy.

Example 1.3.5. Consider an endowment policy with 200,000 USD death benefit and 100,000 USD
survival benefit. This insurance shall be financed by a yearly premium of 2,000 USD.

For a age at maturity of 65 the non trivial policy functions are:

a∗(x) =


0, if x < x0,
−
∫ x
x0

2000 dt, if x ∈ [x0, 65],

−(65− x0)× 2000 + 100000, if x > 65,

a∗†(x) =

{
0, if x < x0 or x > 65,
200000, if x ∈ [x0, 65],

where x0 is the age of entry into the contract, ∗ and † denote the states alive and dead, respectively.
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2. Stochastic processes

2.1 Definitions

In this section we will recall basic definitions from probability theory. These will be used throughout the
book.

To understand this chapter a basic knowledge in probability theory, measure theory and analysis is a
prerequisite.

Definition 2.1.1 (Sets). We are going to use the notations:

N = the set of the natural numbers including 0,

N+ = {x ∈ N : x > 0},
R = the set of the real numbers,

R+ = {x ∈ R : x ≥ 0}.

Furthermore we use the following notations for intervals. For a, b ∈ R, a < b we write

[a, b] := {t ∈ R : a ≤ t ≤ b},
]a, b] := {t ∈ R : a < t ≤ b},
]a, b[ := {t ∈ R : a < t < b},
[a, b[ := {t ∈ R : a ≤ t < b}.

Definition 2.1.2 (Indicator function). For A ⊂ Ω we define the indicator function χA : Ω → R, ω 7→
χA(ω) by

χA(ω) :=

{
1, if ω ∈ A,
0, if ω 6∈ A.

Furthermore δij is Kronecker’s delta, i.e., it is equal to 1 for i = j and 0 otherwise.

Definition 2.1.3. Let
f : R→ R, x 7→ f(x).

We define, if they exist, the left limit and the right limit of f at x by:

f(x−) := lim
ξ↑x

f(ξ),

f(x+) := lim
ξ↓x

f(ξ).



8 2. Stochastic processes

Definition 2.1.4. A real valued function f : R→ R is said to be of order o(t), if

lim
t→0

f(t)

t
= 0.

This is denoted by f(t) = o(t).

Definition 2.1.5 (Function of bounded variation). Let I ⊂ R be a bounded interval. For a function

f : I → R, t 7→ f(t)

the total variation of the function f on the interval I is defined by

V (f, I) = sup
n∑
i=1

|f(bi)− f(ai)|,

where the supremum is taken with respect to all partitions of the interval I satisfying

a1 ≤ b1 ≤ a2 ≤ b2 ≤ . . . ≤ an ≤ bn.

The function f is of bounded variation on I, if V (f, I) is finite. Functions corresponding to a life insurance
are usually defined on the interval [0, ω], where ω <∞ denotes the last age at which some individuals are
alive.

Properties of functions of bounded variation can be found for example in [DS57].

It is important to note, that functions of bounded variation form an algebra and a lattice. Thus, if f, g
are functions of bounded variation and α ∈ R, then the following functions are also of bounded variation:
αf + g, f × g, min(0, f) and max(0, f).

Definition 2.1.6 (Probability space, stochastic process). We denote by (Ω,A, P ) a probability
space which satisfies Kolmogorov’s axioms.

Let (S,S) be a measurable space (i.e. S is a set and S is a σ-algebra on S) and T be a set.
The Borel σ-algebra on the real numbers will be denoted by R = σ(R).

A family {Xt : t ∈ T} of random variables

Xt : (Ω,A, P )→ (S,S), ω 7→ Xt(ω)

is called stochastic process on (Ω,A, P ) with state space S.

For each ω ∈ Ω a sample path of the process is given by the function

X·(ω) : T → S, t 7→ Xt(ω).

We assume that each sample path is right continuous and has left limits.

Definition 2.1.7 (Expectations). Let X be a random variable on
(Ω,A, P ) and B ⊂ A be a σ-algebra. Then we denote by

– E[X] the expectation of the random variable X,

– V [X] the variance of the random variable X,
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2.1 Definitions 9

– E[X|B] the conditional expectation of X with respect to B.

Definition 2.1.8. Let (Xt)t∈T be a stochastic process on (Ω,A, P ) taking values in a countable set S.
We define for j ∈ S the indicator function with respect to the process (Xt)t∈T at time t by

Ij(t)(ω) =

{
1, if Xt(ω) = j,
0, if Xt(ω) 6= j.

Analogous, we define for j, k ∈ S the number of jumps from j to k in the time interval ]0, t[ by

Njk(t)(ω) = # {τ ∈]0, t[ : Xτ− = j and Xτ = k} .

Remark 2.1.9. In the following the function Ij(t) is used to check if the the insured person is at time
t in state j. Thus one can check if the pension aj(t) has to be paid. Similarly, a switch from i to j is
indicated by an increase of Nij(t) by 1.

Definition 2.1.10 (Normal distribution). A random variable X on (R,
σ(R)) with density

fµ,σ2(x) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
, x ∈ R

is called normal distributed with expectation µ and variance σ2. Such a random variable is denoted by
X ∼ N (µ, σ2).

Examples of stochastic processes are:

Example 2.1.11 (Brownian motion). An example of a non trivial stochastic process is Brownian
motion. Brownian motion X = (Xt)t≥0 with continuous time set (T = R+) and state space S = R is
used to model many real world phenomena.

The process is characterised by the following properties:

1. X0 = 0 almost surely.

2. X has independent increments: the random variables Bt1 − Bt0 , Bt2 − Bt1 , . . . , Btn − Btn−1
are

independent for all 0 ≤ t1 < t2 < . . . < tn and all n ∈ N .

3. X has stationary increments.

4. Xt ∼ N (0, t).

One can show that almost all sample paths of X are continuous and nowhere differentiable.

Example 2.1.12 (Poisson process). The Poisson process N = (Nt)t≥0 is a counting process with state
space N. For example it is used in insurance mathematics to model the number of incurred claims. This
process also uses a continuous time set. The homogeneous Poisson process is characterised by the following
properties:

1. N0 = 0 almost surely.

2. N has independent and

3. N stationary increments.

4. For all t > 0 and all k ∈ N gilt: P [Nt = k] = exp(−λ t) (λ t)k

k! .
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10 2. Stochastic processes

2.2 Markov chains on a countable state space

In the following S is a countable set.

Definition 2.2.1. Let (Xt)t∈T be a stochastic process on (Ω,A, P ) with state space S and T ⊂ R. The
process X is called Markov chain, if for all

n ≥ 1, t1 < t2 < . . . < tn+1 ∈ T, i1, i2, . . . , in+1 ∈ S

with
P [Xt1 = i1, Xt2 = i2, . . . , Xtn = in] > 0

the following statement holds:

P [Xtn+1 = in+1|Xtk = ik∀k ≤ n] = P [Xtn+1 = in+1|Xtn = in]. (2.1)

Remark 2.2.2. 1. Equation (2.1) states that the conditional probabilities only depend on the last
state. They do not depend on the path which led the chain into that state.

2. Markov chains are very versatile in their applications. This is due to the fact, that on the one hand
they are very easy to handle and on the other hand they can model a wide range of phenomena. In
the following we are going to model life insurances by Markov chains.

Example 2.2.3. 1. Let (Xt)t∈T be a stochastic process with S ⊂ R and T = N+, for which the random
variables {Xt : t ∈ T} are independent. This process is a Markov chain since

P [Xt1 = i1, Xt2 = i2, . . . , Xtn = in] =

n∏
k=1

P [Xtk = ik]

for n ≥ 1, t1 < t2 < . . . < tn+1 ∈ T, i1, i2, . . . , in+1 ∈ S.

2. Based on the previous example we define Sm =
m∑
k=1

Xk, where m ∈ N. This is also an example of a

Markov chain.

Proof.

P [Stn+1 = in+1 |St1 = i1, St2 = i2, . . . , Stn = in]

= P [Stn+1 − Stn = in+1 − in]

= P [Stn+1 = in+1 |Stn = in].

Definition 2.2.4. Let (Xt)t∈T be a stochastic process on (Ω,A, P ). Then

pij(s, t) := P [Xt = j |Xs = i], where s ≤ t and i, j ∈ S,

is called the conditional probability to switch from state i at time s to state j at time t, or also transition
probability for short.

The following theorem of Chapman and Kolmogorov is fundamental for the theory which we will present
in the next chapters. The theorem states the relation of P (s, t), P (t, u) and P (s, u) for s ≤ t ≤ u.
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2.2 Markov chains on a countable state space 11

Theorem 2.2.5 (Chapman-Kolmogorov equation). Let (Xt)t∈T be a Markov chain. For s ≤ t ≤
u ∈ T and i, k ∈ S such that P [Xs = i] > 0 the following equations hold:

pik(s, u) =
∑
j∈S

pij(s, t) pjk(t, u), (2.2)

P (s, u) = P (s, t)× P (t, u). (2.3)

This shows, that one can get P (s, u) by matrix multiplication of P (s, t) and P (t, u) for s ≤ t ≤ u ∈ T.

Proof. Obviously, the equation holds for t = s or t = u. Thus we can assume s < t < u without loss of
generality. We will use the following notation:

S∗ = {j ∈ S : P [Xt = j |Xs = i] 6= 0}
= {j ∈ S : P [Xt = j , Xs = i] 6= 0} .

(The last equality holds since P [Xs = i] > 0.) Now the Chapman-Kolmogorov equation can be deduced
from the following equation:

pik(s, u) = P [Xu = k |Xs = i]

=
∑
j∈S∗

P [Xu = k, Xt = j |Xs = i]

=
∑
j∈S∗

P [Xt = j |Xs = i]× P [Xu = k |Xs = i, Xt = j]

=
∑
j∈S∗

pij(s, t)× pjk(t, u)

=
∑
j∈S

pij(s, t)× pjk(t, u),

where we applied the Markov property to get equality in the forth line.

After proving the Chapman-Kolmogorov equation we are now able to introduce the abstract concept of
transition matrices.

Definition 2.2.6 (Transition matrix). A family (pij(s, t))(i,j)∈S×S is called transition matrix, if the
following four properties hold:

1. pij(s, t) ≥ 0.

2.
∑
j∈S

pij(s, t) = 1.

3. pij(s, s) =

{
1, if i = j,
0, if i 6= j,

if P [Xs = i] > 0.

4. pik(s, u) =
∑
j∈S pij(s, t) pjk(t, u) for s ≤ t ≤ u and P [Xs = i] > 0.

Theorem 2.2.7. Let (Xt)t∈T be a Markov chain. Then (pij(s, t))(i,j)∈S×S is a transition matrix.

Proof. This theorem is a direct consequence of the theorem by Chapman and Kolmogorov (Thm. 2.2.5).
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Theorem 2.2.8. A stochastic process (Xt)t∈T is a Markov chain, if and only if

P [Xt1 = i1, . . . , Xtn = in] = P [Xt1 = i1]
n−1∏
k=1

pik,ik+1
(tk, tk+1), (2.4)

for all
n ≥ 1, t1 < t2 < . . . < tn+1 ∈ T, i1, i2, . . . , in+1 ∈ S.

Proof. Let (Xt)t∈T be a Markov chain satisfying

P [Xt1 = i1, Xt2 = i2, . . . , Xtn = in] > 0.

Then the Markov property implies

P [Xt1 = i1, . . . , Xtn = in] = P [Xt1 = i1, . . . , Xtn−1 = in−1] · pin−1,in(tn−1, tn).

This yields (2.4) by induction. The converse statement is trivial.

Theorem 2.2.9 (Markov property). Let (Xt)t∈T be a Markov chain and n,m be elements of N. Fix
t1 < t2 < . . . < tn < tn+1 < . . . < tn+m, i ∈ S and sets A ⊂ Sn−1 (where Sn−1 denotes the n− 1 times
Cartesian product of the set S) and B ⊂ Sm such that

P
[
(Xt1 , Xt2 , . . . , Xtn−1) ∈ A,Xtn = i

]
> 0.

Then the following equation (Markov property) holds:

P
[
(Xtn+1 , Xtn+2 , . . . , Xtn+m) ∈ B | (Xt1 , Xt2 , . . . , Xtn−1) ∈ A,Xtn = i

]
= P

[
(Xtn+1

, Xtn+2
, . . . , Xtn+m

) ∈ B |Xtn = i
]
.

Proof. We use the notation in = (i1, i2, . . . , in). An application of equation (2.4) yields:

P
[
(Xt1 , . . . , Xtn−1) ∈ A,Xtn = i]

=
∑

in−1∈A,in=i

P [Xt1 = i1]×
n−1∏
k=1

pik,ik+1
(tk, tk+1),

P
[
(Xt1 , . . . , Xtn+m

) ∈ A× {i} ×B]

=
∑

in+m∈A×{i}×B

P [Xt1 = i1]×
n+m−1∏
k=1

pik,ik+1
(tk, tk+1).

Finally these two equations imply

P
[
(Xtn+1 , . . . , Xtn+m) ∈ B | (Xt1 , . . . , Xtn−1) ∈ A,Xtn = i

]
=

∑
(in,in+1,...,in+m)∈{i}×B

n+m−1∏
k=n

pik,ik+1
(tk, tk+1)

×

∑
in−1∈A

P [Xt1 = i1]×
n−1∏
l=1

pil,il+1
(tl, tl+1)

∑
in−1∈A

P [Xt1 = i1]×
n−1∏
l=1

pil,il+1
(tl, tl+1)
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2.3 Kolmogorov’s differential equations 13

=
∑

(in+1,...,in+m)∈B

n+m−1∏
k=n

pik,ik+1
(tk, tk+1)

P [Xtn = i]

P [Xtn = i]

= P
[
(Xtn+1 , Xtn+2 , . . . , Xtn+m) ∈ B|Xtn = i

]
.

Definition 2.2.10. A Markov chain (Xt)t∈T is called homogeneous, if it is time homogeneous, i.e., the
following equation holds for all s, t ∈ R, h > 0 and i, j ∈ S such that P [Xs = i] > 0 and P [Xt = i] > 0:

P [Xs+h = j |Xs = i] = P [Xt+h = j |Xt = i].

For a homogeneous Markov chain we use the notation:

pij(h) := pij(s, s+ h),

P (h) := P (s, s+ h).

Remark 2.2.11. 1. A homogeneous Markov chain is characterised by the fact, that the transition
probabilities, and therefore also the transition matrices, only depend on the size of the time increment.

2. For a homogeneous Markov chain one can simplify the Chapman-Kolmogorov equations to the semi-
group property:

P (s+ t) = P (s)× P (t).

The semi-group property is popular in many different areas e.g. in quantum mechanics.

3. The mapping
P : T →Mn(R), t 7→ P (t)

defines a one parameter semi-group.

2.3 Markov chains in continuous time and Kolmogorov’s differential
equations

In the following we will only consider Markov chains on a finite state space. Thus point wise convergence
and uniform convergence will coincide on S. This enables us to give some of the proofs in a simpler form.

Definition 2.3.1. Let (Xt)t∈T be a Markov chain with finite state space S and T ⊂ R. For N ⊂ S we
define

pjN (s, t) :=
∑
k∈N

pjk(s, t).

Definition 2.3.2 (Transition rates). Let (Xt)t∈T be a Markov chain in continuous time with finite
state space S. (Xt)t∈T is called regular, if

µi(t) = lim
∆t↘0

1− pii(t, t+∆t)

∆t
for all i ∈ S, (2.5)

µij(t) = lim
∆t↘0

pij(t, t+∆t)

∆t
for all i 6= j ∈ S (2.6)

are well defined and continuous with respect to t.
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The functions µi(t) and µij(t) are called transition rates of the Markov chain. Furthermore we define µii
by

µii(t) = −µi(t) for all i ∈ S. (2.7)

Remark 2.3.3. 1. In the insurance model the regularity of the Markov chain is used to derive the
differential equations which are satisfied by the mathematical reserve corresponding to the policy
(Thiele’s differential equation, e.g. Theorem 5.2.1).

2. One can understand the transition rates as derivatives of the transition probabilities. For example
we get for i 6= j:

µij(t) = lim
∆t↘0

pij(t, t+∆t)

∆t

= lim
∆t↘0

pij(t, t+∆t)− pij(t, t)
∆t

=
d

ds
pij(t, s)

∣∣∣∣
s=t

.

3. µij(t) dt can be understood as the infinitesimal transition rate from i to j (i; j) in the time interval
[t, t + dt]. Similarly, µi(t) dt can be understood as the infinitesimal probability of leaving state i in
the corresponding time interval. Let us define

Λ(t) =


µ11(t) µ12(t) µ13(t) · · · µ1n(t)
µ21(t) µ22(t) µ23(t) · · · µ2n(t)
µ31(t) µ32(t) µ33(t) · · · µ3n(t)

...
...

...
. . .

...
µn1(t) µn2(t) µn3(t) · · · µnn(t)

 .

In a sense, Λ generates the behaviour of the Markov chain. That is, for a homogeneous Markov chain
the following equation holds:

Λ(0) = lim
∆t→0

P (∆t)− 1

∆t
.

Λ := Λ(0) is called the generator of the one parameter semi group. We can reconstruct P (t) by

P (t) = exp(t Λ) =
∞∑
n=0

tn

n!
Λn.

4. In the remainder of the book we will only consider finite state spaces. This enables us to avoid certain
technical difficulties with respect to convergence.

Based on the transition rates we can prove Kolmogorov’s differential equations. These connect the partial
derivatives of pij with µ:

Theorem 2.3.4 (Kolmogorov). Let (Xt)t∈T be a regular Markov chain on a finite state space S. Then
the following statements hold:
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1. (Backward differential equations)

d

ds
pij(s, t) = µi(s)pij(s, t)−

∑
k 6=i

µik(s)pkj(s, t), (2.8)

d

ds
P (s, t) = −Λ(s)P (s, t). (2.9)

2. (Forward differential equations)

d

dt
pij(s, t) = −pij(s, t)µj(t) +

∑
k 6=j

pik(s, t)µkj(t), (2.10)

d

dt
P (s, t) = P (s, t)Λ(t). (2.11)

Proof. The major part of the proof is based on the equations of Chapman and Kolmogorov.

1. We will prove the matrix version of the statement. This will help to highlight the key properties. Let
∆s > 0 and set ξ := s+∆s.

P (ξ, t)− P (s, t)

∆s
=

1

∆s

(
P (ξ, t)− P (s, ξ)P (ξ, t)

)
=

(
1

∆s
(1− P (s, ξ))

)
× P (ξ, t)

−→ −Λ(s)P (s, t) for ∆s↘ 0,

where we used the Chapman-Kolmogorov equation and the continuity of the matrix multiplication.

2. Analogous one can prove the forward differential equation. Let ∆t > 0.

P (s, t+∆t)− P (s, t)

∆t
=

1

∆t

(
P (s, t)P (t, t+∆t)− P (s, t)

)
= P (s, t)× 1

∆t

(
P (t, t+∆t)− 1

)
−→ P (s, t)Λ(t) for ∆t↘ 0.

Remark 2.3.5. The primary application of Kolmogorov’s differential equations is to calculate the tran-
sition probabilities pij based on the rates µ.

Definition 2.3.6. Let (Xt)t∈T be a regular Markov chain on a finite state space S. Then we denote the
conditional probability to stay during the time interval [s, t] in j by

p̄jj(s, t) := P

 ⋂
ξ∈[s,t]

{Xξ = j} |Xs = j


where s, t ∈ R, s ≤ t and j ∈ S.

In the setting of a life insurance this probability can for example be used to calculate the probability that
the insured survives 5 years. The following theorem illustrates how this probability can be calculated
based on the transition rates.
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16 2. Stochastic processes

Theorem 2.3.7. Let (Xt)t∈T be a regular Markov chain. Then

p̄jj(s, t) = exp

(
−
∑
k 6=j

∫ t

s

µjk(τ)dτ

)
(2.12)

holds for s ≤ t, if P [Xs = j] > 0.

Proof. We define Kj(s, t) by Kj(s, t) :=
⋂
ξ∈[s,t]{Xξ = j}. Let ∆t > 0. We have P [A ∩ B |C] =

P [B |C]P [A |B ∩ C] and thus

p̄jj(s, t+∆t) = P [Kj(s, t) ∩Kj(t, t+∆t) |Xs = j]

= P [Kj(s, t) |Xs = j]P [Kj(t, t+∆t) |Xs = j ∩Kj(s, t)]

= P [Kj(s, t) |Xs = j]P [Kj(t, t+∆t) |Xt = j]

= p̄jj(s, t)P [Kj(t, t+∆t) |Xt = j],

where we used the Markov property and the relation {Xs = j} ∩ Kj(s, t) = {Xt = j} ∩ Kj(s, t). The
previous equation yields

p̄jj(s, t+∆t)− p̄jj(s, t) = −p̄jj(s, t)×
(

1− P [Kj(t, t+∆t) |Xt = j]

)
= −p̄jj(s, t)×

(∑
k 6=j

pjk(t, t+∆t) + o(∆t)

)
,

where we used that the rates µ.. are well defined.

Now taking the limit we get the differential equation

d

dt
p̄jj(s, t) = −p̄jj(s, t)×

∑
k 6=j

µjk(t).

Solving this equation with the boundary condition p̄jj(s, s) = 1 yields the statement of the theorem,
(2.12).

2.4 Examples

In this section we want to illustrate the theory of the previous sections by some examples.

Example 2.4.1 (Life insurance). We start with a life insurance, which provides a sum of money to
the heirs in case of the death of the insured. Usually one uses for this a model with either two states
(alive ∗, dead †) or three states (alive, dead (accident), dead (disease)). We will use the model with two
states, and the death rate will be exemplary modelled by the function

µ∗†(x) = exp(−9.13275 + 8.09438 · 10−2x− 1.10180 · 10−5x2). (2.13)

The death rate is the transition rate of the state transition ∗ ; †. See section 4.3 for a derivation of
the death rate. Based on the death rate and formula (2.12) we are now able to calculate the survival
probability of a 35 year old man:

p̄∗∗(35, x) = exp

(
−
∫ x

35

µ∗†(τ)dτ

)
, for x > 35.

Figure 2.1 shows the transition rate (dotted line) and the survival probability (continuous line) based on
x = 35.
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2.4 Examples 17

Figure 2.1. Mortality density µ∗†(x) and survival probability p̄∗∗(35, x)

Example 2.4.2 (Disability pension). We consider a model of a disability pension with the following
three states:

state symbol

active ∗
disabled �
dead †

The transition rates are defined by

σ(x) := 0.0004 + 10(0.060 x−5.46),

µ(x) := 0.0005 + 10(0.038 x−4.12),

µ∗�(x) := σ(x),

µ∗†(x) := µ(x),

µ�†(x) := µ(x).

The transition rate σ is the infinitesimal probability of becoming disabled and µ is the corresponding
probability of dying. We set the other transition rates equal to 0. Thus in particular this model does not
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18 2. Stochastic processes

incorporate the possibility of becoming active again (µ�∗ = 0). Moreover one should note that in this
model the mortality of disabled persons is equal to the mortality of active persons. This is a simplification,
since in reality disabled persons have a higher mortality (they die earlier with a higher probability) than
active persons. Therefore, this model yields an overpriced premium for the disability pension.

The explicit knowledge of the transition probabilities pij is useful for many formulas in insurance math-
ematics. For the current model they can be calculated by Kolmogorov’s differential equations. We get

p∗∗(x, y) = exp

(
−
∫ y

x

[µ(τ) + σ(τ)] dτ

)
,

p∗�(x, y) = exp

(
−
∫ y

x

µ(τ)dτ

)
×
(

1− exp

(
−
∫ y

x

σ(τ)dτ

))
,

p��(x, y) = exp

(
−
∫ y

x

µ(τ)dτ

)
,

which solve Kolmogorov’s differential equations for this model:

d

dt
p∗∗(s, t) = −p∗∗(s, t)× (µ(t) + σ(t)),

d

dt
p∗�(s, t) = −p∗�(s, t)µ(t) + p∗∗(s, t)σ(t),

d

dt
p∗†(s, t) = (p∗∗(s, t) + p∗�(s, t))× µ(t),

d

dt
p�∗(s, t) = 0,

d

dt
p��(s, t) = −p��(s, t)µ(t),

d

dt
p�†(s, t) = p��(s, t)µ(t),

d

dt
p††(s, t) = 0,

with the boundary conditions pij(s, s) = δij . Note that, if one uses a model with a positive probability of
becoming active again, one has to modify the first, second, forth and fifth equation. Obviously one can
solve these equations with numerical methods, the solutions for the given example are listed in Table 2.1.

Exercise 2.4.3. Consider the above system of differential equations.

1. Find an exact solution.

2. Find a numerical approximation to the solution.
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Table 2.1. Transition probabilities for the disability insurance

Initial age x0 = 30
Algorithm Runge-Kutta of order 4
Step width 0.001

age x p∗∗(x0, x) p∗�(x0, x) p∗†(x0, x) p��(x0, x) p�†(x0, x)

30.00 1.00000 0.00000 0.00000 1.00000 0.00000
35.00 0.98743 0.00354 0.00903 0.99097 0.00903
40.00 0.96998 0.00850 0.02152 0.97849 0.02152
45.00 0.94457 0.01620 0.03923 0.96077 0.03923
50.00 0.90624 0.02903 0.06474 0.93526 0.06474
55.00 0.84725 0.05106 0.10169 0.89831 0.10169
60.00 0.75677 0.08832 0.15491 0.84509 0.15491
65.00 0.62287 0.14700 0.23013 0.76987 0.23013
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3. Interest rate

3.1 Introduction

An important part of every insurance contract is the underlying interest rate. The so called technical
interest rate describes the interest which the insurer guarantees to the insured. It is a significant factor
for the size of the premiums. If the technical interest rate is too low it yields inflated premiums, if it is
too high it might yield to insolvency of the insurance company.

For the technical interest rate one can use a deterministic or a stochastic model. In the latter case
the interest rate will be coupled to the bond market. In the following we are going to define the main
parameters connected to the interest rate and present their relations.

3.2 Definitions

Example 3.2.1. Suppose we put 10,000 USD on a bank account on the first of January. If at the end
of the year there are 10,500 USD on the account, then the underlying interest rate was 5 %.

Definition 3.2.2 (Interest rate). We denote by i the yearly interest rate. Furthermore we assume,
that it depends on time and write it, t ≥ 0. If we use a stochastic model for the interest rate, then i is a
stochastic process (it(ω))t≥0.

One should note that this definition is useful in particular for the discrete time model. Since in this case
one would use the time intervals which are given by the discretisation. The calculation of the future
capital based on an interest rate is done by

Bt+1 = (1 + it)×Bt.

Here Bt denotes the value of the account at time t. Often also the inverse of this relation is relevant.
Thus one defines the discount rate.

Definition 3.2.3 (Discount rate). Let it be the interest rate in year t. Then

vt =
1

1 + it

is the discount rate in year t.
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The discount rate can be used to calculate the net present value (the present value of the future benefits).
If the interest rate is a stochastic process the previous considerations lead to the following problem:
suppose we are going to receive 1 USD in one year, what is its present value? Generally there are two
possible ways to find an answer.

Valuation principle A: If the interest rate i is known, the present value X is

X =
1

1 + i

and thus its mean is

XA = E

[
1

1 + i

]
.

Valuation principle B: If the interest rate is known, the value of the account at the end of the year is
X(1 + i). Thus

1 = E [X(1 + i)] = X × E [1 + i]

holds and the mean is

XB =
1

E [1 + i]
.

But in general XA is not equal to XB . To overcome this problem one needs to fix by an assumption
the valuation principle of the interest rate: we are always going to determine the net present value by
valuation principle A (cf. [Büh92]).

After solving this paradox situation one understands the importance of the discount rate. Obviously, the
same problem also arises in continuous time. For models in continuous time we assume that the interest
is also payed continuously such that

Bt+s = exp

(∫ t+s

t

δ(ξ)dξ

)
×Bt.

Definition 3.2.4 (Interest intensity). The interest intensity at time t is denoted by δ(t).

A yearly interest rate i yields
eδ = 1 + i

and thus
δ = ln(1 + i).

In continuous time the discount rate (from t to 0) is

v(t) = exp

(
−
∫ t

0

δ(ξ) dξ

)
.

Here the discount rate is modelled from t to 0 which is contrary to the discrete setting. The following
relation holds:

vt = exp

(
−
∫ t+1

t

δ(ξ) dξ

)
.

For a stochastic interest rate the interest intensity δ is also a stochastic process (δt(ω))t≥0. Also in the
continuous time setting we are going to use valuation principle A.

Finally it is worth to note the difference between v(t) which denotes the discounting back to time 0 and
vt which denotes the discount from time t + 1 to t. This later quantity is commonly used in actuarial
sciences for recursion formulae.
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3.3 Models for the interest rate process

Now we want to describe the stochastic behaviour of the interest rate. We start with an analysis of the
average interest rate of Swiss government bonds in Swiss franc. Figure 3.1 shows the rate from 1948 up
to 2009.

Figure 3.1. Average yield of government bonds in %

The figure shows that during the given period the interest rate of bonds was subject to huge fluctuations.
The minimal rate of 1.93 % was reached in 2005. The maximum of 7.41 % was recorded during the “oil
crisis” in the autumn of 1974. It is interesting to note, that in the first printing of this book (1999) the
minimum was actually reached in 1954 at about 2.5 %. At this time nobody expected that the interest
rates in Switzerland would drop that far again. Based on this observation the inherent risk of the technical
interest rate in insurance policies becomes obvious.

After seeing these values one starts to wonder how the technical interest rate should be determined. First
of all, this depends on the purpose of the model in use. One has to differentiate between short term and
long term relations. Moreover, the interest rate might only be used for marketing or forecasting purposes.
In any case it should be emphasised that it might be risky to fix a constant interest rate above the level
of the observed minimum. Since in this case there might be periods during which the interest yield of the
assets does not cover the liabilities. Thus one has to take care when fixing the technical interest rate.

Another method to determine the technical interest rate is based on the analysis of the yield-curve or
the forward-curve. This curves allow to measure the interest rate structure. The yield-curve can be used
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to determine the interest rate which one would get for a bond with a fixed investment period. Figure
3.2 shows the yield-curve for various currencies, it indicates that the interest rate is smaller for a bond
with a short investment period than for a bond with a long investment period. This is called a ’normal’
interest rate structure. Conversely, one speaks of an ’inverse’ interest rate structure if the bonds with a
short investment period provide a better yield than those with a long investment period.

Figure 3.2. Yield curves as at 1.1.2008

This point of view provides a realistic evaluation of the interest rate. To utilise this we are going to define
the so called zero coupon bond.

Definition 3.3.1 (Zero coupon bond). Let t ∈ R. Then the zero coupon bond with contract period t
is defined by

Z(t) = (δt,τ )τ∈R+ .

Thus the zero coupon bound is a security, which has the value 1 at time t.

Definition 3.3.2 (Price of a zero coupon bond). Let t ∈ R. Then the price of a zero coupon bond
Z(s) at time t with contract period s is denoted by

πt
(
Z(s)

)
.
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3.4 Stochastic interest rate 25

Based on these curves one can calculate the forward rates, i.e. the interest rate for year n; n+ 1, of the
corresponding investment:

(1 + ik) =
πt
(
Z(k)

)
πt
(
Z(k+1)

) .
Here ik is called the forward rate at time t for the contract period [k, k + 1[, it is the expected rate for
this time interval. Therefore the discount rate is given by

vk =
πt
(
Z(k+1)

)
πt
(
Z(k)

) .

Thus one can use a time dependent technical interest rate and adapt the necessary elements in the
expectation based on the liabilities. This is especially useful for short term contracts with cash flows
which are accessible. Consider for example the acquisition of a pension portfolio. In this case one takes
over the obligation to pay the pensions of a given pension fund. The described method reduces the risks
taken by fixing the technical interest rate.

The third method to determine the technical interest rate uses a stochastic interest rate model. This is
interesting for practical and theoretical purposes. On the one hand this method is useful for policies which
are tied to the performance of funds and which provide guaranties. On the other hand it enables us to
derive models which provide a tool to measure the risk of an insurance portfolio with respect to changes
of the interest rate It turns out that for models with stochastic interest rate the corresponding risk does
not vanish when the number of policies increases. This is a major difference to the deterministic model.
Furthermore it means that the risk induced by the interest rate has a systemic, and thus dangerous,
component. The construction of these models requires an analysis of the returns of several investment
categories. Figure 3.3 shows the performance of two indices. These are measurements of the mean value
of the return on investment in a given category. The indices in Figure 3.3 are the following

SPI Swiss Performance Index: Swiss shares
SWISBGB Swiss government bonds

Observing the performances of these indices (Figure 3.3) we find a significant difference between shares and
bonds. The expected return is larger for shares, but they also have a larger volatility (greater variance).

For a model with stochastic interest rate one has to model processes as depicted in the Figures 3.1, 3.2
and 3.3. The main difficulty in this context is the fact that there is no common standard model. Thus
the actuary is responsible for selecting an appropriate model for the given problem.

In the following section we will describe some popular models. The reader interested in further details on
the financial market, in particular interest rate models, is referred for example to [Hul97].

3.4 Stochastic interest rate

In the previous section we have seen several possibilities to determine the value of a cash flow based
on the interest rate. Furthermore, the basics of a stochastic interest rate model were introduced. In this
section we will present explicitly several stochastic interest rate models.
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Figure 3.3. Performance of different indices

First of all one has to understand the difference between the stochastic behaviour of the interest rate and
the stochastic component of the mortality. Both create a risk for an insurance company. On the one hand
there is the risk induced by the fluctuation of the interest rate and on the other hand there is risk based
on the individual mortality. Changes of the interest rate affect all policies to the same degree. But the
variation of the risk based on the individual mortality decreases when the number of policies increases.
This is due to the law of large numbers and the independence of individual lifetimes.

Now we give a brief survey of stochastic interest rate models. We will concentrate on a description of
these models without rating them. Nevertheless one should note that some models (e.g. the random walk
model) are unsuitable to realistically describe an interest rate process.

3.4.1 Discrete time interest rate models

Random walk: Let µ ∈ R+ and t ≥ 0. The interest rate it is defined by

it = µ+Xt, µ ∈ R,
Xt = Xt−1 + Yt,

Yt ∼ N (0, σ2) i.i.d.

Note that this model is too simple to capture the real behaviour.
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AR(1)-model: In this model the interest rate is an auto-regressive process of order 1:

it = µ+Xt,

Xt = φXt−1 + Yt, with |φ| < 1,

Yt ∼ N (0, σ2).

The model is mostly used by actuaries in England. The main idea is to start with an AR(1)-process
as a model for the inflation. Then, in a second step, the models of the other economic values are based
on this inflation. The constructed models have many parameters and are difficult to fit. References:
[BP80] [Wil86] [Wil95].

3.4.2 Continuous time interest rate models

Brownian motion: δt = δ + σWt, where Wt is a standard Brownian motion.

Vasiček-model: The interest intensity is defined by the following stochastic differential equation

dδt = −α (δt − δ) dt+ σ dWt.

References: [Vas77].

Cox-Ingersoll-Ross: The interest intensity is defined by the following stochastic differential equation

dδt = −α (δt − δ) dt+ σ
√
δt dWt.

References: [CIR85].

Markovian interest intensities: This model ([Nor95b]) uses a Markov chain (Xt)t≥0 on a finite state
space and a deterministic function δj(t) for each j ∈ S. Then the interest intensity is defined by

δt =
∑
j∈S

χ{Xt=j}δj(t).

This means, that the interest intensity in a given state j at time t is determined by the corresponding
deterministic function δj(.) evaluated at t. The model has the advantage, that it can be integrated
into the Markov model. Furthermore it is very flexible due to its general state space. Therefore we
will focus on this model in the following.

One should note that the Vasiček-model and the CIR-model feature mean reversion. Thus the interest
intensity without stochastic noise (dW ) converges in the long run toward the the mean intensity δ, since
the differential equation without stochastic noise

dδt = −α (δt − δ) dt

has the solution
δt = γ × exp(−α t) + δ.

The Vasiček-model and the Cox-Ingersoll-Ross-model are often used to model interest rate processes in
applications.

Brownian motion and the Vasiček-model are problematic, since they allow negative interest rates with
positive probability. In the Cox-Ingersoll-Ross model this can be prevented by an appropriate choice of
the parameters.
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In the following we assume that the presented stochastic differential equations have a solution.

We have seen above various models which are based on fundamentally different ideas. But in addition to
the risk in the choice of the model there are further relevant systemic risks which affect the interest rate.
These are:

The interest rate paid on an investment is not purely random. It also depends on political decisions. For
example a monetary union causes the interest rates to converge, since in this case only one currency with
one (random) interest rate exists (e.g. the European monetary union).
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4. Cash flows and the mathematical reserve

4.1 Introduction

In the previous two chapters we introduced several types of insurances and their setup. Based on this we
will now answer several fundamental questions.

First of all we will decide which general model we are going to use. Afterwards we will explain how to
value and price an insurance policy.

The present value of an insurance policy, the so called mathematical reserve, has to be determined by an
insurance company on a yearly basis for the annual statement. This is necessary since the company has
to reserve this value. The mathematical reserve is also important for the insured when he wants to cancel
his policy before maturity.

In the remainder of the chapter the insurance model from Chapter 1 will be combined with the stochastic
models of Chapter 2. Obviously Markov chains with a countable state space are not the only possi-
ble stochastic model, but we will focus on these. On the one hand they are general enough to model
many phenomena. On the other hand the corresponding formulas are simple enough to perform explicit
calculations.

4.2 Examples

In this section we present some examples which motivate the use of the Markov chain model for insurance
policies.

Example 4.2.1 (Life insurance). Usually the state space of a permanent life insurance consists of the
states “dead” and “alive”. Thus we use for the policy setup and for the stochastic process the state
space S = {∗, †}, where ∗ denotes “alive” and † denotes “dead”. Based on the benefits of such a policy, as
described in Chapter 1, one has to model the corresponding stochastic process. We will use the exemplary
life insurance from Chapter 2. A typical sample path of the stochastic process corresponding to this policy
is shown in Figure 4.1. It indicates that at the time of death (here at x = 45) the corresponding payment
(e.g. 200,000 USD) is due. The mortality at that time is:

µ∗†(x)|x=45 = exp(−9.13275 + 0.08094x− 0.000011x2)
∣∣
x=45

= 0.00404.

This means that on average 4 out of 1000 forty-five year old men die per year.
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Figure 4.1. Trajectory of a mortality cover

Up to now we are not able to calculate the premiums for the policy in the example above. But we already
notice the interplay between the payments and the stochastic processes.

Example 4.2.2 (Temporary disability pension). In this example we consider a policy of a disability
pension which corresponds to the sample path in Figure 4.2. We want to record the various cash flows
which it induces. For this we take the transition intensities from Example 2.4.2 with the additional
assumption µ�∗(x) = 0.05. Then the sample path presented in Figure 4.2 causes the cash flows listed in
Table 4.1.
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Figure 4.2. Trajectory of a disability cover

4.3 Fundamentals

In order to derive realistic models we have to know the fundamentals (underlying probabilities and
biometric quantities). They are especially needed for the calculation of the premiums and mathematical
reserves. As actuary one can look up the fundamentals in published tables. These list the probability of
given events, for example the probability to die at a given age.

The tables used by insurance companies often incorporate a certain spread. For example one increases
the probability of dying at a certain age if one calculates a life insurance. Conversely, one increases the
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Table 4.1. Example of cash flows for a disability pension

time state cash flow µ

x ∈ [0, 40[ active (∗) premiums
x = 40 becomes disabled disability capital µ∗� = 0.00214
x ∈ ]40, 45[ disabled (�) disability pension
x = 45 becomes active — µ�∗ = 0.05000
x ∈ [45, 50[ active (∗) premiums
x = 50 becomes disabled (maybe) disability capital µ∗� = 0.00387
x ∈ ]50, 85[ disabled (�) disability pension
from 65 pension
x = 85 dead sum payable at death µ�† = 0.12932

survival rate if one calculates a pension. This spread is used to decrease the risk of default and to cover
possible demographic trends. That this is necessary illustrate for example the Tables 4.2 and 4.3. They
list the average life expectancy for several generations, as given in the Swiss mortality tables. The average
life expectancy is the number of years which a person of given age has on average still ahead. These tables
clearly show that the average life expectancy increased during the last one hundred years. Therefore a
spread is clearly necessary to cover this trend. Other western countries experience a similar increase of
the average life expectancy.

Table 4.2. Average life expectancy based on Swiss mortality tables (male)

Alter 1881-88 1921-30 1939-44 1958-63 1978-83 1988-93 1998-03

1 51.8 61.3 64.8 69.4 72.1 73.8 76.6
20 39.6 45.2 47.9 51.5 53.8 55.3 58.0
40 25.1 28.3 30.4 32.8 35.1 36.8 39.0
60 12.4 13.8 14.8 16.2 17.9 19.3 21.1
75 5.6 6.2 6.6 7.5 8.5 9.2 10.3

Table 4.3. Average life expectancy based on Swiss mortality tables (female)

Alter 1881-88 1921-30 1939-44 1958-63 1978-83 1988-93 1998-03

1 52.8 63.8 68.5 74.5 78.6 80.5 82.2
20 41.0 47.6 51.3 56.2 60.1 61.8 63.4
40 26.7 30.9 33.4 37.0 40.7 42.5 43.8
60 12.7 15.1 16.7 19.2 22.4 24.0 25.2
75 5.7 6.7 7.4 8.6 10.7 11.9 12.8

We note that demographic quantities are constantly changing, like the average life expectancy. But where
does this data actually come from and how where these tables calculated?

For the mortality tables one uses either the samples which are owned by the given insurance company
or a collection of samples which is obtained jointly by several insurers. Then, to calculate the mortality
rate, one counts the number of persons at risk and the number of died subjects for a given period of time
(e.g. five years). The following example is based on data obtained by a large Swiss insurance company
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[PT93]. Figure 4.3 shows the number of alive and dead people at a given age. Figure 4.4 shows the raw
mortality and the smoothed mortality.

The smoothed mortality is obtained by a smoothing algorithm. We are not going to discuss these algo-
rithms. But we want to note, that there are various algorithms which greatly differ in their complexity.

On the raw curve one notices for example the accident-bump (i.e. the increased mortality) between 15
and 25 years. This is not visible in the smooth curve. Thus one has to adjust in this region the smoothed
mortality.

Figure 4.3. Inforce and number of dead people

In this example a polynomial of degree two was fitted to log(µ∗†):

µ∗†(x) = exp(−7.85785 + 0.01538 · x + 5.77355 · 10−4 · x2).

Analogous other demographic quantities which are relevant for the calculation of the premiums are
obtained. Also for these a smoothed curve is obtained by an application a smoothing algorithm to the
raw data.

The relevant probabilities and biometric quantities are collected in a catalogue. Then, with the help of
such a catalogue, one can calculate the premiums and values of various products.

Table 4.4 lists the typically relevant quantities.
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Table 4.4. Typical quantities for the calculation of premiums

variable meaning

qx mortality, possibly separate for accidents and illness,
ix probability of becoming disabled, possibly separate for accidents

and illness,
rx probability of becoming active again, possibly partitioned by the

lengths of the disability period,
gx average degree of disability,
hx probability of being married at the time of death,
yx average age of the surviving marriage partner at the death of the

insured.

Further details about the calculation of mortality tables and disability tables for the German and Euro-
pean market can be found in [DAV09].
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Figure 4.4. Mortality man
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4.4 Deterministic cash flows

Definition 4.4.1 (Payout function). A deterministic payout function A is a function

A : T → R, t 7→ A(t),

on T ⊂ R with the following properties:

1. A is right continuous,

2. A is of bounded variation.

The value A(t) represents the total payments from the insurer to the insured up to time t. The payout
functions are those functions in the policy setup which represent the benefits for the insured.

Example 4.4.2 (Disability insurance). We continue Example 4.2.2 by calculating the corresponding
payout function. For this we assume that the policy does not contain a waiting period and that the
disability pension is fixed to 20,000 USD per year (until the age of 65) with premiums of 2,500 USD per
year until 65. Furthermore we suppose that the insurance was contracted at the age x0 = 25. The payout
function of this example is shown in Figure 4.5.
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Figure 4.5. Cumulative payout of a disability annuity

Exercise 4.4.3. Derive the payout function for Example 4.4.2.

Remark 4.4.4 (Functions of bounded variation). Functions of bounded variation have the follow-
ing properties [DS57]:

1. A function A of bounded variation corresponds to a measure on σ(R). We will denote the measure
again by A. This measure is called Stieltjes measure. In our setting it is also called payout measure.

2. Let A be a function of bounded variation on R. Then there exist two positive, increasing and bounded
functions B and C such that A = B − C. In the insurance model we can interpret B as inflow and
C as outflow of cash. This representation is unique if one assumes that the measures corresponding
to B and C have disjoint support. (Exercise: Calculate B and C for Example 4.4.2.)
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36 4. Cash flows and the mathematical reserve

3. Let A be the measure corresponding to a function of bounded variation on R. Then A can be
decomposed uniquely into a discrete measure µ and a continuous measure ψ. Furthermore one can
decompose ψ into a part which is absolute continuous with respect to the Lebesgue measure and a
remainder part. The support of µ is a countable set since A is finite on bounded sets.

4. Let A be a function of bounded variation and T ∈ σ(R). Then A× χT is also a function of bounded
variation. (Here the function χT is the indicator function introduced in Definition 2.1.2.)

The above properties also hold for payout functions, since these are just functions of bounded variation.
The decomposition of the Stieltjes measures will be useful later on. Thus we introduce the following
notation:

Definition 4.4.5 (Decomposition of measures). Let f be a function of bounded variation with cor-
responding Stieltjes measure A. Then we define

µf := A.

We know that we can decompose this measure uniquely into A = B − C, where B and C are positive
measures with disjoint support. Therefore we define:

A+ := B,

A− := C.

Furthermore the Stieltjes measure A can be decomposed uniquely into A = D + E, where D is discrete
and E is continuous. Therefore we define:

Aatom := D,

Acont := E.

Furthermore, let µ be a measure which is absolute continuous with respect to the Lebesgue measure λ.
Then we denote by dµ

dλ the Radon-Nikodym density of µ with respect to λ.

Above we have seen the most important properties of deterministic cash flows. This enables us to define
their values with the help of the discount rate. Recall, the discount rate is given by

v(t) = exp(−
∫ t

0

δ(τ) dτ).

Then the present value of a cash flow is defined as follows.

Definition 4.4.6 (Value of a cash flow). Let A be a deterministic cash flow and t ∈ R. We define:

1. The value of a cash flow A at time t is

V (t, A) :=
1

v(t)

∫ ∞
0

v(τ) dA(τ).

2. The value of the future cash flow is

V +(t, A) := V (t, A× χ]t,∞]).

It is also called prospective value of the cash flow or prospective reserve.
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Concerning these definitions one should note:

Remark 4.4.7. 1. The idea of the prospective reserve is to calculate the present value of the future
cash flows. Thus a payment of ζ which is due in two years contributes v(2)× ζ to the present value.
Initially the reserves are defined for deterministic cash flows. To define them also for random cash
flows one uses the corresponding conditional expectations.

2. The definition implicitly requires that v(t) is integrable with respect to the measure A, i.e. v ∈ L1(A).

3. The equation A = Aatom + Acont also implies V (t, A) = V (t, Aatom) + V (t, Acont). This decom-
position allows us to use different methods of proof for the discrete and the continuous part of the
measure.

Example 4.4.8. We want to calculate V +(t, A) for the cash flow defined in Example 4.4.2 with δ(τ) =
log(1.04). The first step is to calculate A+ and A−:

dA+ = 20000 (χ[40,45[ + χ[50,65[)dτ,

dA− = 2500 (χ[25,40[ + χ[45,50[)dτ.

Then we get for t ∈ [25, 65[

V +(t, A) = 20000

∫ 65

t

(1.04)−(τ−t) (χ[40,45[ + χ[50,65[)dτ

−2500

∫ 65

t

(1.04)−(τ−t) (χ[25,40[ + χ[45,50[)dτ.

4.5 Stochastic cash flows

Definition 4.5.1 (Stochastic cash flow). A stochastic cash flow or a stochastic process of bounded
variation is a stochastic process (Xt)t∈T for which almost all sample paths are functions of bounded
variation.

Let A be a stochastic process of bounded variation such that t 7→ At(ω) is right continuous and increasing
for each ω ∈ Ω. Then it is possible to calculate the integral

∫
f(τ)dµA·(ω)(τ) for a bounded Borel function

f . Similarly, one can define P-almost everywhere the integral
∫
f(τ, ω)dµA·(ω)(τ) if Ft = f(t, ω) is a

bounded function which is measurable with respect to the product sigma algebra. The construction of
these integrals can be extended to general processes of bounded variation by decomposing the sample
path, a function of bounded variation, into its positive (increasing) and negative (decreasing) part.

Definition 4.5.2. Let (At)t∈T be a process of bounded variation on (Ω,A, P ) and F : R×Ω → R be a
bounded and product measurable function. Then the description above yields the following definition

(F ·A)t(ω) =

∫ t

0

F (τ, ω)dAτ(ω).

We also write this relation in the symbolic notation of stochastic differential equations:

d(F ·A) = F dA.

This definition allows us to give a precise definition of the stochastic cash flows in our insurance model.
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Definition 4.5.3 (Policy cash flows). We consider an insurance policy with state space S and payout
functions aij(t) and ai(t).

1 Based on Definition 2.1.8 we can define the stochastic cash flows corresponding
to an insurance policy by

dAij(t, ω) = aij(t) dNij(t, ω),

dAi(t, ω) = Ii(t, ω) dai(t),

dA =
∑
i∈S

dAi +
∑

(i,j)∈S×S,i 6=j

dAij .

The quantity Aij(t, ω) is the sum of the random cash flows which are induced by transitions from state i
to state j up to time t. Similarly, Ai(t, ω) represents the sum of the random cash flows up to time t which
are pension payments for being in state i.

Remark 4.5.4. 1. The quantity dAij(t, ω) corresponds to the increase of the liabilities by a transition
i ; j. Therefore Aij(t, ω) increases at time t by the capital benefit aij(t) if at time t a transition
i ; j takes place, i.e. if Nij(t) increases by 1. Similarly, dAi(t) corresponds to the increase of the
liabilities caused by the insured being in state i.

2. The integrals appearing above are well defined since the corresponding processes are, by definition,
of bounded variation. Moreover also the payout functions have the required regularity.

3. The quantities (F · A)t are measurable for each t since F was assumed to be product measurable.
Therefore also the expectation E[(F · A)t] is well defined. Similarly, the conditional expectations
E[(F ·A)t | Fs] are well defined.

4. Thus one can apply Definition 4.4.6 (value of a cash flow) point wise (i.e. for each sample) to a
stochastic cash flow. This yields the equation

dV (t, A) = v(t) dA(t)

= v(t)

∑
i∈S

Ii(t)dai(t) +
∑

(i,j)∈S×S,i6=j

aij(t)dNij(t).


5. In the discrete Markov model at most two cash flows occur during a time interval [t, t + 1[. Firstly,

if the policy is in state i, aPre
i (t) is paid at the beginning of the interval. Secondly, if there is a

transition i; j, aPost
ij (t) is due at the end of the interval. Hence the following equations can be used

to calculate the total cash flows:

∆Aij(t, ω) = ∆Nij(t, ω)aPost
ij (t), (4.1)

∆Ai(t, ω) = Ii(t, ω)aPre
i (t), (4.2)

∆A(t, ω) =
∑
i∈S

∆Ai(t, ω) +
∑
i,j∈S

∆Aij(t, ω), (4.3)

where ∆A(t) (and similarly ∆Aij , and ∆Ai, respectively) stands for the change of A(t) from t to
t+ 1, eg ∆A(t) := A(t+ 1)−A(t).

Definition 4.5.5. Let A and (optionally) also v be stochastic processes on (Ω,A, P ) which are adapted
to the filtration F = (Ft)t≥0. In this case the prospective reserve is defined by:

1 Thus the functions are of bounded variation and, in particular, bounded.

c©Michael Koller Skript AK LV 2012 Vers. 0.70



4.6 Mathematical reserve 39

V +
F (t, A) = E

[
V +(t, A) | Ft

]
.

One should note that also these reserves, like the usual expectations, might not exist, i.e., they might
be infinite. In the following we will always assume that V +

F (t, A) and the other quantities exist. This
assumption is always satisfied in applications.

For a Markov chain the conditional expectation with respect to Ft depends only on the state at time t.
Thus we additionally define

V +
j (t, A) = E

[
V +(t, A) |Xt = j

]
.

The following definition fixes our assumptions on the regularity of an insurance model.

Definition 4.5.6 (Regular insurance model). A regular insurance model consists of:

1. a regular Markov chain (Xt)t∈T with a state space S,

2. payout functions aij(t) and ai(t),

3. right continuous interest intensities δi(t) of bounded variation.

4.6 Mathematical reserve

The mathematical reserve is the amount of money an insurance company has to reserve for the expected
liabilities in order to remain solvent. We assume that the interest intensity δ has the following structure:
δt =

∑
j∈S Ij(t) δj(t). Then the required reserves for the cash flows are defined by:

Definition 4.6.1 (Mathematical reserve). The mathematical reserve for being in state g ∈ S within
a time interval T ∈ σ(R) under the condition Xt = j is defined by

Vj(t, AgT ) = E

[
1

v(t)
×
∫
T

v(τ) dAg(τ) |Xt = j

]
.

Similarly, for transitions from g to h ∈ S, we define

Vj(t, AghT ) = E

[
1

v(t)
×
∫
T

v(τ) dAgh(τ) |Xt = j

]
.

We use the notation Vj(t, Ag) and Vj(t, Agh) for Vj(t, AgR) and Vj(t, AghR), respectively.

Remark 4.6.2. The definitions of the mathematical reserve can be translated to the discrete model.
One just has to replace the integrals by the corresponding sums:

Vj(t, AgT ) = E

[
1

v(t)
×
∑
τ∈T

v(τ)∆Ag(τ) |Xt = j

]
.

Analogous, for transitions from g to h ∈ S we set:

Vj(t, AghT ) = E

[
1

v(t)
×
∑
τ∈T

v(τ + 1)∆Agh(τ) |Xt = j

]
,

where we assumed that the payments always take place at time τ + 1.

c©Michael Koller Skript AK LV 2012 Vers. 0.70



40 4. Cash flows and the mathematical reserve

Therefore the total reserve (or mathematical reserve) for a given state j is

Vj(t, A) =
∑
g∈S

Vj(t, Ag) +
∑

g,h∈S,g 6=h

Vj(t, Agh)

for the continuous time model and

Vj(t, A) =
∑
g∈S

Vj(t, A
Pre
g ) +

∑
g,h∈S

Vj(t, A
Post
gh )

for the discrete time model. Thus we have defined the mathematical reserves. The next step is to calculate
their values. Let us consider the relevant cash flows. On the one hand there are flows of the form dA1(t) =
a(t)dNjk(t) and on the other hand are flows of the form dA2(t) = Ij(t)dA(t).

The first step is to calculate the integrals
∫
dA for the partial cash flows. Afterwards we will derive explicit

formulas for the mathematical reserves.

Theorem 4.6.3. Let (Xt)t∈T be a regular Markov chain on (Ω,A, P ) (cf. Def. 2.3.2). Furthermore let
i, j, k ∈ S, s < t and T ∈ σ(R) where T ⊂ [s,∞]. Then the following statements hold:

1.

E

[∫
T

a(τ) dNjk(τ) |Xs = i

]
=

∫
T

a(τ) pij(s, τ)µjk(τ)dτ

for a ∈ L1(R).

2. Let A be a function of bounded variation, then

E

[∫
T

Ij(τ) dA(τ) |Xs = i

]
=

∫
T

pij(s, τ) dA(τ).

Proof. 1. The step functions are dense in L1. Therefore it is enough to show the equality for functions
of the form χ[a,b]. Moreover, the Borel σ-algebra is generated by the intervals in R+. Thus we can
take T = [c, d]. Further we can set c = a and d = b without loss of generality, since the indicator
function is equal to zero outside the interval [a, b].

Define the function
h(t) := E [Njk(t) |Xs = i] .

Based on this definition we get

h(t+∆t)− h(t) = E [Njk(t+∆t)−Njk(t) |Xs = i]

=
∑
l∈S

E
[
χ{Xt=l}(Njk(t+∆t)−Njk(t)) |Xs = i

]
=

∑
l∈S

E [Njk(t+∆t)−Njk(t) |Xt = l]× pil(s, t).

Now we observe that all the terms where j 6= l are of order o(∆t). Thus we get

= pij(s, t)× µjk(t)×∆t+ o(∆t).

Therefore h′(t) = pij(s, t)µjk(t), and an integration of this equation with initial condition h(0) = 0
yields the first statement of the theorem.
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2. For the second statement one has to interchange the order of integration, which is allowed by Fubini’s
theorem.

Remark 4.6.4. Also these statements can be translated easily to the discrete model. One gets the
equations

E

[∑
τ∈T

a(τ)∆Njk(τ) |Xs = i

]
=
∑
τ∈T

a(τ) pij(s, τ)pjk(τ, τ + 1)

and

E

[∑
τ∈T

Ij(τ)∆A(τ) |Xs = i

]
=
∑
τ∈T

pij(s, τ)∆A(τ).

Exercise 4.6.5. Complete the proof of Theorem 4.6.3.

An important consequence of Theorem 4.6.3 is the next theorem.

Theorem 4.6.6. Let the assumptions of Theorem 4.6.3 be satisfied. Then

dMij(t) := dNij(t)− Ii(t)µij(t)dt

is a martingale.

Proof. We have
Nij(t) ∈ L1(Ω,A, P )

and ∫ t

0

Ij(τ)µij(τ)dτ ∈ L1(Ω,A, P ),

which implies
Mij(t) ∈ L1(Ω,A, P ).

Next, we have to prove the equality E[Mij(t) | Fs] = Mij(s) for s < t. But, since the processes M , N and
I are all derived from (Xt)t∈T , it is enough to prove E[Mij(t) |Xs = k] = Mij(s). But this is true, since

E[Mij(t) |Xs = k]−Mij(s) = E

[∫ t

s

dMij(τ) |Xs = k

]
= E

[∫ t

s

dNij(t)− Ii(t)µij(t)dt |Xs = k

]
= 0,

where we used Theorem 4.6.3 in the last step.

Another application of Theorem 4.6.3 yields the following equations for the mathematical reserves in our
insurance model:

Theorem 4.6.7. Let aij and ai be payout functions and (Xt)t∈T be a regular Markov chain on (Ω,A, P ).
Then the following equations hold for fixed interest intensities (i.e., δi = δ):
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E[V (t, AjT )|Xs = i]

=
1

v(t)

∫
T

v(τ) pij(s, τ)daj(τ),

E[V (t, AjkT )|Xs = i]

=
1

v(t)

∫
T

v(τ) ajk(τ) pij(s, τ)µjk(τ)dτ,

E[V (t, AjS)V (t, AlT )|Xs = i]

=
1

v(t)2

∫
T×S

v(θ)v(τ)
{
χ{θ≤τ}pij(s, θ)pjl(θ, τ)

+ χ{θ>τ}pil(s, τ)plj(τ, θ)
}
daj(θ)dal(τ),

E[V (t, AjkS)V (t, AlmT )|Xs = i]

=
1

v(t)2

[∫
T×S

v(θ)v(τ)
{
χ{θ≤τ}pij(s, θ)pkl(θ, τ)

+χ{θ>τ}pil(s, θ)pmj(θ, τ)
}
µjk(θ)µlm(τ)ajk(θ)alm(τ)dθdτ

+δjk,lm

∫
T∩S

v(τ)2pij(s, τ)µjk(τ)a2jkdτ

]
,

E[V (t, AjS)V (t, AlmT )|Xs = i]

=
1

v(t)2

∫
T×S

v(θ)v(τ)
{
χ{θ≤τ}pij(s, θ)pjl(θ, τ)

+χ{θ>τ}pil(s, τ)pmj(τ, θ)
}
daj(θ)µlm(τ)alm(τ)dτ.

Proof. The first two equations are a direct consequence of Theorem 4.6.3. For a proof of the remaining
equations we refer to [Nor91].

Remark 4.6.8. Also this theorem can easily be translated to the discrete setting. The following equalities
hold:

E[V (t, AjT )|Xs = i] =
1

v(t)

∑
τ∈T

v(τ) pij(s, τ)aPre
j (τ),

E[V (t, AjkT )|Xs = i] =
1

v(t)

∑
τ∈T

v(τ + 1) pij(s, τ) pjk(τ, τ + 1) aPost
jk (τ),

where we used that, for a transition j ; k, the payments aPost
jk (τ) are made the end of the period.

Exercise 4.6.9. Complete the proof of Theorem 4.6.7.

Given the transition probabilities one can use Theorem 4.6.7 to calculate the expectations and variances
of the prospective reserves for each cash flow. Then, based on these partial reserves, one can calculate
the total prospective reserves by the following result.

Theorem 4.6.10. Let a regular insurance model (Definition 4.5.6) with deterministic interest intensities
be given. Then the prospective reserves are given by

V +
j (t) =

1

v(t)

∫
]t,∞[

v(τ)
∑
g∈S

pjg(t, τ)
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×
{
dag(τ) +

∑
S3h6=g

agh(τ)µgh(τ)dτ

}
.

Remark 4.6.11. The formula of the previous theorem is not very useful, since one has to calculate
integrals based on the transition probabilities pij . This becomes even more complicated by the fact that
in applications often only the µij are given. In the next section we will find a more elegant way to calculate
this quantity.

4.7 Recursion formulas for the mathematical reserves

In this section we will derive a recursion formula for the reserves based on their integral representation.
This recursion can be used in two ways. On the one hand it can be used to prove Thiele’s differential
equation. On the other hand it can be applied to the discrete model. Thereby it provides a way to
calculate the values for various types of insurances. We will see in the remaining sections that these
recursion equations, difference equations and differential equations are a extremely useful tools for explicit
calculations. We adapt our definition of mathematical reserves, in order to simplify the proofs:

Definition 4.7.1. We define for a regular insurance model (Definition 4.5.6):

W+
j (t) := v(t) V +

j (t).

The difference between W and the usual mathematical reserve V is only the discount factor. V resembles
the value of the cash flow at time t, whereas W is the value of the cash flow at time 0. Thus W is only
a new notation which will help to keep the proofs simple. Based on this we are now able to derive a
recursion formula for the prospective reserve.

Lemma 4.7.2. Let j ∈ S, s < t < u and (Xt)t∈T be a regular insurance model in continuous time with
deterministic interest intensities. Then the following equation holds:

W+
j (t) =

∑
g∈S

pjg(t, u)W+
g (u)

+

∫
]t,u]

v(τ)
∑
g∈S

pjg(t, τ)

{
dag(τ) +

∑
S3h6=g

agh(τ)µgh(τ)dτ

}
.

Proof. The proof is based on the Chapman-Kolmogorov equation. We get

W+
j (t) =

∫
]t,∞]

v(τ)
∑
g∈S

pjg(t, τ)

{
dag(τ) +

∑
S3h6=g

agh(τ)µgh(τ)dτ

}

=

(∫
]t,u]

+

∫
]u,∞]

)
v(τ)

∑
g∈S

pjg(t, τ)

×
{
dag(τ) +

∑
S3h6=g

agh(τ)µgh(τ)dτ

}
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=

∫
]t,u]

v(τ)
∑
g∈S

pjg(t, τ)

{
dag(τ) +

∑
S3h6=g

agh(τ)µgh(τ)dτ

}

+

∫
]u,∞]

v(τ)
∑
g∈S

(∑
k∈S

pjk(t, u)pkg(u, τ)

)

×
{
dag(τ) +

∑
S3h6=g

agh(τ)µgh(τ)dτ

}

=

∫
]t,u]

v(τ)
∑
g∈S

pjg(t, τ)

{
dag(τ) +

∑
S3h6=g

agh(τ)µgh(τ)dτ

}

+
∑
k∈S

pjk(t, u)

(∫
]u,∞]

v(τ)
∑
g∈S

pkg(u, τ)

×
{
dag(τ) +

∑
S3h6=g

agh(τ)µgh(τ)dτ

})

=
∑
g∈S

pjg(t, u)W+
g (u)

+

∫
]t,u]

v(τ)
∑
g∈S

pjg(t, τ)

{
dag(τ) +

∑
S3h6=g

agh(τ)µgh(τ)dτ

}
.

The recursion formula can also be translated to the discrete model. For this one assumes that the payments
are done at discrete times rather than in continuous time. For example pensions are paid at the beginning
of the interval and death capital is paid at the end of the interval. We denote the payments at the beginning
of the year by aPrei (t) and those at the end of the year by aPostij (t). Thus, in particular we assume that a
transition between states can only occur at the end of the year.

Setting ∆t = 1 in the previous lemma yields the following recursion for the reserves in the discrete setting.

Theorem 4.7.3 (Thiele’s difference equation). For a discrete time Markov model the prospective
reserve satisfies the following recursion:

V +
i (t) = aPrei (t) +

∑
j∈S

vt pij(t)
{
aPostij (t) + V +

j (t+ 1)
}
.

Proof. We know that A(t) =
∑
k≤t∆A(k) and also that

∆V (t, A) = v(t)

∑
j∈S

Ij(t)× aPre
i (t) +

∑
(i,j)∈S×S

∆Nij(t)× aPre
ij (t)

 .
Hence we have

V +
i (t) =

1

v(t)
E

[ ∞∑
τ=t

v(τ)×∆A(τ) |Xt = i

]

=
1

v(t)
E

∑
j∈S

Ij(t+ 1)×
∞∑
τ=t

v(τ)×∆A(τ) |Xt = i

 ,
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remarking that
∑
j∈S Ij(t+1) = 1. If we now consider all the terms in ∆A(t) for a given Ij(t+1) for j ∈ S,

it becomes obvious that the Markov chain changes from i→ j and in consequence only Nik(t) increases
by one for k = j. If we furthermore use the projection property and the linearity of the conditional
expected value and the fact that E [Ij(t+ 1) |Xt = i] = pij(t, t+ 1), together with the Markov property,
we get the formula if we split V +

i (t) as follows:

V +
i (t) =

1

v(t)
E

[ ∞∑
τ=t

v(τ)×∆A(τ) |Xt = i

]

=
1

v(t)
E

[{
t∑

τ=t

+
∞∑

τ=t+1

}
v(τ)×∆A(τ) |Xt = i

]
.

Doing this decomposition we get for the first part:

Part1 = aPrei (t) +
∑
j∈S

vi(t) pij(t)a
Post
ij (t),

and for the second:

Part2 =
∑
j∈S

vi(t) pij(t)V
+
j (t+ 1).

Adding the two parts together we get the desired result:

V +
i (t) = aPrei (t) +

∑
j∈S

vi(t) pij(t)
{
aPostij (t) + V +

j (t+ 1)
}
.

More concretely we have

V +
i (t) =

1

v(t)
E

∑
j∈S

Ij(t+ 1)×
∞∑
τ=t

v(τ)×∆A(τ) |Xt = i


= aPrei (t) +

∑
j∈S

E

[
Ij(t+ 1)×

∞∑
τ=t

v(τ)

v(t)
×∆A(τ) |Xt = i

]

= aPrei (t) +
∑
j∈S

E
[
Ij(t+ 1)vi(t)

{
aPostij +

+E
[ ∞∑
τ=t+1

v(τ)

v(t+ 1)
×∆A(τ)

∣∣∣∣Xt = i,Xt+1 = j

]}∣∣∣∣Xt = i

]
= aPrei (t) +

∑
j∈S

vi(t) pij(t)
{
aPostij (t) + V +

j (t+ 1)
}
.
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Remark 4.7.4. – The formula shows that errors which are introduced by the discretisation of time are
due to payments between the discretisation times.

– The recursion formula of the mathematical reserve is very important for applications, since it provides
a way to calculate a single premium and yearly premiums. In fact it is the most important formula for
explicit calculations.

– To solve a differential equation or a difference equation one needs a boundary condition. For example,
if one calculates a pension, the boundary condition is given by the fact that the reserve has to be equal
to zero at the final age ω.

4.8 Calculation of the premiums

In this section we are going to calculate single premiums and yearly premiums for several types of
insurance policies. The calculations in the examples are based on the discrete recursion (Theorem 4.7.3).
We start with an endowment policy.

Example 4.8.1 (Endowment policy in discrete time). We consider the insurance defined in Ex-
ample 4.2.1. Thus there is a death benefit of 200,000 USD. Moreover we assume an endowment of 100,000
USD and a starting age of 30 with 65 as fixed age at maturity.

– How much is a single premium for this insurance, given a technical interest rate of 3.5%?

– How much are the corresponding yearly premium?

We use the mortality rates given by (2.13). First we calculate the single premium. The following payout
functions are given:

aPost
∗† (x) =

{
200000, if x < 65,

0, otherwise,

aPost
∗∗ (x) =

 0, if x < 64,
100000, if x = 64,

0, otherwise.

An application of Theorem 4.7.3 yields the results presented in Table 4.5. Here one has to note that the
mathematical reserves for the case of survival and the case of death have to be calculated separately.
The reserve in the case of survival is V∗(t, A∗∗R) and the reserve in the case of death is V∗(t, A∗†R) (cf.
Definition 4.6.1).

The table of the mathematical reserves indicates that the recursion formula was used with the boundary
condition x = 65. Figure 4.6 shows the necessary reserves for several values of the technical interest rate.

After the calculation of the single premium we will now consider the case of yearly premiums. The yearly
payment of the premiums is modelled by the following payout function:

aPre
∗ (x) =

{
−P, if x < 65,
0, otherwise.

P has to be calculated such that the value of the insurance is equal to zero at the beginning of the policy.
(Equivalence principle: The expected value of the benefits provided by the insurer and the value of the
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Table 4.5. Reserves for an endowment

age qx res. for res. for sums
endowment death benefit reserve

65 0.01988 100000 0 100000
64 0.01836 94844 3548 98392
63 0.01696 90083 6647 96730
62 0.01566 85674 9348 95022
61 0.01446 81579 11696 93275
60 0.01336 77768 13730 91498
55 0.00897 62086 20275 82360
50 0.00602 50444 22766 73210
45 0.00404 41470 22956 64426
40 0.00271 34362 21874 56236
35 0.00181 28624 20135 48759
30 0.00121 23928 18116 42044

expected premium payments by the insured coincide.) The simplest method to determine the value of P

is to consider V
payout
x (given by the first two payout functions of the policy) and V

premiums
x (given by

the third function of the policy, i.e. by the premiums paid in). The total mathematical reserve is then

given by Vx = V
payout
x +V

premiums
x . But we know that V

premiums
x = P ×V premiums,P=1

x holds. Thus
we can calculate P by the formula

P = −V payout
x /V premiums,P=1

x ,

since Vx at inception of the policy is 0, as a consequence of the equivalence principle. For our example
we get

P = 2.129, 15 USD per year.

Table 4.6. Reserves for an endowment with yearly premiums

present value present value
age premiums payout reserve

65 0 100000 100000
64 -2129 98392 96263
63 -4149 96730 92581
62 -6069 95022 88952
61 -7901 93275 85374
60 -9653 91498 81845
50 -23928 73210 49282
40 -34292 56236 21943
30 -42044 42044 0

Table 4.6 lists the reserves for this insurance with yearly premiums. Figure 4.7 illustrates the same data
in a graph.

Exercise 4.8.2. Do the calculation for the previous example.

In the next example we will consider the simple disability insurances model which we looked at earlier.
We will show how to model the disability pension with and without an exemption from payment of
premiums.
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48 4. Cash flows and the mathematical reserve

Figure 4.6. Mathematical reserves as a function of interest rates

Example 4.8.3 (Disability insurance). We use the model for the disability insurance introduced in
Example 2.4.2. Thus in particular we do not incorporate the possibility that insured becomes active again.
Moreover we also do not model a waiting period.

– Calculate for a 30-year old man the present value of a (new) disability pension based on 65 as age at
maturity and a technical interest rate of 4%.

– Compare for the same person the present value of the premiums for a policy with exemption from
payment of premiums and for a policy without this option.

First we calculate the present value of the payouts of the future disability pension. In this case the non-
trivial functions which model the policy are: (where we assumed that the disability pension is payable in
advance and has the value 1.)

aPre
� =

{
1, if x < 65,
0, otherwise.

The boundary conditions are zero in this case, i.e., there is no payment when the age of maturity is
reached. Table 4.7 lists the calculated values for this example. Thus one has to pay 4,396.8 USD as single
premium for a future disability pension of 10,000 USD. Furthermore, the reserve is 170,790 USD for a
disabled man of 35 years with the same disability pension as above.

Next we consider the present values of the premiums. We have to treat the following two cases separately.
On the one hand there is the present value of a policy without exemption from payment of premiums
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Figure 4.7. Endowment policy against regular premium payment

aPre
∗ =

{
1, if x < 65,
0, otherwise,

aPre
� =

{
1, if x < 65,
0, otherwise.

On the other hand there is the present value of a policy with exemption from payment of premiums
(“premium raider”)

aPre
∗ =

{
1, if x < 65,
0, otherwise,

aPre
� =

{
0, if x < 65,
0, otherwise.

The difference between these two policies is, that in the first case also with status “disabled” the insured
has to pay the premiums. In both cases the boundary condition at the age of 65 is 0. An application of
Thiele’s difference equations yields the values listed in Table 4.8. We note that the value of the paid-in
premiums is smaller in the case of an exemption of premiums. This can also be seen in the plot of these
values in Figure 4.8.

Now we are able to calculate the yearly premium for a disability insurance of 10,000 USD with exemption
from premiums

P = 4396.8/18.09044 = 243.05 USD per year.
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Table 4.7. Reserves of a disability pension

age p∗† p∗� V∗(x) V�(x)

65 0.02289 0.02794 0.00000 0.00000
64 0.02101 0.02439 0.00000 1.00000
63 0.01929 0.02129 0.02047 1.94299
62 0.01772 0.01860 0.05372 2.83515
61 0.01628 0.01625 0.09427 3.68174
60 0.01495 0.01420 0.13828 4.48719
55 0.00983 0.00732 0.34176 8.01299
50 0.00653 0.00387 0.46175 10.90260
45 0.00439 0.00214 0.50531 13.31967
40 0.00301 0.00127 0.50178 15.35782
35 0.00212 0.00084 0.47493 17.07904
30 0.00155 0.00062 0.43968 18.53012

Table 4.8. Present value of the premiums

age V (x) without V (x) with
premium raider premium raider

65 0.00000 0.00000
64 1.00000 1.00000
63 1.94299 1.92251
62 2.83515 2.78144
61 3.68174 3.58747
60 4.48719 4.34891
55 8.01299 7.67123
50 10.90260 10.44085
45 13.31967 12.81436
40 15.35782 14.85604
35 17.07904 16.60411
30 18.53012 18.09044
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Figure 4.8. Present value of premiums

Exercise 4.8.4. 1. Do the calculations of the above example also for a model which includes the pos-
sibility of reactivation (cf. Example 4.2.2).

2. Extend the model by incorporating a waiting period of one year.

Next we consider an insurance on two lives. There are several possible states for which the policy could
guarantee a pension.

Example 4.8.5 (Pension on two lives). We start with the calculation of a single premium for several
types of an insurance on two lives. For this we assume that the two persons have the same mortality as
given in Example 4.2.1 and that x1 = 30 and x2 = 35 are fixed. We set the technical interest rate to 3.5
%, and ω = 114 be the maximal possible age of a living person.

There are three possible pensions: (we denote by x1 the age of the first person)

c©Michael Koller Skript AK LV 2012 Vers. 0.70



52 4. Cash flows and the mathematical reserve

state type formula

∗∗ both persons are
alive

aPre
∗∗ (x) = α∗∗

{
0, if x1 < 65,
1, otherwise,

∗† second person is
dead

aPre
∗† (x) = α∗†

{
0, if x1 < 65,
1, otherwise,

†∗ first person is dead aPre
†∗ (x) = α†∗

{
0, if x1 < 65,
1, otherwise.

The definitions of the pensions above are particular, since the pension for the second life (i.e. for †∗) is
paid at the age of 65. Usually this pension would be paid immediately after the death of the first person.

We set x = (x1, x2) and suppose that the two insured die independently. In this case the recursion takes
the form

V∗∗(x) = aPre
∗∗ (x) + px1 px2 v V∗∗(x+ 1) + px1 (1− px2) v V∗†(x+ 1)

+(1− px1) px2 v V†∗(x+ 1),

V∗†(x) = aPre
∗† (x) + px1

v V∗†(x+ 1),

V†∗(x) = aPre
†∗ (x) + px2 v V†∗(x+ 1).

This recursion yields the values listed in Table 4.9.

Table 4.9. Mathematical reserves (res.) for an insurance on two lives

Notations

V∗·(R1) res. for the pension of 1th life, independent of 2nd life
V·∗(R2) res. for the pension of 2nd life, independent of 1th life
V∗∗(R1) res. for the pension of 1th life, if Xt = (∗∗),
V∗∗(R2) res. for the pension of 2th life, if Xt = (∗∗),

V∗∗(R (∗∗)) res. for the pension of joint lives, if Xt = (∗∗),.

Alter 1 Alter 2 V∗·(R1) V·∗(R2) V∗∗(R1) V∗∗(R2) V∗∗(R (∗∗))
115 120 0.00000 0.00000 0.00000 0.00000
114 119 1.00000 0.00000 0.00000 1.00000
113 118 1.11505 0.11505 0.00000 1.00000
112 117 1.19991 0.19991 0.00000 1.00000
111 116 1.28640 0.28640 0.00000 1.00000
110 115 1.37771 0.00000 0.37771 0.00000 1.00000
109 114 1.47450 1.00000 0.45824 0.00000 1.01626
108 113 1.57710 1.11505 0.52973 0.06845 1.04736
90 95 4.64366 3.53796 2.04747 0.94178 2.59618
75 80 9.05696 7.43141 3.39065 1.76510 5.66631
65 70 12.54173 10.77780 3.88770 2.12377 8.65403
55 60 7.78663 6.26733 3.37939 1.86010 4.40724
40 45 4.30964 3.34208 2.13044 1.16288 2.17920
30 35 3.00101 2.30680 1.52353 0.82932 1.47748
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Exercise 4.8.6. 1. Calculate the present values of the premiums for the insurance on two lives. Note
that also in this calculation one has to consider three different cases.

2. Create a model for an orphan’s pension. For this one has to consider three persons: farther, mother
and child. Define the payout functions for a policy which pays 5,000 USD to the child if one of parent
dies and 10,000 USD if both die. Assume that the policy matures if the child is 25 years old.
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5. Difference equations and differential equations

5.1 Introduction

In this chapter we focus on the Markov model in continuous time. The differential equations are the
continuous counter part to the difference equations of the discrete model.

These differential equations where first proved for simple insurance models by Thiele at the end of the
19th century. We are going to derive these equations for the Markov model. They are useful in two ways.
On the one hand they help to deepen our understanding of the model. On the other hand they can be
used to calculate the premiums for a policy.

5.2 Thiele’s differential equations

In this section we are going to derive Thiele’s differential equations for the mathematical reserve. For
simplicity we consider in this chapter only reserves without jumps. Later on we will also allow jumps,
but then the proofs become more involved.

Theorem 5.2.1 (Thiele’s differential equation). Let (Xt)t∈T , aij, ai and δt be a regular insurance
model (Definition 4.5.6). Moreover, dag(t) be absolute continuous with respect to the Lebesgue measure λ,
i.e. dag(t) = ag(t) dλ. (Thus the payout function Ag(t) is continuous.) Then, assuming a deterministic
interest intensity, the following statements hold:

1. W+
g (t) is continuous for all g ∈ S.

2. ∂
∂tW

+
j (t) = −v(t)

{
aj(t) +

∑
j 6=g∈S µjg(t)ajg(t)

}
+µj(t)W

+
j (t)−∑j 6=g∈S µjg(t)W

+
g (t). (Thiele’s differential equation)

3. V +
j (t) = 1

v(t)

[ ∫ u
t
v(τ)pjj(t, τ){aj(τ) +

∑
j 6=g∈S

µjg(τ)(ajg(τ)

+V +
g (τ))}dτ + v(u)pjj(t, u)V +

j (u−)

]
.

Proof. The proof of the first statement is left as an exercise to the reader. To prove the second statement
we fix j ∈ S, t ∈ R and ∆t > 0. Then Lemma 4.7.2 implies

W+
j (t) = v(t)

aj(t) +
∑
j 6=g∈S

µjg(t)ajg(t)

∆t



56 5. Difference equations and differential equations

+(1− µj(t)∆t)W+
j (t+∆t)

+
∑
j 6=g∈S

µjg(t)W
+
g (t+∆t)∆t+ o(∆t),

where we used the following facts

pjj(t, t+∆t) = 1−∆tµj(t) + o(∆t),

pjk(t, t+∆t) = ∆tµjk(t) + o(∆t).

The above equation yields

W+
j (t+∆t)−W+

j (t)

∆t
= −v(t)

{
aj(t) +

∑
j 6=g∈S

µjg(t)ajg(t)
}

+ µj(t)W
+
j (t+∆t)

−
∑
g 6=j

µjg(t)W
+
g (t+∆t) +

o(∆t)

∆t
.

Letting ∆t −→ 0 we get

∂

∂t
W+
j (t) = −v(t)

aj(t) +
∑
j 6=g∈S

µjg(t)ajg(t)

+ µj(t)W
+
j (t)

−
∑
j 6=g∈S

µjg(t)W
+
g (t).

For the proof of the third statement we use Thiele’s differential equation:

exp(−
∫ t

o

µj(τ)dτ)

−v(t){aj(t) +
∑
j 6=g∈S

µjg(t)ajg(t)}

−
∑
j 6=g∈S

µjg(t)W
+
g (t)


= exp(−

∫ t

o

µj(τ)dτ)

(
∂

∂t
W+
j (t)− µj(t)W+

j (t)

)
=

∂

∂t

(
exp(−

∫ t

o

µj(τ)dτ)W+
j (t)

)
.

An integration
∫ u
t

of both sides yields

exp(−
∫ t

o

µj(τ)dτ)

(
exp(−

∫ u

t

µj(τ)dτ)W+
j (u)−W+

j (t)

)
=

∫ u

t

exp(−
∫ t

o

µj(ξ)dξ) exp(−
∫ τ

t

µj(ξ)dξ)
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×
[
− v(τ)

{
aj(τ) +

∑
j 6=g∈S

µjg(τ)ajg(τ)

}

−
∑
j 6=g∈S

µjg(τ)W+
g (τ)

]
dτ.

Hence, we get

V +
j (t) =

1

v(t)

[ ∫ u

t

v(τ)pjj(t, τ){aj(τ) +
∑
j 6=g∈S

µjg(τ)

× (ajg(τ) + V +
g (τ))}dτ + v(u)pjj(t, u)V +

j (u−)

]
,

where we used that pjj(t, τ) = exp(−
∫ τ
t
µj(ξ)dξ).

Remark 5.2.2. We derived the following integral equation from Thiele’s differential equation:

V +
j (t) = 1

v(t)


∫ u
t
v(τ)pjj(t, τ)

{
aj(τ)︸ ︷︷ ︸
I

+
∑

j 6=g∈S

︷ ︸︸ ︷
IIb

µjg(τ)(ajg(τ)︸ ︷︷ ︸
IIa

+V +
g (τ))

}
dτ

+ v(u)pjj(t, u)V +
j (u−)︸ ︷︷ ︸

III

 .

This formula shows the structure of the reserve. The components of the reserve are:

I) reserve for payments in state j (pensions and premiums),
II) reserves for state transitions composed of

IIa) transition cost (e.g. death benefit) and
IIb) necessary reserves in the new state,

III) reserve, for the case that the insured is still in j after [t, u].

5.3 Examples - Thiele’s differential equation

In this section we look at examples related to those in the discrete setting. In the first example the
differential equations have an explicit solution.

Example 5.3.1 (Term life insurance). We consider a term life insurance with death benefit b, which
is financed by a premium of size c. In this situation the differential equations take the following form:

∂

∂t
W∗(t) = vt(c− µx+t b) + µx+tW∗(t)− µx+tW†(t),

∂

∂t
W†(t) = 0

with the boundary condition W∗(s − x) = W†(s − x) = 0, where s denotes the age of maturity of the
policy.
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Next, we are going to calculate the mathematical reserve. The above equations obviously imply W†(t) ≡ 0.
Thus we only have to calculate W∗(t). The homogeneous part of the equation satisfies

dW∗(t)

W∗(t)
= µx+tdt

and therefore

Lh(t) = A× exp(

∫ t

0

µx+τ dτ).

By variation of constants we get

Lp(t) = A(t)× Lh(t),

d

dt
Lp = A′ × L+A× L′

= A′ × L+A× L
= A′ × L+ Lp,

A′ × L = vt(c− µx+t b),

A′ = vt(c− µx+t b) exp(−
∫
µx+τ dτ)

= vt(c− µx+tb) tpx,

A(t) =

∫ t

0

vτ (c− µx+τ b) τpxdτ.

Finally, the boundary condition W∗(s− x) = 0 yields

W∗(s− x) = A(s− x)× L(s− x)

=

[∫ s−x

0

vτ (c− µx+τ b) τpxdτ

]
×
[
exp(

∫ s−x

0

µx+τdτ)

]
,

c = b

∫ s−x
0

vτ τpx µx+τdτ∫ s−x
0

vτ τpxdτ
.

Example 5.3.2 (Endowment policy). We consider the endowment policy defined in Example 4.8.1.
Thus it contains a death benefit of 200,000 USD and an endowment of 100,000 USD. We consider a 30
year old man and 65 as the age of maturity of the policy.

– How much is a single premium for this insurance if the technical interest rate is 3.5%?

– How do these results compare to the values in the corresponding example in discrete time?

We use the mortality rates given by (2.13). For the single premium the following payout function defines
the policy:

a∗†(x) =

{
200000, if x < 65,

0, otherwise.

Now Thiele’s differential equations are
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∂

∂t
W∗(t) = vt(c− µx+t a∗†(x+ t)) + µx+tW∗(t)− µx+tW†(t),

∂

∂t
W†(t) = 0,

with the boundary conditions W∗(s− x) = 100000× v(s) and W†(s− x) = 0. Then Theorem 5.2.1 yields
the results listed in Table 5.1.

Table 5.1. Discretisation error for an endowment policy

age µ∗†(x) reserve reserve diff. in %
discrete model cont. model

65 0.01988 100000 100000
64 0.01836 98392 98512 0.12
63 0.01696 96730 96955 0.23
62 0.01566 95022 95341 0.34
61 0.01446 93275 93678 0.43
60 0.01336 91498 91975 0.52
55 0.00897 82360 83092 0.89
50 0.00602 73210 74059 1.16
45 0.00404 64426 65308 1.37
40 0.00271 56236 57096 1.53
35 0.00181 48759 49566 1.65
30 0.00121 42044 42782 1.75

Note that the difference of the reserves in the discrete and continuous model have always the same sign.
This is caused by the fact, that people only die at the end of the year in the discrete model. Therefore
the required single premium is smaller than in the continuous model.

Exercise 5.3.3. – Calculate yearly premiums for the previous example.

– What happens to the discretisation error, if we suppose that people die in the discrete model only at
the middle of the year?

– What happens, if we suppose that the interest rates drops linearly from 6% at the age of 30 to 3% at
the age of 65?

Exercise 5.3.4. Calculate with the continuous model the premiums for the policy defined in Example
4.8.3.

Example 5.3.5 (Pensions on two lives). 1. Derive Thiele’s differential equation for pensions on two
lives.

2. Calculate the premiums for the pensions based on the assumption that the husband and his wife die
independently.

3. What happens if the the mortality rate for the state (∗∗) (or (∗†) ∪ (†∗)) decreases (or increases)
by 15 % for each life? (Empirical studies show that the mortality rate of widows and widowers is
increased in comparison to the rest of the population.)

For this example we only derive Thiele’s differential equations and present the results in a figure. The
calculations are done in the setting of Example 4.8.5. (∆t denotes the difference in age of the husband
and his wife.)
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60 5. Difference equations and differential equations

∂W+
∗∗(t)

∂t
= −vt a∗∗(t) + (µhusbandx+t + µwifex+t+∆t)W

+
∗∗(t)

− µhusbandx+t W+
†∗(t)− µ

wife
x+t+∆tW

+
∗†(t),

∂W+
∗†(t)

∂t
= −vt a∗†(t) + µwifex+t

(
W+
∗†(t)−W+

††(t)
)
,

∂W+
†∗(t)

∂t
= −vt a†∗(t) + µwifex+t+∆t

(
W+
†∗(t)−W+

††(t)
)
,

∂W+
††(t)

∂t
= 0.

Figure 5.1 shows the relation of the present values of the benefits for a change in mortality by ±15%. The
results are what we expected: a pension on the joint lives becomes more expensive, whereas a pension on
the 2nd life becomes cheaper.

Figure 5.1. Ratio between the present values of benefits for annuities on two lives (100% = independent
mortality probabilities).

Exercise 5.3.6. Complete the previous example.

Exercise 5.3.7. 1. Calculate the present value of the premiums for the insurance on two lives. (Also
in the continuous setting one has to treat three cases separately.)
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2. Create a model for an orphan’s pension. In the model one has to consider three persons: farther,
mother and child. Define the payout functions for a policy which pays 5,000 USD to the child if one
of parent dies and 10,000 USD if both die. Assume that the policy matures if the child is 25 years
old.

5.4 Differential equations for moments of higher order

Thiele’s differential equations characterise the mathematical reserve of an insurance policy. In this section
we look at the moments of the mathematical reserve. This will enable us for example to calculate the
variance of the reserve, which is a measure for its variation. Furthermore, it can be used to analyse the
risk structure of an insurance policy.

We start with the difference equations corresponding to the discrete model. The payout functions in the
discrete Markov model have the following form:

∆Bt =
∑
j∈J

Ij(t)a
Pre
j (t) +

∑
j,k∈J

∆Njk(t) vt a
Post
jk (t),

where vt is the yearly discount from t+ 1 to t, with vt =
∑
j∈J Ij(t)vj(t).

The prospective reserves are

V +
t =

∞∑
ξ=t

(

k<ξ∏
k=t

vk)∆Bξ

=

∞∑
ξ=t

(

k<ξ∏
k=t

vk)

∑
j∈J

Ij(ξ)a
Pre
j (ξ) +

∑
j,l∈J

∆Njl(ξ) vξ a
Post
jl (ξ)

 .

Now our aim is to calculate the expectation of the p-th power of the mathematical reserve ((V +
t )p)

conditioned on Ft. The linearity of the integral yields the difference equation

V +
t = vt

∑
j∈J

Ij(t+ 1)V +
t+1 +

∑
j∈J

Ij(t)a
Pre
j (t) +

∑
j,k∈J

∆Njk(t) vt a
Post
jk (t).

This formula indicates that the future reserve is composed of the payments in the period ]t, t + 1], the
payments at time {t} and the payments in the period ]t + 1,∞[. To keep the calculations simple we
assume that there is no payment at time {t}. Furthermore we will use the notation

Lt =
∑
j,k∈J

∆Njk(t) vt a
Post
jk (t).

Therefore we can simplify the recursion to

V +
t = vt

∑
j∈J

Ij(t+ 1)V +
t+1 + Lt =

∑
j∈J

Ij(t+ 1)
(
vt V

+
t+1 + Lt

)
.

Now the p-th moment is given by
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(V +
t )p =

∑
j∈J

Ij(t+ 1)(vt V
+
t+1 + Lt)

p

=

p∑
k=0

(
p

k

)∑
j∈J

Ij(t+ 1)vt V
+
t+1

k

Lp−kt

=

p∑
k=0

(
p

k

)∑
j∈J

Ij(t+ 1)(vt V
+
t+1)kLp−kt ,

where we used the fact that Iα(t+ 1)Iβ(t+ 1) = δαβIα(t+ 1). Next, we can use P [A ∩B|C] = P [A|B ∩
C]× P [B|C] to simplify the recursion for the expectation. We get

E
[
(V +
t )p | Xt = i

]
= E

[
p∑
k=0

(
p

k

)
(vit)

k
∑
j∈J

Ij(t+ 1)(V +
t+1)kLp−kt | Xt = i

]

=

p∑
k=0

(
p

k

)
(vit)

k
∑
j∈J

E
[
Ij(t+ 1)(V +

t+1)kLp−kt | Xt = i
]

=

p∑
k=0

(
p

k

)
(vit)

k
∑
j∈J

E

[
Ij(t+ 1)(V +

t+1)k
(
vt a

Post
ij (t)

)p−k
| Xt = i

]

= (vit)
p
∑
j∈J

pij(t, t+ 1)

p∑
k=0

(
p

k

)(
aPostij (t)

)p−k
E
[
(V +
t+1)k | Xt+1 = j

]
.

This is the difference equation for the higher order moments of the reserve, if there are no payments in
advance. Note that the integration of the payments in advance aPrej (t) is not complicated. Nevertheless,
to keep the presentation clear we continue without them. We summarise our findings in the following
theorem.

Theorem 5.4.1 (Differential equation for moments of higher order). Under the above assump-
tions the higher order moments of the reserve satisfy the recursion

E
[
(V +
t )p | Xt = i

]
= (vit)

p
∑
j∈J

pij(t, t+ 1)

p∑
k=0

(
p

k

)(
aPostij (t)

)p−k
E
[
(V +
t+1)k | Xt+1 = j

]
.

Exercise 5.4.2. Derive the above formula for a model which includes payments in advance.

After treating the discrete case we are now going to derive the analogue statements for the continuous
setting. The proofs will become more involved, since the model is more general. Before stating the theorem
we recall some definitions:

dB =
∑
j∈S

Ij(t)dBj +
∑
j 6=k

dBjk,

dvt = −vt × δt dt,
δt =

∑
j∈S

Ij(t)δj(t).
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The p-th moment of the prospective reserve is defined by

V
(p)
j (t) := E

[
(V +
t )p | Xt = j

]
= E

[(
1

vt

∫ ∞
t

v dB

)p
| Xt = j

]
,

where we implicitly assumed that V +
t ∈ Lp(Ω,A, P ) and that the functions δ, ai and ajk, µjk are piecewise

continuous. Then the following theorem holds.

Theorem 5.4.3 (Differential equations for moments of higher order). Under the above assump-

tions the functions V
(p)
j (t) satisfy the differential equation

∂

∂t
V

(p)
j (t) =

(
p δj(t) +

∑
S3k 6=j

µjk(t)

)
V

(p)
j (t)− p aj(t)V (p−1)

j (t)

−
∑
j 6=k∈S

µjk(t)

p∑
k=0

(
p

k

)
(ajk(t))

p−k
V

(k)
j (t)

for all t ∈ ]0, n[ \ D with the boundary condition

V
(p)
j (t−) =

p∑
k=0

(
p

k

)
(∆aj(t))

p−k
V

(k)
j (t)

for all t ∈ D. Here D is the set of discontinuities of the payout function B.

Remark 5.4.4. – The differential equation given above also holds at points where the functions V
(p)
j (t)

are not differentiable. In these points one gets a valid interpretation by considering the differentials
which are given by a formal multiplication with the factor dt.

– The idea of the proof is to represent a suitable martingale in two different ways. These representations
will then be used to find a stochastic differential equation for the martingale. Then, since the drift term
of the differential equation is zero for a martingale, one obtains an ordinary differential equation.

Proof. It turns out to be more convenient to show the differential equation for W
(p)
j (t) = vpt V

(p)
j (t). We

have

dW
(p)
j (t) = d(vpt ) V

(p)
j (t) + vpt dV

(p)
j (t) (5.1)

= −pvpt
∑
j∈S

Ij(t)δj(t)dt V
(p)
j (t) + vpt dV

(p)
j (t). (5.2)

Now we define the martingale
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M (p)(t) := E

[(∫ ∞
0

v dB

)p
| Ft

]
= E

[{(∫ t

0

+

∫ ∞
t

)
v dB

}p
| Ft

]

and the function

Ut =

∫ t

0

v dB.

The Markov property implies

E

[{∫ ∞
t

v dB

}p−k
| Ft

]
=
∑
j∈S

Ij(t)W
(p−k)
j (t),

and using the Binomial Theorem we get

M (p)(t) =

p∑
k=0

(
p

k

)∑
j∈S

Ukt Ij(t)W
(p−k)
j (t).

By choosing a right continuous modification of M (p) we can ensure that U and Ij(t) are right continuous.

Now we want to simplify the differential form

dM (p)(t) =

p∑
k=0

(
p

k

)∑
j∈S

d
(
Ukt Ij(t)W

(p−k)
j (t)

)
.

Recall that for a function of bounded variation A we denote by Acont the continuous part and by Aatom

the discontinuous part. An application of Itô’s formula yields

d
(
U

(k)
t Ij(t)W

(p−k)
j (t)

)
= kU

(k−1)
t dUcontt Ij(t)W

(p−k)
j (t)

+Ukt dI
cont
j (t)W

(p−k)
j (t) + Ukt Ij(t)dW

(p−k),cont
j (t)

+
{
Ukt Ij(t)W

(p−k)
j (t)− Ukt−Ij(t

−)W
(p−k)
j (t−)

}
. (5.3)

To simplify this formula we use for the first line the identities

dU contt = vt
∑
l∈S

Il(t)al(t),

Iα(t)Iβ(t) = δαβIα(t).

For the second line of (5.3) note that the continuous part of Iα(t) vanishes. Finally we have to deal with
the jump part in the third line. The jumps have two possible origins. On the one hand they might be
caused by a transition:
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∑
j 6=l∈S

(
{Ut− + vtajl(t)}kW (p−k)

l (t)− Ukt−W
(p−k)
l (t−)

)
dNjl(t).

On the other hand they might be due to a jump in a pension:∑
l∈S

Il(t)
(
{Ut− + vt∆al(t)}kW (p−k)

l (t)− Ukt−W
(p−k)
l (t−)

)
.

Moreover, we know that jumps can only occur on the set D and on this set one can replace Il(t) by Il(t
−),

since these coincide with probability 1. We also know that a simultaneous jump of both components

occurs with probability 0. Finally, W
(p−k)
l (t) is continuous and does not induce any jumps, since

∫ n
t
v dB

is almost surely continuous on t /∈ D. Therefore we get

d
(
U

(k)
t Ij(t)W

(p−k)
j (t)

)
=
∑
l∈S

Il(t)
(
kU

(k−1)
t vtaj(t)W

(p−k)
j (t) + Ukt dW

(p−k),cont
j (t)

)
+
∑
j 6=l∈S

(
{Ut− + vtajl(t)}kW (p−k)

l (t)− Ukt−W
(p−k)
l (t−)

)
dNjl(t)

+
∑
l∈S

Il(t
−)
(
{Ut− + vt∆al(t)}kW (p−k)

l (t)− Ukt−W
(p−k)
l (t−)

)
.

Applying the fact Xt−dt = Xt dt and the previous formula to (5.3) we derive

dM (p)(t)−
∑
j 6=l∈S

p∑
k=0

(
p

k

)(
{Ut− + vtajl(t)}kW (p−k)

l (t)

− Ukt−W
(p−k)
l (t−)

)
dMjl(t)

=
∑
j∈S

Ij(t)

p∑
k=0

(
p

k

)[
kU

(k−1)
t vtaj(t)W

(p−k)
j (t)dt+ Ukt dW

(p−k),cont
j (t)

+
∑
j 6=l∈S

(
{Ut + vtajl(t)}kW (p−k)

l (t)− Ukt W
(p−k)
j (t)

)
µjl(t)dt

]

+
∑
j∈S

Il(t
−)

p∑
k=0

(
p

k

)(
{Ut− + vt∆aj(t)}kW (p−k)

j (t)− Ukt−W
(p−k)
j (t−)

)
,

(5.4)

where we used the identity

dMij(t) = dNij(t)− Ii(t)µij(t).

Note that

dW
(p−k),cont
j (t) = −(p− k)v

(p−k)
t δj(t) dt V

(p−k)
j (t) + v

(p−k)
t dV

(p−k),cont
j (t).

(5.5)

The left hand side of (5.4) is the differential of a sum of martingales. Thus also the right hand side is the
differential of a martingale. Now this has to be constant, since it is previsible and of bounded variation.
Therefore the increments of the continuous and the discrete part have to be equal to zero. But this is
only possible if
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0 =

p∑
k=1

(
p

k

)
kU

(k−1)
t vtaj(t)W

(p−k)
j (t)dt

+

p∑
k=0

(
p

k

)
Ukt W

(p−k)
l (t)

+

p∑
k=0

(
p

k

) ∑
j 6=l∈S

k∑
r=0

(
k

r

)
U

(r)
t {vtajl(t)}k−rW (p−k)

l (t)µjl(t)dt

−
p∑
k=0

(
p

k

)
Ukt W

(p−k)
j (t)

 ∑
j 6=l∈S

µjl(t)

 dt (5.6)

holds for all j ∈ S and all t ∈ ]0, n[ \ D. For x ∈ D we get

0 =

p∑
k=0

(
p

k

)( k∑
r=0

(
k

r

)
U

(r)
t− {vt∆al(t)}

k−r
W

(p−k)
j (t)− U (k)

t− W
(p−k)
j (t−)

)
.

Using the identity (
p

k

)
k =

(
p

k − 1

)
(p− (k − 1))

we can transform the first line of Equation (5.6) into

p∑
k=1

(
p

k − 1

)
(p− (k − 1))U

(k−1)
t vtaj(t)W

(p−1−(k−1))
j (t)dt

=

p∑
k=0

(
p

k

)
(p− k)U

(k)
t vtaj(t)W

(p−1−k)
j (t)dt,

where we set W
(−1)
j ≡ 0. Hence the third line of (5.6) becomes

p∑
k=0

U
(r)
t

k∑
r=0

(
p

k

)(
k

r

) ∑
j 6=l∈S

{vtajl(t)}k−rW (p−k)
l (t)µjl(t)dt.

This can be transformed by the identity(
p

k

)(
k

r

)
=

(
p

r

)(
p− r
k − r

)

into the representation

p∑
r=0

(
p

r

)
U

(r)
t

p∑
k=r

(
p− r
k − r

) ∑
j 6=l∈S

{vtajl(t)}rW (p−k−r)
l (t)µjl(t)dt,

i.e.,
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p∑
k=0

(
p

k

)
U

(k)
t

p−k∑
r=0

(
p− k
r

) ∑
j 6=l∈S

{vtajl(t)}rW (p−k−r)
l (t)µjl(t)dt.

If we now gather the powers of Ut we get

0 =

p∑
k=0

(
p

k

)
U

(k)
t dQ

(p−k)
j (t),

where

dQ
(q)
j (t) = qvtaj(t)W

(q−1)
j (t)dt+ dW

(q),cont
j (t)

+

q∑
k=0

(
q

k

) ∑
j 6=l∈S

{vtajl(t)}kW (q−k)
l (t)µjl(t)dt

−W (q)
j (t)

∑
j 6=l∈S

µjl(t) dt.

This equation implies dQ
(0)
j (t) ≡ 0 and thus dQ

(q)
j (t) ≡ 0 by induction. Finally, the formula above and

Equation (5.1) and (5.5) imply the result.

5.5 The distribution of the mathematical reserve

The distribution function can be used to answer questions which only depend on the tail of the distribu-
tion. Thus it is important for the estimation of extreme risks.

This section has the same structure as the previous section. In the beginning, we solve the problem for
the discrete time set. Afterwards we treat the continuous time model.

Recall that the cash flows in the discrete Markov model are given by

∆Bt =
∑
j∈J

Ij(t)a
Pre
j (t) +

∑
j,k∈J

∆Njk(t) vt a
Post
jk (t).

We want to calculate the distribution function of the discounted future cash flows

Pi(t, u) = P

 ∞∑
j=t

(

k<j∏
k=t

vk)∆Bj < u|Xt = i

 .
The following identities hold:

Pi(t, u) = P

[
∞∑
j=t

Dt,j ∆Bj < u|Xt = i

]

=
∑
l∈J

pil(t)P

[
∞∑
j=t

Dt,j ∆Bj < u|Xt = i,Xt+1 = l

]
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=
∑
l∈J

pil(t)P

[
vi,t

∞∑
j=t+1

Dt,j ∆Bj < u− aPrei (t)

− vi,t aPostil (t)|Xt+1 = l

]
=

∑
l∈J

pil(t)Pl(t+ 1, v−1
i,t (u− aPrei (t))− aPostil (t)), where

Dt,j =

k<j∏
k=t

vk.

These relations are summarised in the following theorem.

Theorem 5.5.1 (Distribution of the reserves). The distribution function of the reserves satisfy the
recursion

Pi(t, u) =
∑
j∈J

pij(t)Pj(t+ 1, v−1
i,t (u− aPrei (t))− aPostij (t)).

Besides the recursion formula also boundary conditions are required. These are, in contrast to the pre-
vious problems, now given in form of distributions rather than fixed values. For an insurance whose
mathematical reserve is equal to zero at maturity the boundary condition is for example given by: (Here
ω denotes the maximal age at which insured persons are alive.)

Pi(ω + 1, u) =

{
0, if u ≤ 0,
1, if u > 0.

The distribution function of a pension in the discrete model is shown in Figure 5.2. The jumps, which
are caused by the discrete model, are clearly visible.

In the previous sections we have seen that one can use differential equations to find the moments of the
reserves. For cash flows of sufficient regularity one could also prove that the moments are differentiable.

Analogous one could try to find differential equations for the distribution functions. But the following
example shows, that for distribution functions this is not an easy task.

Example 5.5.2. This example will illustrate that the distribution function can be discontinuous even
for relatively simple insurance policies. We consider an endowment policy, with a death benefit of 100,000
USD and an endowment of 200,000 USD. Now we want to calculate the reserve for an insured of 30 years
of age. Here Tx will denote the future life span. The following equations hold:

V30 =

{
100000× vTx , if Tx < 35,
200000× v65−30, if Tx ≥ 35.

Now assume a technical interest rate of 1.5 %. Then the following equation holds for 0 < α ≤ 100000:

P [V30 < α] = P [100000vTx < α, Tx < 35]

= P [35 > TX > log(α/100000)/ log(v)]

= γpx − 35px,where

γ = log(α/100000)/ log(v).

This calculation shows that the distribution function has a jump of size 35px at 200000v35, and thus it is
discontinuous.
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Figure 5.2. Probability distribution function for the present value of an immediate payout annuity
(x=65)

The next theorem shows that the distribution functions satisfy an integral equation. Note that the
recursion in discrete time provides an approximation to this integral equation.

Theorem 5.5.3. The conditional distribution functions of the reserves

Pj(t, u) = P

[∫ ∞
t

exp

(
−
∫ ξ

t

δτdτ

)
dB(ξ) ≤ u|Xt = j

]

satisfy the integral equation

Pj(t, u) =
∑
k 6=j

∫ ∞
t

exp

− ∫ ξ

t

∑
l6=j

µjl(τ)dτ

µjk(ξ)

×Pk
(
ξ, exp(δj(ξ − t))u−

∫ ξ

t

exp(δj(ξ − τ))dBj(τ)− ajk(s)

)
dξ

+ exp

−∫ ∞
t

∑
l6=j

µjl(τ)dτ

 χ[
∫n
t exp(−δj(τ−t))dBj(τ)≤u]. (5.7)

Proof. The proof is analogous to the discrete setting. One considers
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Figure 5.3. Probability distribution function of the present value of a deferred widows pension (x=65)

A =

{∫ ∞
t

exp

(
−
∫ ξ

t

δ

)
dB(ξ) ≤ u

}
and treats, as in the discrete setting, the various cases separately. We leave the proof to the reader and
refer to [HN96].

Exercise 5.5.4. Complete the proof of the previous theorem. [HN96]

After deriving the integral equations for the distribution function, we will modify these slightly. The
equations are still hard to handle, since the right hand side depends on t. To overcome this problem we
define

Qj(t, u) := Pj

(
t, exp(δjt)

(
u−

∫ t

0

exp(−δj τ)dBj(τ)

))
.

The mapping from P to Q can be inverted by

Pj(t, u) = Qj

(
t, exp(−δjt)u+

∫ t

0

exp(−δj τ)dBj(τ)

)
.

Using Qj one can easily derive the equation
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exp

(
−
∫ t

0

µj

)
Qj (t, u) =

∫ n

t

exp

(
−
∫ s

0

µj

)∑
k 6=j

µjk(s)

×Qk

(
s, exp((δj − δk)s)u+

∫ s

0

exp(−δkτ)dBk(τ)

− exp((δj − δk)s)

∫ s

0

exp(−δjτ)dBj(τ)− exp(−δks)ajk(s)

)
ds

+ exp

(
−
∫ n

0

µj

)
χ[

∫n
0 exp(−δj(τ))dBj(τ)≤u].

Theorem 5.5.5. The functions Q satisfy (in the sense of Stieltje’s differentials) the following differential
equations

dtQj(t, u) = µj dtQj(t, u) −
∑
k 6=j

µjk dt

× Qk(t, exp((δj − δk)t)u+

∫ t

0

exp(−δk τ)dBk(τ)

− exp((δj − δk)t)

∫ t

0

exp(−δj τ)dBj(τ)− exp(−δk t) ajk(t)),

with the boundary conditions

Qj(n, u) = χ[
∫ n
0

exp(−δj τ)dBj(τ)≤u].

Remark 5.5.6. Theorem 5.5.5 proves useful, since the equations given therein are easier to solve by
numerical methods. The main idea is to derive Q in a first step and then calculate P based on Q.
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6. Abstract Valuation

6.1 Framework: Valuation Portfolios

Definition 6.1.1 (Stochastic Cash Flows). A Stochastic Cash Flow is a sequence x = (xk)k∈N ∈
L2(Ω,A, P )

N
, which is F = (Ft)t≥0 adapted.

Definition 6.1.2 (Regular Stochastic Cash Flows). A Regular Stochastic Cash Flow x with respect
to (αk)k∈N, with αk > 0∀k is a stochastic cash flow such that

Y :=
∑
k∈N

αkXk ∈ L2(Ω,A, P ).

We denote the vector space of all regular cash flows by X .

Remark 6.1.3. 1. We note that for all n ∈ N0 the image of

ψ : L2(Ω,A, P )
n → X , (xk)k=0,...n 7→ (x0, x1, . . . , xn, 0, 0 . . .)

is a sub-space of X .

2. X has been defined this way in order to capture cash flow streams where the sum of the cash flows
is infinite with a finite present value. In this set up αk can be interpreted as a majorant of the price
of the payment 1 at time k.

Theorem 6.1.4. 1. For x, y ∈ X , we define the scalar product as follows:

< x, y > =
∑
k∈N

< αk xk, αk yk >

= E[
∑
k∈N

α2
k xk yk],

and remark that the scalar product exists as a consequence of the Cauchy-Schwartz inequality .

2. X equipped with the above defined scalar product is a Hilbert space with norm ||x|| = √< x, x >.

Proof. We leave the proof of this proposition to the reader.

In a next step we introduce the concept of a positive valuation functional and we closely follow [Büh95].

Definition 6.1.5 (Positivity). 1. x = (xk)k∈N ∈ X is called positive if xk > 0 P-a.e. for all k ∈ N.
In this case we write x ≥ 0.
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2. x = (xk)k∈N ∈ X is called strictly positive if xk > 0 P-a.e. for all k ∈ N and there exists a k ∈ N,
such that xk > 0 with a positive probability. In this case we write x > 0.

Definition 6.1.6 (Positive functionals). Q : X → R is called a positive, continuous and linear func-
tional if the following hold true:

1. If x > 0, we have Q[x] > 0.

2. If x = limn→∞ xn, for xn ∈ X we have Q[x] = limn→∞Q[xn].

3. For x, y ∈ X and α, β ∈ R we have Q[αx+ βy] = αQ[x] + βQ[y].

Theorem 6.1.7 (Riesz representation theorem). For Q a positive, linear functional as defined be-
fore, there exists φ ∈ X , such that

Q[y] = < φ, y > ∀y ∈ X .

Proof. This is a direct consequence of Riesz representation theorem of continuous linear functionals of
Hilbert spaces.

Definition 6.1.8 (Deflator). The φ ∈ X generating Q[•] is called deflator.

Theorem 6.1.9. For a positive functional Q : X → R, with deflator ψ ∈ X we have the following:

1. φk > 0 for all k ∈ N.

2. φ is unique.

Proof. 1. Assume φk = 0. In this case we have Q[(δkn)n∈N] = 0 which is a contradiction.

2. Assume Q[y] =< φ, y >=< φ∗, y > for all y ∈ X . In this case we have < φ−φ∗, y >= 0, in particular
for y = φ− φ∗. Hence we have ||φ− φ∗|| = 0.

Definition 6.1.10 (Projections). For k ∈ N we define the following projections:

1. pk : X → L2(Ω,A, P ), x = (xn)n∈N 7→ (δkn xn)n∈N, the projection on the k-th coordinate.

2. p+
k : X → L2(Ω,A, P ), x = (xn)n∈N 7→ (χk≤n xn)n∈N, the projection starting on the k-th coordinate.

Definition 6.1.11 (Valuation at time t, pricing functionals). For t ∈ N we define the valuation of
x ∈ X at time t by

Qt[x] = Q[x|Ft] =
1

φt
E[
∞∑
k=0

φk xk|Ft]

In the same sense as for mathematical reserves we define the value of the future cash flows at time t by

Q+
t [x] = Q[p+

t (x)].

The operators Qt and Q+
t are called pricing functionals.

Definition 6.1.12 (Zero Coupon Bonds). The Zero Coupon Bond Z(k) = (δkn)n∈N is an element of
X . We remark that

π0

(
Z(t)

)
= Q[Z(t)] = E[φt].
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Theorem 6.1.13. The cash flow x = (xk)k∈N in the discrete Markov model (cf. proposition 4.7.3) on a
finite time interval T ⊂ N is given by:

xk =
∑

(i,j)∈S2

∆Nij(k − 1)aPostij (k − 1) +
∑
i∈S

Ii(k)aPrei (k),

where we assume that ∆Nij(−1) = 0.

Proof. The form of the cash flow follows from the calculations of the earlier chapters. It remains to show
that (xk)k∈N is in L2. This is however easy, since the benefit functions and the state space are finite.
Given the fact that also the time considered for a life insurance is finite, the required property follows.

Theorem 6.1.14. For x ∈ X , as defined above we have the following:

1. E[∆Nij(s)|Xt = k] = pki(t, s)pij(s, s+ 1),

2. E[Ii(s)|Xt = k] = pki(t, s),

3. E[xs|Xt = k] = ∑
(i,j)∈S2

pki(t, s− 1)pij(s− 1, s)aPostij (s− 1) +
∑
i∈S

pki(t, s)a
Pre
i (s),

and we assume that pki(t, s− 1) = 0 if t = s.

Proof. We leave the proof of this proposition to the reader as an exercise.

Definition 6.1.15. The abstract vector space of financial instruments we denote by Y. Elements of this
vector space are for example all zero coupon bonds, shares, options on shares etc.

Remark 6.1.16. – Link to the arbitrage free pricing theory: If we assume thatQ does not allow arbitrage
we are in the set up of chapter 7. In proposition 7.2.15 we have seen that π(X) = EQ[βT X], where βT
denotes the risk free discount rate. In the context of the above, we would have π0 (x) = Q[x] = EP [φTx].
Hence we can identify φT = dQ

dP βT . In consequence we can interpret a deflator as a discounted Radon-
Nikodym density with respect to the two measures P and Q.

– In the same sense the concepts of definition 6.1.11 have a lot in common with the definition of the
present values of a cash flow stream as defined in chapter 4.6.

Bt(s) = πt
(
Z(s)

)
= E

[
exp(−

∫ s

t

rudu)× exp(−
∫ s

t

λT dW − 1

2

∫ s

t

λT λ du) | Gt
]
,

and hence we have actually calculated the corresponding deflators as follows:

φt(s) = exp(−
∫ s

t

rudu)× exp(−
∫ s

t

λT dW − 1

2

∫ s

t

λT λ du).

Theorem 6.1.17. Let Q be a positive, continuous functional Q : X → R, and assume Q[•] =< φ, • >,
with φ = (φt)t∈N F – adapted. In this case (φtQt[x])t∈N is an F-martingale over P .
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Proof. Since Ft ⊂ Ft+1 and the projection property of the conditional expectation we have

EP [φt+1Qt+1[x]|Ft] = EP [EP [
∑
k∈N

φkxkQt+1[x]|Ft+1]|Ft]

= EP [
∑
k∈N

φkxkQt+1[x]|Ft]

= φtQt[x].

Example 6.1.18 (Replicating Portfolio Mortality). In this first example we consider a term insur-
ance, for a 50 year old man with a term of 10 years, and we assume that this policy is financed with a
regular premium payment. Hence there are actually two different payment streams, namely the premium
payment stream and the benefits payment stream. For sake of simplicity we assume that the yearly mor-
tality is (1 + x−50

10 × 0.1)%. We assume that the death benefit amounts to 100,000 USD and we assume
that the premium has been determined with an interest rate i = 2%. In this case the premium amounts
to P = 1394.29. The replicating portfolio in the sense of expected cash flows at inception is therefore
given as follows (cf proposition 6.1.14). We remark that the units have been valued with two (flat) yield
curves with interest rates of 2% and 4% respectively, and remark the the use of arbitrary yield curves
does not imply additional complexity.

Age Unit Units for Units for Total Value Value
Mortality Premium Units i = 2% i = 4%

50 Z(0) – -1394.28 -1394.28 -1394.28 -1394.28
51 Z(1) 1000.00 -1380.34 -380.34 -372.88 -365.71
52 Z(2) 1089.00 -1365.16 -276.16 -265.43 -255.32
53 Z(3) 1174.93 -1348.77 -173.84 -163.81 -154.54
54 Z(4) 1257.56 -1331.24 -73.67 -68.06 -62.97
55 Z(5) 1336.69 -1312.60 24.09 21.82 19.80
56 Z(6) 1412.12 -1292.91 119.20 105.85 94.21
57 Z(7) 1483.67 -1272.23 211.44 184.07 160.67
58 Z(8) 1551.18 -1250.60 300.57 256.54 219.62
59 Z(9) 1614.50 -1228.09 386.41 323.33 271.48
60 Z(10) 1673.52 – 1673.52 1372.87 1130.57

Total 0.00 -336.47

Exercise 6.1.19 (Replicating Portfolio Disability). Consider a disability cover and calculate the
replicating portfolios for a deferred disability annuity and a disability in payment.

6.2 Cost of Capital

In section 6.1 we have seen how to abstractly valuate x ∈ X by means of a pricing functional Q . For
some financial instruments y ∈ Y? we can directly observe Q[y] such as for a lot of zero coupons bonds
Z(•). On the other hand this is not always possible.

Definition 6.2.1. We denote by Y? the set of all stochastic cash flows in x ∈ Y such that Q[x] is
observable. With Ỹ = span < Y? > we denote the vector space generated by Y? and we define:

1. x ∈ Y? is called of level 1.
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2. x ∈ Ỹ is called of level 2.

3. x ∈ Y \ Ỹ is called of level 3.

Remark 6.2.2. It is clear that the model uncertainty and the difficulties to value assets or liabilities
increases from level 1 to level 3. Since we are interested in market values only the valuation of level
1 assets and liabilities are really reliable. For level 2 assets and liabilities on has to find a sequence of
xn =

∑n
k=1 αk ek with ek ∈ Y? such that x = limn→∞ xn. Since we assume that Q is linear and continuous

we can calculate

Q[x] = lim
n→∞

Q[xn]

= lim
n→∞

n∑
k=1

Q[αk ek]

= lim
n→∞

n∑
k=1

αkQ[ek].

For level 3 assets and liabilities the situation is even more difficult, since there is no obvious way to do it.
The best, which we can be done is to define Q̃[x] such that Q̃[x] = Q[x]∀x ∈ Y and hope that Q̃[x] ≈ Q[x]

for the x ∈ Y we want to valuate. In most cases such Q̃[•] are based on first economic principles. In the
following we want to see how the Cost of Capital concept works for insurance liabilities and how we can
concretely implement it.

Definition 6.2.3 (Utility Assumption). If we have x, y ∈ L2(Ω,A, P )+, with x = E[y]. A rational
investor would normally prefer x, since there is less uncertainty. The way to understand this, is by using
utility functions. For x ∈ L2(Ω,A, P )+ and u a concave function, the utility of x is defined as E[u(x)]. The
idea behind utilities is that the first 10,000 USD are higher valued than the one 10,000 USD from 100,000
USD to 110,000 USD. Hence the increase of utility per fixed amount decreases if amounts increase. As
a consequence of the Jensen’s inequality, we see that the utility of a constant amount is higher than the
utility of a random payout with the same expected value.

Definition 6.2.4. Let x = (xk)k∈N ∈ X be an insurance cash flow, for example generated by a Markov
model.

1. In this case we define the expected cash flows by

CF (x) = (E[xk])k∈N.

2. The corresponding portfolio of financial instruments in the vector space Y we define by

V aPoCF (x) =
∑
k∈N

CF (x)kZ(k) ∈ Y

3. By R(x) we denote the residual risk portfolio given by

R(x) = x− V aPoCF (x)

=
∑
k∈N

(xk − CF (x)k)Z(k) ∈ Y

4. For a given x ∈ X we denote by V aPo∗(x) an approximation y ∈ Ỹ of x, such that ||x−V aPo∗(x)|| ≤
||x− V aPoCF (x)||.
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Since we are sometimes interested in conditional expectations, we will also use the following notations for
A ∈ A:

CF (x |A) = (E[xk |A])k∈N,

V aPoCF (x |A) =
∑
k∈N

CF (x |A)kZ(k) ∈ Y,

Theorem 6.2.5. The value of x ∈ X can be decomposed in

Q[x] = Q[V aPoCF (x)] +Q[R(x)],

and we have
Q[V aPoCF (x)] ≥ Q[x]

if we use the utility assumption.

Remark 6.2.6. 1. We will denote x ∈ X with x ≤ 0 as a liability. Proposition 6.2.5 hence tells us that
we need to reserve more than Q[V aPoCF (x)] for this liability as a consequence of the corresponding
uncertainty.

2. A risk measure is a functional (not necessarily linear) ψ : X → R which aims to measure the capital
needs in an adverse scenario. There are two risk measures, which are commonly used the Value
at Risk and the Expected Shortfall to a given quantile α ∈ R. The value at risk (VaR) is defined
as the corresponding quantile minus the expected value. The expected shortfall is the conditional
expectation of the random variable given a loss bigger than the corresponding loss, again minus the
expected value. We can hence speak about a 99.5% VaR or a 99% expected shortfall. It is worthwhile
to remark that these two concepts are normally applied to losses. Hence in the context introduced
above one would strictly speaking calculating the VaR(−x), when considering x ∈ X . Furthermore
in a lot of applications, such as Solvency II, we assume that there is a Dirac measure (aka stress
scenario), which just represents the corresponding VaR-level for example. So concretely the stress
scenarios, which are used under Solvency II should in principle represent the corresponding point
(Dirac) measures at to the confidence level 99.5 %. In the concrete set up, one would for example
assume that qx(ω) ∈ L2(Ω,A, P ) is a stochastic mortality and one would define the A,B ∈ A, as
the corresponding probabilities in the average and in the tail. In consequence for a policy x ∈ X , we
would have two replicating portfolios, namely V aPoCF (x |A) for the average and V aPoCF (x |B) for
the stressed event according to the risk measure chosen. The corresponding required risk capital is
then given (in present value terms) by Q[V aPoCF (x |B)− V aPoCF (x |A)].

Definition 6.2.7 (Required Risk Capital). For a risk measure ψα such as VaR or expected shortfall
to a security level α we define the required risk capital at time t ∈ N by

RCt(x) = ψα(pk(x− V aPoCF (x))).

Remark 6.2.8. 1. If we use V aR99.5% the required risk capital at time t corresponds to the capital
needed to withstand a 1 in 200 year event.

2. The definition above could apply to individual insurance policies, but is normally applied to insurance
portfolios x̃ =

∑n
k=1 xk, where xk are the individual insurance policies.

3. What is more material than the diversifiable risk is the risk, which affects all of the individual
insurance policies at the same time, such as a pandemic event, where the overall mortality could
increase by 1 % in a certain year such as 1918.
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Definition 6.2.9 (Cost of Capital). For a unit cost of capital β ∈ R+ and an insurance portfolio
x̃ ∈ X , we define:

1. The present value of the required risk capital by

PV C(x̃) = Q[
∑
k∈N

RCt(x̃)Z(k)].

2. The cost of capital CoC(x̃) is given by:

CoC(x̃) = β × PV C(x̃),

and Q̃ is defined by Q̃[x̃] = Q[V aPoCF (x̃)] + βPV C(x̃).

Remark 6.2.10. 1. The concept as defined before is somewhat simplified, since one normally assumes
that the required capital C from the shareholder is α×C after tax and investment income on capital,
Assume a tax-rate κ and a risk-free yield of i. In this case we have

α× C = i× (1− κ)× C + β × C,

and hence β = α − i × (1 − κ). In reality the calculation can still become more complex since we
discount future capital requirements risk-free and because of the fact that the interest rate i is not
constant. In order to avoid these technicalities, we will assume for this book that i is constant.

2. We remark Q̃[x̃] is not uniquely determined, but depends on a lot of assumptions such as ψα, α, β,
. . .

3. For the moment we did not yet see how to actually model x̃ and we remark that one is normally
focusing on the non-diversifiable part of the risks within x̃.

Example 6.2.11. We continue with example 6.1.18 and we assume that the risk capital is given by a
pandemic event where ∆qx = 1% for all ages. This roughly corresponds to the increase in mortality of
1918 as a consequence of the Spanish flu pandemic. The aim of this example is to calculate the required
risk capital and the market value of this policy based on the cost of capital method using β = 6%. The
required risk capital in this context can be calculated as ∆qx × 100, 000 and we get the following results:

Age Unit Units for Units for Total −Q̃[x] −Q̃[x]
Risk Capital Benefits Units i = 2% i = 4%

50 Z(0) 1000.00 -1394.28 -1334.28 -1334.28 -1334.28
51 Z(1) 990.00 -380.34 -320.94 -314.65 -308.60
52 Z(2) 979.11 -276.16 -217.41 -208.97 -201.01
53 Z(3) 967.36 -173.84 -115.80 -109.12 -102.95
54 Z(4) 954.78 -73.67 -16.38 -15.14 -14.00
55 Z(5) 941.41 24.09 80.57 72.98 66.22
56 Z(6) 927.29 119.20 174.84 155.25 138.18
57 Z(7) 912.45 211.44 266.19 231.73 202.28
58 Z(8) 896.94 300.57 354.39 302.47 258.95
59 Z(9) 880.80 386.41 439.26 367.55 308.61
60 Z(10) – 1673.52 1673.52 1372.87 1130.57

Total 520.69 143.98
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We remark that the value of the policy at inception becomes positive, which means nothing else, that
the insurance company does need equity capital to cover the economic loss. It is obvious that this is the
case for i = 2%, since the premium principle did not allow for a compensation of the risk capital. More
interestingly even at the higher interest rate the compensating effect is not big enough to turn this policy
into profitability.

Exercise 6.2.12. In the same sense as for the mortality example calculate the respective risk capitals
and the Q̃ for a disability cover.

6.3 Inclusion in the Markov Model

In this section we want to have a look how we could concretely use the recursion technique for the
calculation of the cost of capital in a Markov chain similar environment. In order to do that we look at
an insurance policy with a term of one year.

We assume that we have a mortality of qx in case of a “normal” year with a probability of (1−α) and an
excess mortality of ∆qx in an extreme year with probability α. We denote with Γ = qx+∆qx

qx
. Furthermore

we assume a mortality benefit of 100,000. In this case we get the following by some simple calculations:

V aPoCF (x) = (δ1k(qx + α(Γ − 1)qx × 100000))k∈N

RC1(x) = (δ1k(1− α)(Γ − 1)qx × 100000)k∈N

Q̃[x] = Q[(δ1k(qx + α(Γ − 1)qx × 100000 +

+ β(1− α)(Γ − 1)× 100000))k∈N]

We see that the price of this insurance policy with only payments at time 1 can be decomposed into a
part representing best estimate mortality:

δ1k{qx (1 + α (Γ − 1))},

where we can arguably say that this q̃x = qx (1 + α (Γ − 1)) is our actual best-estimate mortality. On
top of that we get a charge for the excess mortality ∆qx with an additional cost of β. Hence we get the
following:

1. There is a contribution to the reserve from the people surviving the year with a probability px.

2. There is a contribution to the reserve from the people dying in normal years with probability qx and

the defined benefit a
post
∗† , and

3. There is finally a contribution of the people dying in extreme years with probability ∆qx and the

additional cost of defined benefit of β × apost
∗† .

The interesting fact is that we can actually use the same recursion of the reserves for the Markov chain
model as in proposition 4.7.3 with the exception that now the “transition probabilities” do not fulfil
anymore the requirement that their sum equals 1. However this method provides a pragmatic way to
implement the cost of capital in legacy admin systems.

The main problem for the determining of the corresponding Markov chain model is the underlying stochas-
tic mortality model. For the QIS 5 longevity model a similar calculation can be used. In this model it is
assumed that the mortality drops by 25 % in an extreme scenario. Hence the calculation goes along the
following process:
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1. Determine x1 = V aPoCF (x̃).

2. Determine x2 = V aPoCF (x̃) for stressed mortality.

3. Q̃[x] = Q[x1] + β Q[x2 − x1]

Example 6.3.1. In this example we want to revisit the exercise 6.1.18 and we want again to calculate
the market value of the insurance liability, but this time with the recursion. We get the following results:

Age Benefit Benefit Excess Math Res. Value Value
Normal Premium Risk i = 2% i = 2% i = 4%

50 100000 -1394.28 6000 0.00 520.69 143.98
51 100000 -1394.28 6000 426.43 901.09 542.82
52 100000 -1394.28 6000 765.56 1193.21 861.67
53 100000 -1394.28 6000 1015.22 1394.79 1096.96
54 100000 -1394.28 6000 1172.95 1503.20 1244.68
55 100000 -1394.28 6000 1235.88 1515.45 1300.33
56 100000 -1394.28 6000 1200.79 1428.16 1258.89
57 100000 -1394.28 6000 1064.00 1237.49 1114.74
58 100000 -1394.28 6000 821.42 939.18 861.64
59 100000 -1394.28 6000 468.45 528.45 492.63
60 0 0 0

We remark that this calculation was much faster to calculate since it is based on Thiele’s difference
equation for the mathematical reserves, and we get at the same time the corresponding results for the
classical case and also for the case using the cost of capital approach.

As seen in the calculation above there is a small second order effect, which we can detect, when looking
more closely. The results below correspond to the 2% valuation:

Direct Method 520.698380872792

Recursion 520.698380872793

Exercise 6.3.2. Perform the corresponding calculation for the disability example.

6.4 Asset Liability Management

Until now we have looked only at insurance liabilities as an x ∈ X . An insurance company needs to cover
its insurance liabilities l =

∑
xι ∈ X with corresponding assets, which are also elements in X .

Definition 6.4.1 (Assets and Liabilities). An x ∈ X with a valuation functional Q is called

1. an asset if Q[x] ≥ 0 and

2. a liability if Q[x] ≤ 0.

Definition 6.4.2 (Insurance balance sheet). An insurance balance sheet consists of a set of assets
(ai)i∈I and a set of liabilities (lj)j∈J . The equity of an insurance balance sheet is defined as

e =
∑
i∈I

ai +
∑
j∈J

lj .

The insurance entity is called bankrupt if Q[e] < 0.
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Definition 6.4.3. In an insurance market, each insurance company is required to hold an adequate
amount of risk capital in order to absorb shocks. In order to do that, the regulator defines a risk measure
ψα to a security level α. In this context an insurance company is called solvent if:

Q[e] ≥ ψα(e).

Remark 6.4.4. Note that an insurance regulator may not want to use a market consistent approach.
Never the less the above definition can be used, be suitably adjust ψ.

Definition 6.4.5 (Asset Liability Management). Under Asset Liability Management we understand
the process of analysing (lj)j∈J and the (dynamic) management of (ai)i∈I in order to achieve certain
targets , such as remaining solvent.

Definition 6.4.6. For an insurance liability l ∈ X an asset portfolio (ai)i∈I is called:

1. matching if
∑
i∈I ai + l = 0, and

2. cash flow matching if
∑
i∈I ai + V aPoCF (l) = 0.

Remark 6.4.7. We remark that is normally not feasible to do a perfect matching, and hence one nor-
mally uses a cash flow matching to a achieve a proxy for a perfect match. We also remark that in this
case the shareholder equity needs still be able to absorb the basis risk l − V aPoCF (l).

Definition 6.4.8 (Duration). The duration for an x ∈ X with x =
∑
i∈N αiZ(i) and αi ≥ 0 is defined

by

d(x) =
Q[
∑
i∈N αi × i× Z(i)]

Q[
∑
i∈N αi × Z(i)]

We say that an asset portfolio (ai)i∈I is duration matching a liability l if the following two conditions are
fulfilled:

1. Q[
∑
i∈I ai + l] = 0, and

2. d(
∑
i∈I ai) = d(−l).

Example 6.4.9. In this example we want to further elaborate on the example 6.1.18 and we want to see
how the replicating scenario changes in case a pandemic occurs in year three, with an excess mortality of
1 %. We want also to have a look on what risk is implied in this, assuming that the pandemic at the same
time leads to a reduction of interest rates down from 2% to 0.5 %. Finally we want to see an example
how we could do a perfect cash flow matching portfolio and duration matched portfolio.

Definitions We assume that A ∈ A represents the information that we have going to have average
mortality after year 3 and three and that the person survived until then (year 2). In the same sense
we assume that B ∈ A represents the same as A but with the exception that we assume a pandemic
event in the year 3 with an average excess mortality of 1%. For simplicity reasons (to avoid notation)
we use x, y ∈ X as abbreviations for the corresponding conditional random variables.

Calculation of the Replicating Portfolios In a first step we will calculate the replicating portfolios
(starting at time 2) with respect to both A and B. Doing this we get the following results for case A:
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Age Unit Units for Units for Total Value Value
Mortality Premium Units i = 2% i = 4%

52 Z(0) – -1394.28 -1394.28 -1394.28 -1394.28
53 Z(1) 1200.00 -1377.55 -177.55 -174.07 -170.72
54 Z(2) 1284.40 -1359.64 -75.24 -72.32 -69.57
55 Z(3) 1365.21 -1340.61 24.60 23.18 21.87
56 Z(4) 1442.25 -1320.50 121.75 112.48 104.07
57 Z(5) 1515.33 -1299.37 215.95 195.59 177.49
58 Z(6) 1584.27 -1277.28 306.99 272.59 242.61
59 Z(7) 1648.95 -1254.29 394.65 343.57 299.90
60 Z(8) 1709.23 – 1709.23 1458.81 1248.91

Total 765.56 460.30

For case B we get:

Age Unit Units for Units for Total Value Value
Mortality Premium Units i = 2% i = 4%

52 Z(0) – -1394.28 -1394.28 -1394.28 -1394.28
53 Z(1) 1200.00 -1377.55 -177.55 -174.07 -170.72
54 Z(2) 2272.40 -1345.87 926.52 890.54 856.62
55 Z(3) 1351.38 -1327.03 24.35 22.95 21.65
56 Z(4) 1427.64 -1307.12 120.51 111.34 103.01
57 Z(5) 1499.97 -1286.21 213.76 193.61 175.70
58 Z(6) 1568.22 -1264.34 303.88 269.83 240.16
59 Z(7) 1632.24 -1241.58 390.65 340.09 296.86
60 Z(8) 1691.91 – 1691.91 1444.03 1236.26

Total 1704.05 1365.28

We note two things:

– The pandemic happens when the person is aged 53 and we see the impact in Z(2) at age 54. This
has to do with the convention that we assume that the deaths occur at the end on the year, hence
just before the person gets 54.

– We see that the difference in reserves amounts to 1704.05− 765.56 = 938.49 which represents the
economic loss as a consequence of the pandemic. The biggest contributor to this loss is the increased
death benefit, e.g. 926.52− 1284.40 = 962.87.

Matching asset portfolios Based on the above it is now easy to calculate the cash flow matching
portfolio, by just investing the different amounts of liabilities into the corresponding assets, such
as buying 24.60Z(3). We remark that consequently we would have to sell −177.55Z(1). In normal
circumstances for mature businesses this will not occur, since it is a consequence that we consider a
term insurance policy and not for example an endowment.

Mismatch in case of a pandemic The table below finally shows the cash flow mismatch as a conse-
quence of the pandemic and we see that in this case the present values do not have a big impact since
the main difference is at time 1.
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Age Unit Units Units Difference Value Value
Normal Stress Units i = 2% i = 0%

52 Z(0) -1394.28 -1394.28 0.00 0.00 0.00
53 Z(1) -177.55 -177.55 0.00 0.00 0.00
54 Z(2) -75.24 926.52 1001.77 962.87 1001.77
55 Z(3) 24.60 24.35 -0.24 -0.23 -0.24
56 Z(4) 121.75 120.51 -1.23 -1.13 -1.23
57 Z(5) 215.95 213.76 -2.18 -1.98 -2.18
58 Z(6) 306.99 303.88 -3.11 -2.76 -3.11
59 Z(7) 394.65 390.65 -3.99 -3.48 -3.99
60 Z(8) 1709.23 1691.91 -17.31 -14.78 -17.31

Total 938.49 973.67

Example 6.4.10 (Lapses). In this example we want to see how lapses can influence the replicating
portfolios. In order to do that we have to change the example 6.1.18 a little bit, as follows:

– We consider a term insurance, for a 50 year old man with a term of 10 years, and we assume that this
policy is financed with a regular premium payment. Hence there are actually two different payment
streams, namely the premium payment stream and the benefits payment stream. For sake of simplicity
we assume that the yearly mortality is (1 + x−50

10 × 0.1)%. We assume that the benefit amounts to
100.000 USD and we assume that the premium has been determined with an interest rate i = 2%.

– In this case the premium amounts to P = 9562.20.

– In addition the policyholder can surrender the policy at any time and gets back 98 % of the expected
future cash flows valued at the pricing interest rate of 2%. We remark here that this is a risk since
the surrenders can happen in case the market value of the corresponding units is below the surrender
value.

– We remark that the units have been valued with two (flat) yield curves with interest rates of 2% and
4% respectively.

In order to calculate this example we will perform the following steps:

1. Calculation of the cash flow matching portfolio in case of no surrenders.

2. Calculation of the cash flow including lapses with an average lapse rate of 7 %

3. Calculation of the cash flows at time 2, assuming average lapses, lapses at 25 % at time 2.
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Calculation of the cash flow matching portfolio in case of no surrenders:
Age Unit Units for Units for Total Value Value

Mortality Premium Units i = 2% i = 4%

50 Z(0) – -9562.20 -9562.20 -9562.20 -9562.20
51 Z(1) 1000.00 -9466.57 -8466.57 -8300.56 -8140.94
52 Z(2) 1089.00 -9362.44 -8273.44 -7952.17 -7649.26
53 Z(3) 1174.93 -9250.09 -8075.16 -7609.40 -7178.79
54 Z(4) 1257.56 -9129.84 -7872.27 -7272.76 -6729.25
55 Z(5) 1336.69 -9002.02 -7665.32 -6942.72 -6300.34
56 Z(6) 1412.12 -8866.99 -7454.87 -6619.71 -5891.69
57 Z(7) 1483.67 -8725.12 -7241.45 -6304.11 -5502.90
58 Z(8) 1551.18 -8576.79 -7025.61 -5996.29 -5133.54
59 Z(9) 1614.50 -8422.41 -6807.90 -5696.55 -4783.14
60 Z(10) – 88080.30 88080.30 72256.53 59503.90

Total 0 -7368.19

We remark that the there is considerable value in the policy if we assume no lapses, in case we earn
a higher interest rate, such as 4 %.

Calculation of the cash flow matching portfolio in case of 7% surrenders:
Age Unit Units for Units for Total Value Value

Mortality Premium Units i = 2% i = 4%

50 Z(0) – -9562.20 -9562.20 -9562.20 -9562.20
51 Z(1) 1019.67 -8797.22 -7777.54 -7625.04 -7478.40
52 Z(2) 1594.01 -8084.65 -6490.63 -6238.59 -6000.95
53 Z(3) 2066.98 -7421.70 -5354.72 -5045.87 -4760.33
54 Z(4) 2449.23 -6805.70 -4356.47 -4024.71 -3723.93
55 Z(5) 2750.73 -6234.02 -3483.29 -3154.92 -2863.01
56 Z(6) 2980.77 -5704.13 -2723.35 -2418.26 -2152.31
57 Z(7) 3147.94 -5213.57 -2065.63 -1798.25 -1569.71
58 Z(8) 3260.18 -4759.99 -1499.81 -1280.07 -1095.89
59 Z(9) 3324.77 -4341.11 -1016.34 -850.42 -714.06
60 Z(10) 5486.26 42159.27 47645.53 39085.93 32187.61

Total -2912.44 -7733.21

We remark that at that time, the company makes still some additional gains as a consequence of the
2% surrender penalty.

Calculation of the cash flow matching portfolio in case of high surrenders: We assume that there
has been observed an exceptional lapse rate at time 2 of 25% of the portfolio.
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Age Unit Units for Units for Total Value Value
Mortality Premium Units i = 2% i = 4%

50 Z(0) – -9562.20 -9562.20 -9562.20 -9562.20
51 Z(1) 1019.67 -8797.22 -7777.54 -7625.04 -7478.40
52 Z(2) 1594.01 -8084.65 -6490.63 -6238.59 -6000.95
53 Z(3) 4773.16 -5966.47 -1193.30 -1124.48 -1060.84
54 Z(4) 1968.98 -5471.25 -3502.26 -3235.55 -2993.75
55 Z(5) 2211.37 -5011.66 -2800.29 -2536.31 -2301.63
56 Z(6) 2396.30 -4585.67 -2189.36 -1944.09 -1730.28
57 Z(7) 2530.70 -4191.30 -1660.60 -1445.65 -1261.92
58 Z(8) 2620.93 -3826.66 -1205.73 -1029.08 -881.01
59 Z(9) 2672.85 -3489.91 -817.05 -683.67 -574.05
60 Z(10) 4410.52 33892.74 38303.27 31422.02 25876.31

Total -4002.67 -7968.76

ALM Risk of mass lapses Finally we want to look what happens when we have mass lapses as indi-
cated before, but if we have invested in the cash flow matching portfolio according to average 7 %
lapses. Hence we have to calculate the assets according to 7 % lapses and the liabilities according 25
% lapses.

Age Unit Units for Units for Total Value Value
Assets Liability Units i = 2% i = 4%

52 Z(0) -6490.63 6490.63 0 0 0
53 Z(1) -5354.72 1193.30 -4161.42 -4079.82 -4001.36
54 Z(2) -4356.47 3502.26 -854.21 -821.04 -789.76
55 Z(3) -3483.29 2800.29 -682.99 -643.60 -607.18
56 Z(4) -2723.35 2189.36 -533.99 -493.32 -456.45
57 Z(5) -2065.63 1660.60 -405.02 -366.84 -332.90
58 Z(6) -1499.81 1205.73 -294.08 -261.13 -232.41
59 Z(7) -1016.34 817.05 -199.28 -173.48 -151.43
60 Z(8) 47645.53 -38303.27 9342.26 7973.53 6826.29

Total 1134.26 254.76

Now we see that the lapses induce quite a big risk for the company since they lose in case of mass
lapses almost 1 % of the face value of the policy, more concretely 1134.26− 254.76 = 879.50.

The above example shows very clearly how the behaviour of the policyholders can change the cash flow
matching portfolio and in consequence induces a risk. As a consequence the risk minimising portfolio in
the sense of V aPo∗(x) for an insurance portfolio x ∈ X does also consist of additional assets offsetting the
corresponding risks. In the above example the corresponding asset would be a (complex) put option, which
allows to sell the bond portfolio at the predefined (book-) values. So in reality insurance companies aim
to model these risk in order to determine the corresponding assets to manage and reduce the undesired
risk.

In the example above we have assumed that at a given year 25% of the policies in force lapse. In prac-
tise one models the dynamic lapse behaviours. Eg the lapse rate is a function of the interest differential
between market and book yields. Normally the corresponding lapse rates stay below 1, which is inter-
esting. Assuming a market efficient behaviour, one would expect that there is a binary decision of the
policyholders to stick to the contract or to lapse as a function of the before mentioned interest differen-
tial. In consequence the underlying theory how to model such policyholder behaviour is not as crisp and

c©Michael Koller Skript AK LV 2012 Vers. 0.70



6.4 Asset Liability Management 87

transparent as with the arbitrage free pricing theory, since market efficient behaviours is normally not
observed. As a corollary there is a lot of model risk intrinsic to these calculations and it is important to
test the results from the models with different scenarios.

Remark 6.4.11. At the end of this section a remark on how to determine a V aPo∗(x) for an x ∈ X :
One normally models an l ∈ X and simulates l(ω) together with some test assets D ⊂ Y observable prices
and cash flows. We denote D = {d1, . . . dn}. Hence at the end of this process we have a vector

W := (l(ωi), d1(ωi), . . . dn(ωi))i∈I .

Now the process is quite canonical:

1. We define a distance between two x, y ∈ X , for example by means of ||x|| as defined.

2. We solve the numerical optimisation problem, for minimising the distance between l and the target
y ∈ span < D >.

We note two things:

– The numerical procedures to determine y can sometimes prove to be difficult since the corresponding
design matrix can be near to a singular matrix, and hence additional care is needed.

– In case of the || • || defined before, we remark that it has been deducted from the Hilbert space X .
Hence what we actually doing is to use the projection p̃ : X → span < D >, which can be expressed
by means of < •, • >. We remark that y = p̃(x).
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7. Unit-linked policies

7.1 Introduction

Up to now we have mostly considered models with deterministic interest rate or with an interest rate
given by a Markov chain on a finite state space. This helped us to keep the calculations simple. In this
chapter we have a look at some more general models. On the one hand we consider models for policies
whose actual value depends on the performance of an underlying unit (usually a fond), on the other hand
we will discuss further models with stochastic interest rate.

With respect to these two types of models one has to note, that the corresponding theory is still in
development and no final presentation is available. Especially, up to now, there is no mutual consent on
the models used for the interest rate processes. In fact there are various opinions on the ideal model for
the stochastic interest rate, and each of these models yields a different numerical result.

What are the advantages and disadvantages of these models? As mentioned before, models try to resemble
reality and they are more or less precise. Thus clearly the following relation holds: if the model has more
stochastic elements, then

– it might resemble reality more precisely,

– it also becomes more complex with respect to assumptions, parameter fitting and numerical algorithms.

In our opinion, the main difficulty when using a stochastic interest rate is due to the diversity of ideas
for the possible models. In the following we do not want to rate these models, but our aim is to describe
a general approach which provides a fundamental knowledge of this area and of the required techniques.

We begin with a look at policies whose value is tied to a bond or a fond. The payout of theses so called
“unit-linked policies” usually consists of a certain number of shares of a fond (the underlying unit) to the
insured, in case of an occurrence of the insured event.

These policies have the characteristic feature that the benefits (endowments or death benefits) are not
deterministic, but random. A unit-linked policy is usually financed by a single premium. This type of
financing is preferred due to the management of these policies. Note that this is in contrast to traditional
policies. Moreover one has to note, that the value at risk is constant for a traditional policy, but for a
unit-linked policy it depends on the underlying fond.

To analyse unit-linked policies, we introduce the following notation:

N(t) number of shares at time t,
S(t) value of a share at time t.
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We assume that N(t) is deterministic. The relevant quantities for a life insurance in this setting and in
the traditional setting are summarised in the following table:

traditional (pure) unit-linked

death benefit C(t) = 1 C(t) = S(t)

value (time 0) π0(t) = exp(−δt) π0(t) = S(0)
(assuming a “normal”
economy)

single premium E
[∫ T

0
π0(t)d(χTx≤t)

]
E
[∫ T

0
π0(t)d(χTx≤t)

]
=
∫ T

0
exp(−δt)tpxµx+tdt = S(0)

∫ T
0 tpxµx+tdt

= (1− T px)S(0)

The above terms indicate that the financial risk taken by the insurer is smaller for a unit-linked product
than for a traditional product with fixed technical interest rate1. Furthermore, note that in the calculation
of the single premium we implicitly assumed that the mean of the discounted (to time 0) value of the
fond at time t coincides with the value of the fond at time 0. This means, that first of all we have to start
with a discussion of the value or price of a fond.

The model also did not include any guarantees. But in general one would like to add a guarantee (e.g.
a refund guarantee for the paid in premiums) to the policy. For example, the guarantee could be of the
form

G(t) =

∫ t

0

p̄(s)ds,

where p̄(s) denotes the density of the premiums at time s. More general one could be interested in a
refund guarantee of the paid in premiums with an additional interest at a fixed rate:

G(t) =

∫ t

0

exp(r(t− s))p̄(s)ds.

In these examples the payout function would be

C(t) = max(S(t), G(t)).

Let us assume that the value of the fond is given by a stochastic process (with distribution P ). What is,
in this setting, the value of the discounted payment C(t) at time t? A first guess might be

π0 (C(t)) = EP [max(S(t), G(t))] .

But it is not that simple! If this would be the value of the payment, there would be the possibility to
make a profit without risk (arbitrage). In order to prevent this possibility one has to change the measure
P. In mathematical finance it is proved that an equivalent martingale measure exists, such that there is
no arbitrage. Then in a “fair” market we have

π0 (C(t)) = EQ [max(S(t), G(t))] ,

where Q is a measure equivalent to P such that the discounted value of the underlying fond is a martingale.

Furthermore, in mathematical finance payments like C(t) are called the payouts of an option. To determine
the price of an option, one uses the arbitrage free pricing theory. A quick introduction to this theory will
be given in the next section.

1 Actually, this is not true in general. Here we implicitly assumed that the capital market risks of a unit-linked
policy are minimised by an appropriate trading strategy. For a classical insurance such a trading strategy
replicates the cash flows by zero coupon bonds with the corresponding maturities.
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7.2 Pricing theory

In this section we have a look at modern financial mathematics. It is not our aim to give a comprehensive
exposition with proofs of every detail, which would easily fill a whole book. We only want to give a brief
survey which illustrates the theory. The reader interested in more details is referred to [Pli97], [HK79],
[HP81] and [Duf92].

In this context we clearly also have to mention the paper of Black and Scholes [BS73] with their famous
formula for pricing of options.

7.2.1 Definitions

First of all we start with an example which illustrates the use of the pricing theory. The price of a share,
modelled by a geometric Brownian motion (St(ω)), might develop as shown in Figure 7.1.

Figure 7.1. Movement of a share price

A European call option for a certain share is the right to buy these shares at a fixed price c (strike price)
at a fixed time T . The value of this right at time T is

H = max (ST − c, 0) .
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Now a bank would like to know the value (i.e., the fair price) of this option at time 0. As noted in the
previous section, taking the expectation would systematically yield the wrong values. In many cases this
would provide the possibility to make profits without risk. Thus there would be arbitrage opportunities.

To simplify the exposition we will consider the most simple models of the economy, i.e. finite models.
In particular also the time set will be discrete. The reader interested in the corresponding theorems for
continuous time can for example find these in [HP81]. In the following the ideas and concepts of the
pricing theory are presented.

Let (Ω,A, P ) be a probability space where Ω is a finite set. Moreover, we assume that P (ω) > 0 holds
for all ω ∈ Ω.
We also fix a finite time T , as the time at which all trading is finished. The σ-algebra of the observable
events at time t is denoted by Ft, and the shares are traded at the times {0, 1, 2, . . . , T}.
We suppose that there are k <∞ stochastic processes, which represent the prices of the shares 1, . . . , k,
i.e.,

S = {St, t = 0, 1, 2, . . . , T} with components S0, S1, . . . Sk.

As usual, we assume that each Sj is adapted to (Ft)t. Here Sjt can be understood as the price of the jth
share at time t. The fact that the price process has to be adapted reflects the necessity that one has to
know at time t the previous price of S. The share S0 plays a special role. We suppose that S0

t = (1 + r)t,
i.e., we have the possibility to make risk free investments which provide interest rate r. The risk free
discount factor is defined by

βt =
1

S0
t

.

Next, we are going to define what is meant by a trading strategy.

Definition 7.2.1. A trading strategy is a previsible (φt ∈ Ft−1) process Φ = {φt, t = 1, 2, . . . , T} with
components φkt .

We understand φkt as the number of shares of type k which we own during the time interval [t − 1, t[.
Therefore φt is called the portfolio at time t− 1.

Notation 7.2.2. Let X,Y be vector valued stochastic processes. Then we use the notations:

< Xs, Yt > = Xs · Yt =

n∑
k=0

Xk
s × Y kt ,

∆Xt = Xt −Xt−1.

Next, we want to determine the value of the portfolio at time t:

time value of the portfolio

t− 1 φt · St−1

t− φt · St

Thus, the return in the interval [t− 1, t[ is φt ·∆St, and hence the total return is

Gt(φ) =
t∑

τ=1

φτ ·∆Sτ .

We fix G0(φ) = 0, and (Gt)t≥0 is called return process.
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Theorem 7.2.3. G is an adapted and real valued stochastic process.

Proof. The proof is left as an exercise to the reader.

Definition 7.2.4. A trading strategy is self financing, if

φt · St = φt+1 · St, ∀t = 1, 2, . . . , T − 1.

A self financing trading strategy is just a trading strategy where at no time further money is added to
or deduced from the portfolio.

Definition 7.2.5. A trading strategy is admissible, if it is self financing and

Vt(φ) :=

{
φt · St, if t = 1, 2, . . . , T,
φ1 · S0, if t = 0

is non negative. (In other words, one is not allowed to become bankrupt.) The set of admissible trading
strategies is denoted by Φ.

Remark 7.2.6. The idea of admissible trading strategies is to consider only portfolios which neither
lead to bankruptcy nor allow an addition or deduction of money. This also indicates, that the value of
the trading strategies remains constant when the portfolio is rearranged. Thus a trading strategy, which
generates the same cash flow as an option, can be used to determine the value of the option.

Definition 7.2.7. A contingent claim is a positive random variable X. The set of all contingent claims
is denoted by X .

A random variable X is attainable, if there exists an admissible trading strategy φ ∈ Φ which replicates
it, i.e.

VT (φ) = X.

In this case one says “φ replicates X”.

Definition 7.2.8. The price of an attainable contingent claim, which is replicated by φ, is denoted by

π = V0(φ)

(We will see later, that this price is not necessarily unique. It coincides with the initial value of the
portfolio.)

7.2.2 Arbitrage

We say, the model offers arbitrage opportunities, if there exists

φ ∈ Φ with V0(φ) = 0 and VT (φ) positive and P [VT (φ) > 0] > 0,

i.e., money is generated out of nothing. If such a strategy exists, one can make a profit without taking
any risks. One of the axioms of modern economy says, that there are no arbitrage opportunities. This is
fundamental for some important facts in the option pricing theory.

Now, we are going to define what is meant by a price system.
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Definition 7.2.9. A mapping
π : X → [0,∞[, X 7→ π(X)

is called price system if and only if the following conditions hold:

– π(X) = 0 ⇐⇒ X = 0,

– π is linear.

A price system is consistent, if

π(VT (φ)) = V0(φ) for all φ ∈ Φ.

The set of all consistent price systems is denoted by Π, and P denotes the set

P = {Q is a measure equivalent to P, s.th. β × S is a martingale w.r.t. Q},

where β is the discount factor from time t to 0. The measures µ ∈ P are called equivalent martingale
measures.

Theorem 7.2.10. There is a bijection between the consistent price systems π ∈ Π and the measures
Q ∈ P. It is given by

1. π(X) = EQ [βT X].

2. Q(A) = π(S0
T χA) for all A ∈ A.

Proof. Let Q ∈ P. We define π(X) = EQ [βT X]. Then π is a price system, since P is strictly positive on
Ω and Q is equivalent to P. Thus it remains to show, that π is consistent. For φ ∈ Φ we get

βT VT (φ) = βT φT ST +

T−1∑
i=1

(φi − φi+1)βi Si

= β1 φ1 S1 +

T∑
i=2

φi (βi Si − βi−1Si−1) ,

where we used that φ is self financing. This yields

π (VT (φ)) = EQ [βT VT (φ)]

= EQ [β1 φ1 S1] + EQ

[
T∑
i=2

φi (βi Si − βi−1Si−1)

]

= EQ [β1 φ1 S1] +
T∑
i=2

EQ
[
φiE

Q [(βi Si − βi−1Si−1) |Fi−1]
]

= φ1E
Q [β1 S1]

= φ1 β0 S0,

since φ is previsible and β S is a martingale with respect to Q.

Thus, π is a consistent price system.

Now let π ∈ Π be a consistent price system and Q be defined as above. Then Q(ω) = π(S0
t χ{ω}) > 0

holds for all ω ∈ Ω, since S0
t χ{ω} 6= 0. Moreover, we have π(X) = 0 ⇐⇒ X = 0 and therefore Q is

absolutely continuous with respect to P .
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7.2 Pricing theory 95

In the next step, we are going to show that Q is a probability measure. We define

φ0 = 1 and φk = 0 ∀k 6= 0.

Hence, by the consistency of π, we get

1 = V0(φ)

= π(VT (φ))

= π(S0
T · 1)

= Q(Ω).

The prices of positive contingent claims are positive and Q is additive. Therefore, Kolmogorov’s axioms
are satisfied, since Ω is finite. We have Q(ω) = π(S0

T · χ{ω}) by definition. Hence, also

E[f ] =
∑
ω

π(S0
T · χ{ω}) · f(ω) = π(S0

T ·
∑
ω

f(ω)).

Thus, with f = βtX, we have

EQ[βT X] = π(S0
T · βT ·X) = π(X).

Now we still have to show that βT S
k
T is a martingale for all k. Let k be a coordinate and τ be a stopping

time, and set

φkt = χ{t≤τ},

φ0
t =

(
Skτ /S

0
τ

)
χ{t>τ}.

(We keep the share k up to time τ , then it is sold and the money is used for a risk free investment.) It is
easy to show, that the strategy φ is previsible and self financing. Finally, for an arbitrary stopping time
τ ,

V0(φ) = Sk0 ,

VT (φ) =
(
Skτ /S

0
τ

)
S0
T

and

Sk0 = π(S0
T · βτ · Skτ )

= EQ
[
βτ · Skτ

]
.

Thus βT S
k
T is a martingale with respect to Q.

Above we have proved one of the main theorems in the option pricing theory. Next, we will present further
statements without proofs. They all can be found for example in [HP81].

Theorem 7.2.11. The following statements are equivalent

1. There is no arbitrage opportunity,

2. P 6= ∅,
3. Π 6= ∅.
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96 7. Unit-linked policies

Lemma 7.2.12. Suppose there exists a self financing strategy φ ∈ Φ such that

V0(φ) = 0, VT (φ) ≥ 0, E[VT (φ)] > 0.

Then there exists an arbitrage opportunity.

Example 7.2.13. We are going to calculate the price of an option for a simple example. Consider a
market with two shares Z = (Z1, Z2) which are traded at the times t = 0, t = 1 and t = 2. Figure 7.2
shows the possible behaviour of these shares in form of a tree. To calculate the price of the option we
suppose that all nine possibilities have the same probability.
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r

a

b

c

d
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f

g
h
i

t=0 t=1

Figure 7.2. Example calculation of an option price

We want to calculate the price of a complex option given by
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7.2 Pricing theory 97

X = {2Z1(2) + Z2(2)− [14 + 2 min (min {Z1(t), Z2(t)} , 0 ≤ t ≤ 2)]}+ .

First of all, we have to find an equivalent martingale measure. Thus we have to solve for the times t = 0
and t = 1 the following equations:

10 = 11p+ 11q + 8r, (martingale condition for Z1)

10 = 9p+ 10q + 11r, (martingale condition for Z2)

1 = p+ q + r.

The solution to these equations is p = q = r = 1
3 .

Here we can see explicitly which circumstances imply the existence and uniqueness of a martingale
measure. In this example the martingale measure is, from a geometric point of view, defined as the
intersection of three hyper-planes. Depending on their orientation, there is either one or there are many
or there is none equivalent martingale measure.

Next, we can derive the equations for the times t = 1 and t = 2. These are

11 = 14a+ 10b+ 10c,

9 = 9a+ 13b+ 8c,

1 = a+ b+ c,

11 = 14d+ 10e+ 10f,

10 = 9d+ 13e+ 9f,

1 = d+ e+ f,

8 = 12g + 7h+ 7i,

11 = 10g + 15h+ 10i,

1 = g + h+ i,

and they are solved by (a, b, c) = (0.25, 0.15, 0.60), (d, e, f)
= (0.25, 0.25, 0.50) and (g, h, i) = (0.20, 0.20, 0.60).

Now we know the transition probabilities with respect to the martingale measure, which enables us to
calculate the martingale measure Q itself. The results of these calculations are summarised in the following
table:

state X(ωi) Q(ωi)

ω1 5 1/12
ω2 1 1/20
ω3 0 1/5
ω4 5 1/12
ω5 0 1/12
ω6 0 1/6
ω7 4 1/15
ω8 1 1/15
ω9 0 1/5

Finally, we can calculate the price of the option as expectation with respect to Q. The result is 73
60 .
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98 7. Unit-linked policies

7.2.3 Continuous time models

For models in continuous time we restrict our exposition to the statements, the proofs can be found in
the references mentioned before. A major difference between the discrete and the continuous setting is
that we are going to assume that P 6= ∅ holds for the continuous time model.

We start with some basic definitions.

Definition 7.2.14. – A trading strategy φ is a locally bounded, previsible process.

– The value process corresponding to a trading strategy φ is defined by

V : Π → R, φ 7→ V (φ) = φt · St =
k∑
i=0

φkt · Skt .

– The return process G is defined by

G : Π → R, φ 7→ G(φ) =

∫ τ

0

φdS =

∫ τ

0

k∑
i=0

φkdSk.

– φ is self financing, if Vt(φ) = V0(φ) +Gt(φ).

– To define admissible trading strategies we use the notation:

Zit = βt · Sit , discounted value of share i

G∗(φ) =

∫ k∑
i=1

φi dZi, discounted return

V ∗(φ) = β V (φ) = φ0 +

k∑
i=1

φi Zi.

A trading strategy is called admissible, if it has the following three properties:

1. V ∗(φ) ≥ 0,

2. V ∗(φ) = V ∗(φ)0 +G∗(φ),

3. V ∗(φ) is a martingale with respect to Q.

Theorem 7.2.15. 1. The price of a contingent claim X is given by π(X) = EQ[βT X].

2. A contingent claim is attainable ⇐⇒ V ∗ = V ∗0 +
∫
HdZ for all H.

Definition 7.2.16. The market is called complete, if every integrable contingent claim is attainable.

Although this theory is very important, we only gave a brief sketch of the main ideas. Thus it is recom-
mended that the reader extends his knowledge of financial mathematics by consulting the references.

7.3 The economic model

As we have seen in the previous sections we need an underlying economic model to calculate the price of
an option. In principle one can use various different economic models. Exemplary we are going to consider
the most common model: geometric Brownian motion.
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7.3 The economic model 99

The following reference are a good sources for various aspects of the economic model: [Dot90], [Duf88],
[Duf92], [CHB89], [Per94], [Pli97].

Convention 7.3.1 (General conventions). For the remainder of this chapter we will use the following
notations and conventions:

– Tx denotes the future lifespan of an x year old person.

– The σ-algebras generated by Tx are denoted by Ht = σ ({T > s}, 0 ≤ s ≤ t) .
– We assume, that the values of the shares in the portfolio are given by standard Brownian motions W.

(Compare with Figure 7.3.).

– Gt denotes the σ-algebra generated by W augmented by the P -null sets.

Figure 7.3. 5 Simulations of a Brownian motion

Convention 7.3.2 (Independence of the financial variables). – We assume that Gt and Ht are
stochastically independent. This means, that the financial variables are independent of the future lifes-
pan.

– Ft = σ (Gt,Ht) denotes the σ-algebra generated by Gt and Ht.

Definition 7.3.3 (Black-Scholes model). This economic model consists of two investment options:
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100 7. Unit-linked policies

B(t) = exp(δ t) risk free investment.

S(t) = S(0) exp
[(
η − 1

2σ
2
)
t + σW (t)

]
shares, modeled by a
geometric Brownian
motion (cf. Fugue 7.4).

Figure 7.4. 5 Simulations of a geometric Brownian motion

S is the solution to the following stochastic differential equation:

dS = η S dt + σ S dW.

Exercise 7.3.4. Prove that S solves the stochastic differential equation given above.

Next we will calculate the discounted values of B and S:

B∗(t) = B(t)
B(t) = 1,

S∗(t) = S(t)
B(t) = S(0) exp

[(
η − δ − 1

2σ
2
)
t + σW (t)

]
.

Thus we have defined the investment options. To calculate the option prices we need to find an equivalent
martingale measure. That is, we have to find a measure Q such that S∗ is a martingale with respect to
Q. For this we define the following Radon-Nikodym density:
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7.3 The economic model 101

ξt = exp

(
−1

2

(
η − δ
σ

)2

t− η − δ
σ

W (t)

)
for all t ∈ [0, T ].

Exercise 7.3.5. Prove the following statements:

1. E[ξt] = 1,

2. V ar[ξt] = exp

((
η−δ
σ

)2

t

)
− 1,

3. ξt > 0.

(Hint: W (t) ∼ N (0, t).)

An application of Girsanov’s theorem – a theorem in the theory of stochastic integration (e.g. [Pro90]
Theorem 3.6.21) – shows that

Ŵt = W (t) +
η − δ
σ

t

is a Brownian motion with respect to Q = ξ · P.
Naturally, after this transformation we want to prove that

S∗(t) = S(0) exp

(
−1

2
σ2 t+ σ Ŵ (t)

)
is a martingale with respect to Q. (Then the price of the option is given by its expectation with respect
to Q.)

Proof. We have to show the equality

EQ [S∗(u)|Ft] = S∗(t)

for t, u ∈ R, u > t. With the notation u = t+∆t, Wu = Wt +∆W and Z ∼ N (0, 1) we have

EQ [S∗(u)|Ft]

= EQ
[
S(0) exp

(
−1

2
σ2 t+ σ Ŵ (t) + (−1

2
σ2∆t+ σ∆Ŵ )

)
|Ft
]

= S(0) exp

(
−1

2
σ2 t+ σW (t)

)
EQ

[
exp

(
−1

2
σ2∆t+ σ

√
∆tZ

)
|Ft
]

= S∗(t).

Therefore the measure Q is equivalent to P , and S∗ is a martingale with respect to Q. An economist
would say, ”it exists (at least) one consistent price system”.

Theorem 7.3.6. Let the economic model defined above be given, i.e. it is defined by (Ω,A, P ), S and
B. Then at time t the price of a policy with death benefit C(T ) is

πt(T ) = EQ [exp (−δ(T − t))C(T )|Ft] .

Remark 7.3.7. The main difference of this model in comparison to the classical model is the fact that
one has to calculate the expectation with respect to Q and not with respect to P. Moreover one should
note, that we have not proved the uniqueness of the price system.
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The following two formulas are an important consequence of the previous considerations.

Theorem 7.3.8. A single premium for a policy based on the economic model defined above is given by
the following formulas.

Endowment policy:

V (0) = EQ [exp(−δT )C(T )] · T px.

Term life insurance:

V (0) =

∫ T

0

EQ [exp(−δt)C(t)] p∗∗(x, x+ t)µ∗†(x+ t)dt.

7.4 Calculation of single premiums

Up to now the calculations have been relatively simple, since we did not include any guarantees in our
policy model. Next, we will consider a unit-linked policy with an additional guarantee. We recall some of
the notations from the previous sections:

N(τ) Number of shares at time τ ,
S(τ) value of a share at time τ ,
G(τ) guaranteed benefits at time τ ,
C(τ) = max{N(τ)S(τ), G(τ)} value of the insurance at time τ .

7.4.1 Pure endowment policy

Theorem 7.4.1. Let the Black-Scholes model be given. Then the single premium for a pure endowment
policy with payout

C(T ) = max{N(T )S(T ), G(T )}
is given by

TGx = T px
[
G(T ) exp(−δT )Φ(−d0

2(T )) + S(0)N(T )Φ(d0
1(T ))

]
,

where

Φ(y) =
1√
2π

∫ y

−∞
exp(−x

2

2
)dx,

dt1(s) =
ln
[
N(s)S(t)
G(s)

]
+
(
δ + 1

2σ
2
)

(s− t)
σ
√
s− t , (s > t),

dt2(s) =
ln
[
N(s)S(t)
G(s)

]
+
(
δ − 1

2σ
2
)

(s− t)
σ
√
s− t , (s > t).

Proof. In the following we denote by J∗ the discounted value of a random variable J. The value of the
pure endowment policy at time zero is EQ[C∗(T )]. We set Z = S∗(T ). Then the following equations hold

TGx = T pxE
Q [max{N(T )Z,G∗(T )}]
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and

Z = S(0) exp

(
−1

2
σ2T + σŴ (T )

)
where Ŵ (T ) ∼ N (0, T ).

Thus we get

TGx = T px

∫ ∞
−∞

max

[
N(T )S(0) exp(−1

2
σ2T + σ ξ), G∗(T )

]
f(ξ)dξ,

f(ξ) =
1√
2πT

exp

(
− 1

2T
ξ2

)
.

Next we define ξ̄ = 1
σ

[
ln
(

G∗(T )
N(T )S(0)

)
+ 1

2σ
2T
]

and note that ξ > ξ̄ implies N(T )Z > G∗(T ). Therefore,

the single premium is given by

TGx = T px

(
G∗(T )

∫ ξ̄

−∞
f(ξ)dξ

+N(T )S(0)

∫ ∞
ξ̄

exp(−1

2
σ2T + σ ξ)f(ξ)dξ

)
= T px

(
G∗(T )

∫ ξ̄

−∞
f(ξ)dξ

+N(T )S(0)

∫ ∞
ξ̄

1√
2πT

exp(− 1

2T
(ξ − σT )2dξ

)
.

This equation, with adapted notation, yields the statement of the theorem.

7.4.2 Term life insurance

Theorem 7.4.2. Let the Black-Scholes model be given. Then the single premium for a term life insurance
with death benefit

C(t) = max{N(t)S(t), G(t)}
is given by

G1
x:T =

∫ T

0

(
G(t) exp(−δt)Φ(−d0

2(t)) + S(0)N(t)Φ(d0
1(t))tpxµx+t

)
dt,

where

Φ(y) =

∫ y

−∞

1√
2π

exp(−x
2

2
)dx,

dt1(s) =
ln
[
N(s)S(t)
G(s)

]
+
(
δ + 1

2σ
2
)

(s− t)
σ
√
s− t ,

dt2(s) =
ln
[
N(s)S(t)
G(s)

]
+
(
δ − 1

2σ
2
)

(s− t)
σ
√
s− t ,

for s > t.

Exercise 7.4.3. Prove the previous theorem by the same methods which we used for the pure endowment
policy.
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7.5 Thiele’s differential equation

Now we want to derive Thiele’s differential equation. For this we need to determine premiums for the
policies. We introduce the notation p̄(t) for the density of the premiums at time t. Then the equivalence
principle yields the following two equations:

TGx =

∫ T

0

p̄(t) exp(−δ t)tpxdt

and

G1
x:T =

∫ T

0

p̄(t) exp(−δ t)tpxdt.

Also in this section the pure endowment policy and the term life insurance will be considered separately.
The mathematical reserve for these policies is given by:

Pure endowment: V (t) = T−tpx+tπt(T )

−
∫ T

t

p̄(ξ) exp(−δ(ξ − t))ξ−tpx+t dξ.

Life insurance: V (t) =

∫ T

t

(πt(ξ)µx+ξ − p̄(ξ) exp(−δ(ξ − t)))

×ξ−tpx+t dξ,

where

πt(s) = G(s) exp(−δ(s− t))Φ(−dt2(s))

+N(s)S(t)Φ(dt1(s)),

dt1(s) =
ln
[
N(s)S(t)
G(s)

]
+
(
δ + 1

2σ
2
)

(s− t)
σ
√
s− t ,

dt2(s) =
ln
[
N(s)S(t)
G(s)

]
+
(
δ − 1

2σ
2
)

(s− t)
σ
√
s− t ,

for s > t.

Remark 7.5.1. – In the classical setting the reserves were deterministic, but here they depend on the
underlying share S.

– Note that we are beyond the deterministic theory of differential equations. In particular we have to use
Itô’s formula, which takes the following form for the purely continuous case of a standard Brownian
motion W :

df(W ) = f ′ dW +
1

2
f ′′ ds.

For the policies defined above we have the following theorem.

Theorem 7.5.2. 1. The differential equation for the price of a pure endowment policy is:

∂V

∂t
= p̄(t) + (µx+t + δ)V (t)− 1

2
σ2S(t)2 ∂

2V

∂S2
− δ S(t)

∂V

∂S
.
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2. The differential equation for the price of a term life insurance is:

∂V

∂t
= p̄(t) + (µx+t + δ)V (t)− C(t)µx+t −

1

2
σ2S(t)2 ∂

2V

∂S2
− δ S(t)

∂V

∂S
.

Before we prove this theorem, we want to make some comments on the formulas.

Remark 7.5.3. 1. One obtains Black-Scholes formula by setting µx+t = p̄(t) = 0 ∀t.
2. The first terms in the differential equations in the theorem above coincide with the classical case, i.e.

the dependence of the values on the premiums, on the mortality and on the interest rate. Due to the

shares in the model a further term appears: − 1
2σ

2S(t)2 ∂2V
∂S2 − δ S(t)∂V∂S . It represents the fluctuations

of the underlying shares.

Proof. We have
π∗t (T ) = exp(−δt)πt(T ).

Hence, by the definition of V , we get

V (t) = T−tpx+tπ
∗
t (T ) exp(δt)−

∫ T

t

p̄(ξ) exp(−δ(ξ − t))ξ−tpx+tdξ

and

π∗t (T ) = Ψ(t)

[
V (t) +

∫ T

t

p̄(ξ) exp(−δ(ξ − t))ξ−tpx+tdξ

]
,

where

Ψ(t) =
exp(−δt)
T−tpx+t

.

Now we can apply Itô’s formula to the function π∗t (t, S), since π∗t is a function of S and t. We get

dYt = U(t+ dt,Xt + dXt)− U(t,Xt)

=

(
Utdt+

1

2
Uxxb

2dt

)
+ UxdXt

=

(
Ut +

1

2
Uxxb

2

)
dt+ Ux b dBt

and

dπ∗ =

(
∂π∗

∂t
+
∂π∗

∂S
a+

1

2

∂2π∗

∂S2
b2
)
dt+

∂π∗

∂S
b dŴ .

Furthermore we know that
dS = δS(t)dt+ σS(t)dŴ ,

and thus we have a = δS(t) and b = σS(t). In the next step we want to determine the two terms:

∂π∗t
∂S

= Ψ(t)
∂V

∂S
,

∂2π∗t
∂S2

= Ψ(t)
∂2V

∂S2
.

To get ∂π∗

∂t , we start with
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∂

∂t
ξ−tpx+t = µx+t ξ−tpx+t,

∂

∂t
Ψ(t) =

(
A

B

)′
=
A′

B
− A

B2
B′

= − (µx+t + δ)Ψ(t).

Now, with the formula from above we get

∂π∗

∂t
=

∂Ψ

∂t

(
V (t) +

∫ T

t

p̄(ξ) exp(−δ(ξ − t))ξ−tpx+tdt

)

+ Ψ(t)

(
∂V

∂t
+
∂

∂t

∫ T

t

p̄(ξ) exp(−δ(ξ − t))ξ−tpx+tdt

)

= Ψ(t)

(
∂V

∂t
− (µx+t + δ)V (t)− p̄(t)

)
,

where we applied the chain rule to

∂

∂t

∫ T

t

p̄(ξ) exp(−δ(ξ − t))ξ−tpx+tdt.

Thus we get

π∗s (T ) = π∗t (T ) +

∫ s

t

Ψ(ξ)
∂V

∂S
σSdŴ (ξ)

+

∫ s

t

Ψ(ξ)

[
∂V

∂S
δS +

1

2
σ2S2 ∂

2V

∂S2
− (µx+ξ + δ)V (ξ)

+
∂V

∂t
(ξ)p̄(ξ)

]
dξ.

Now the drift term is equal to zero, since π∗· (T ) is a martingale. Therefore we finally get

∂V

∂t
= p̄(t) + (µx+t + δ)V (t)− 1

2
σ2S(t)2 ∂

2V

∂S2
− δ S(t)

∂V

∂S
.

Exercise 7.5.4. Prove the second part of the theorem above.

7.6 Variable Annuities (VA)

This section provides a short introduction into variable annuities, their risks and the way financial risks are
hedged. A variable annuity is a special type of unit linked contract, with additional financial guarantees,
such as a minimal performance guarantee, a guaranteed minimal death benefit etc. Hence the policyholder
does not only buy the underlying funds, but also option like guarantees. These latter ones are the main
characteristics of variable annuities and are the reason for a part of their complexity regarding the pricing
and hedging of these long term guarantees. The underlying product features will be described in some
greater detail in section 7.6.1.

In order to price and hedge these guarantees the concepts of arbitrage free pricing theory (“Black-Scholes”)
together with the so called Itô-Calculus are used to immunise and hedge the liabilities as much as possible
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with a dynamic hedging strategy. The value of the guarantees depends on financial market variables such
as equity market, volatility and interest rates. It also depends on mortality and the various parameters
regarding the policyholder behaviour. Since one aims to hedge the market variables, the values of the
liabilities are represented in terms of a (Taylor) approximation with respect to the relevant variables such
as equity returns, interest rate movement and volatility of the funds. This means that changes in value
to each of the underlying quantities is approximated. These approximations of the liability values (and
also assets) are called “Greeks”.

To understand how these options are synthetically “constructed” one needs to understand the concept
of a replicating portfolio. Hence one holds at every point in time a portfolio Pt with the aim that this
portfolio matches at time T just the payout of the option mentioned above. In order to construct such
portfolios one usually uses the “greeks”. These greek letters represent the sensitivity of an option in case
of a change to the underlying economic parameters such as equity price, interest rate levels, etc. We have
the following relationships:

∆P =
∂P

∂S
= Φ(d1),

Γ =
∂2P

∂S2

=
Φ′(d1)

S × σ ×
√
T
,

ν =
∂P

∂σ

= S × Φ′(d1)×
√
T − t,

ρ =
∂P

∂r

= −(T − t)×K × e−r×(T−t) × Φ(−d2).

All these partial derivatives serve to approximate the change in value of the underlying derivatives when
the fundamental parameters change. To do this one uses Itô-Formula for a given SDE such as

dXt = µt dt+ σt dBt,

follows:

df(t,Xt) =

(
∂f

∂t
+ µt

∂f

∂x
+
σ2
t

2

∂2f

∂x2

)
dt+ σt

∂f

∂x
dBt,

where we clearly see the various greeks. In the concrete context the respective approximations looks as
follows:

∆f(S, t, r, σ) =
∂f

∂S︸︷︷︸
Delta

∆S +
1

2

∂2f

∂S2︸︷︷︸
Gamma

(∆S)2 +
∂f

∂t︸︷︷︸
Theta

∆t

+
∂f

∂r︸︷︷︸
Rho

∆r +
∂f

∂σ︸︷︷︸
V ega

∆σ + . . .
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108 7. Unit-linked policies

Note that this is the based for the hedging program on one side and allows to also determine the hedging
error as a consequence of the higher order terms on the other.

When using assets with the same underlying value and Greeks, it means that the change in economic
equity moves in parallel, thereby reducing the risk up to the higher order errors of both assets and
liabilities. The concept of dynamic hedging foresees the updating of the underlying liability values and
Greeks and the corresponding re-balancing of the assets in continuous time in order to result in an optimal
hedge. In reality the recalculation of the liability values and the re-balancing is done on a less frequent
basis, resulting in a tracking or hedging error. There is also a basis risk, when individual assets behave
differently from the index chosen for hedging. The following example shows how this concept works in
practice: Assume that our portfolio has the following characteristics:

Quantity M $ Meaning

Value of Guaran-
tee
π Net: 4526 The economic value of the liability.
δ −85 The “Delta” is the sensitivity of the value of the li-

ability with respect to the change of the underlying
equity index. If the equity market would fall by say
2%, the value of the guarantee would increase by
approximately −2×−85 = 170 M $.

(1%)
ρ -23.6 The “Rho” is the sensitivity of the insurance lia-

bility with respect to interest rate movements. As-
sume for example that the interest rates would in-
crease by 0.2%. In this case the value of the guaran-
tee would decrease by approximately 20×−23.6 =
−472 M $.

(1bp)
ν 240 The “Vega” is the sensitivity with respect to the

volatility of the equity index. If volatility in the
market would increase from say 18% to 20%, this
would mean that the value of the guarantee would
increase by 2× 240 = 480 M $.

(1%)

As indicated above a dynamic hedging program aims to reduce/minimize the changes of the (economic)
value of the guarantee by buying assets with offsetting characteristics. In order to do so the company, in
a first instance decides which of the “Greeks” it wants to hedge. Some companies do not hedge anything,
others use a 3-Greeks hedging programme. We need to see what a hedge could look like and what the
corresponding hedge error would be. We assume for example (as above) a fall in equities of 2%, an increase
in interest rates of 0.2% and increase in volatility of 2%. Then we get the following:
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Quantity Liabilities Assets Liabilities Assets Net
Change

Sensitivity Sensitivity Value Value in Equity

Value of Guaran-
tee/Assets BoP
π 4526 0 –
δ −85 −53
(Change -2%) +170 +106 -64
ρ -23.6 -0.3
(Change +20bp) -472 -6 +464
ν 240 19
(Change +2%) +480 + 38 -442
Value of Guaran-
tee/Assets EoP

4704 138 -40

This means that the hedge loss would equal to (4526− 4704) + (138− 0) = −40. In absence of a hedging
the corresponding loss would equal to (4526− 4704) = −181 and hence hedging reduced the loss in this
example by 78% (= 100%× (1− 40

181 )). Figure 9.3 shows how the change of the value of the liabilities is
approximated linearly by its tangent.

Figure 7.5. δ–Hedging

By now we see that we need to somehow calculate the value of these liabilities together with their
corresponding Greeks in order to set up a dynamic hedging strategy. For simple forms of liabilities the
underlying calculations can be performed by closed form formulas. In the concrete set up, the liabilities are
more complex and hence the valuation and the calculation of the Greeks are done via simulation (“Monte
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Carlo”) and depends on the Economic Scenario Generator used. The expected values are estimated in the
simulation context by taking suitable averages and the partial derivatives are estimated with a difference
quotient with a suitable small shock.

Next, we need to understand the various types of guarantees offered under the umbrella of variable annuity
policies. There are several types of performance guarantees for unit linked policies and one may often
choose them a la carte, with higher risk charges for guarantees that are riskier for the insurance company.
The first type is comprised of guaranteed minimum death benefits (GMDB), which can be received only
if the owner of the contract dies. GMDBs come in various forms:

– Return of premium (a guarantee that you will not have a negative return),

– Roll-up of premium at a particular rate (a guarantee that you will achieve a minimum rate of return,
greater than 0),

– Maximum anniversary value (looks back at account value on the anniversaries, and guarantees you will
get at least as much as the highest values upon death),

– Greater of maximum anniversary value or particular roll-up.

Besides death benefits, which the contract holder generally can’t time, there are guaranteed living benefits
(GLB), which pose significant risks for insurance companies as contract holders will likely exercise these
benefits when they are worth the most. Annuities with guaranteed living benefits (GLBs) tend to have
higher fees commensurate with the additional risks underwritten by the issuing insurer. Some GLB
examples, in no particular order:

– Guaranteed Minimum Income Benefit (GMIB, a guarantee that one will get a minimum income stream
upon annuitisation at a particular point in the future)

– Guaranteed Minimum Accumulation Benefit (GMAB, a guarantee that the account value will be of a
certain amount at a certain point in the future)

– Guaranteed Minimum Withdrawal Benefit (GMWB, a guarantee similar to the income benefit, but one
that doesn’t require annuitising, and where one can withdraw flexibly a maximal amount per calender
year until the “Guarnteed Withdrawal Balance” (GWB) is nil.)

– Guaranteed-for-life Income Benefit (This is an enriched version of a GMWB, where the minimal annual
withdrawal can also continue when the GWB is depleted until the death of the insured person.)

7.6.1 Product Design

Overall the products need to be understood in the context that there are two phases (figure 7.6):

1. Accumulation phase without withdrawal, and

2. The phase of withdrawal until the person dies during which the policyholder still has the ability to
invest in risky assets.

Before explaining the various variants in detail, it makes sense to have a closer look at figure 7.6. In the
concrete set up we are looking at a “virtual” product where the policyholder buys a VA at age 60 and
invests 100’000 $ in a 100 % equity funds. For the first 5 years (until age 65) there are no additions or
withdrawals from this fund and the value changes as a consequence of the market movement. At age 65
the person starts to withdraw (according to the contract) up to 5 % of the maximum of the fund value
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Figure 7.6. Phases of a VA product for a GLB

at that time and the original amount. Hence, depending on the fund’s past performance he has the right
to withdraw no more than the minimally guaranteed 5’000 $ in case of an adverse fund performance.
Depending on the fund performance there is now a risk for the insurance company since the fund, still
investing into equities might run out of money and the company has to carry on paying the respective
amounts.

For illustratory purposes we have assumed in the example that the insured person lives until the age of
100, which is obviously high. In reality the random life span of the policyholder makes this product still
more complex since mutualisation between policyholders enters. It is, however clear that the risk for the
insurance company is an increased life span and hence a longer consumption period.

There are two types of complexities intrinsic to these variable annuity products, namely the many pos-
sible options which can be granted and sold to the policyholder and hence the understanding of the
different features. It becomes obvious from figure 7.6 that market developments could lead to losses for
the insurance company. The technique to mitigate these losses and to replicate these guarantees is to set
up a corresponding hedging programme.

GMDB. The Guaranteed Minimal Death Benefit is to some degree the easiest option to each VA. The
aim of this benefit is to ensure a minimal death benefit in case the policyholder dies. Assume, for example,
that the policyholder has invested 100’000 $ at age 60 and dies at age 80. We assume also that the fund
value has dropped to 50’000 $. The easiest GMDB is to guarantee a minimal fixed amount in case of
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Figure 7.7. Sum at Risk for a GMDB trajectory

death, say 100’000 $ for arguments sake. In figure 7.7 we assume that there is a ratchet until age 65, and
that the fund value has ratched up to 220’000 $. In this case the loss to the insurance company is 170’000
$ (= 220000− 50000). From a financial point of view the insurance company has written a put option at
age 80 with a strike price of 220’000 $. In consequence one can consider a GMDB portfolio as put option
portfolio, where the strike prices correspond to the respective death benefits at a certain time and where
the amount of the put is weighted according to the expected number of people dying at this time.

GMWB. Considering a GMWB written for a single premium, this process involves the random move-
ment of the funds. Figure 7.6 shows this, assuming that the insured person dies at age 100. In a next
step the trajectories with losses need to be weighted with the corresponding people alive who have not
surrendered at a certain point in time. Figure 7.8 shows this with one sample trajectory. In the concrete
case the company has to honour the withdrawal payments because the funds is depleted at age 86.

After having looked at this sample trajectory one needs to look at the expected cash flow profile stemming
from the guarantee. As before we start with a 60 year old person with a deferral period of 5 years (hence
starting to withdraw at age 65 at 5% p.a.) with a income phase starting at age 85. We furthermore
assume a single premium of USD 100’000. Figure 7.9 shows this. The red curve illustrates the expected
losses and compares them with a guaranteed (fixed) annuity where the money is invested risk free. Two
things become obvious:

– The guarantee starts to bite in most cases after some 25 years when the people are 85+ years old.
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Figure 7.8. Guarantee Cashflows for one sample trajectory

– The percentage of the guarantee (on the lower part of the figure) increases with increasing age and
exceeds 20% at age 80.

– In average this guarantee equals about 14 % of the funds and has a rather long duration (of 26).

From a formal point of view the following quantities are important:

Funds Value: F (t) denotes the funds value,

GAWA: GAWA(t) is the maximal amount which can be consumed under the GMWB policy,

GWA: GWA(t) is the maximal amount which can be withdrawn per year without needing a partial
surrender.

It is worth noting that both quantities GAWA and GWA depend on the time and (potentially) also on
the funds performance, in the sense that an additional bonus could be allocated to the funds. Each time
a withdrawal is made, the GAWA is reduced by this amount. Depending on the contract specificities,
the guarantee consists of being able to continue withdrawing (until a certain point in time or until death)
even when the maximal amount is exceeded.

The following aspects are worth noting:
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Figure 7.9. Expected P/L

– The initial GAWA and GWA are a function of the funds value at the first time the policyholder decides
to withdraw money. This particularly means that policyholder behaviour plays an important role.

– In some instances the GAWA has also a ratchet feature, which could mean that the GAWA is locked
in at each quarter end and can not fall thereafter (before withdrawing). Normally the GWA is then
expressed as a fixed percentage of the GAWA.

Formulae:

In the following section I summarise the economics of this sort of contract. Assume the following:

– Person aged x0 purchases such a GMWB and pays a single premium EE;

– Assume that the person starts to withdraw at age sw and that the income phase starts at age s;

– We use the following notation:

– F (t): Funds value at time t. To be more precise we denote with F (t)− and F (t)+ the value of the funds
before and after withdrawal of the annuity, respectively. In consequence we have F (t)+ = F (t)−−R(t).
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– GWB(t): GWB (“Guaranteed Withdrawal Balance ”) value at time t. To be more precise we denote
with GWB(t)− and GWB(t)+ the value of the funds before and after withdrawal of the annuity,
respectively. In consequence we have GWB(t)+ = GWB(t)− −R(t).

– f(x): GAWA percentage if person starts to withdraw at age x;

– GAWA(t): maximal allowable withdrawal benefit (usually = GWB × f(x)).

– R(t): actual amount withdrawn. Note that we have the following: R(ξ) = 0 for ξ < sw, 0 ≤ R(ξ) ≤
GAWA(x), for all ξ ∈ [sw, s[, and R(ξ) = GAWA(x), for all ξ ≥ s, assuming that the “for life option”
is in place and identifying x and t in the obvious way, eg x(t) = t− t0 + x0

– With η(t, τ) ∈ R, we denote the fund performance during the time interval [t, τ ], with τ > t.

– We do not allow for changes in funds and lapses at this time and also do not consider the death of
the person insured. This would add some complexity, where actually the annuities need to be weighted
with the respective probabilities tpx and in the same sense the respective death cover weighted with

tpx qx. For the moment assume that
∑
τ ≥ 0 stands for “until death”.

– By X(t) we denote the loss at time t occurring from GMWB guarantees. It is obvious that under these
premises the value of the total guarantee Y =

∑
τ≥0(1 + r(τ))−τX(τ), where r(τ) represents the risk

free interest between [0, τ ].

As described above we assume for example the following:

f(x) =

 5% if x ∈ [55, 74],
6% if x ∈ [75, 84],
7% if x ≥ 85.

For the recursion we have at time t0 = 0

F (0) = EE,

GWB(0) = EE,

GAWA(0) = f(sw)×GWB(0).

Afterwards from time t− 1 ; t we have the following, assuming that the withdrawals takes place before
the end of the first quarter, once a year.

F (t)− = (1 + η(t− 1, t))× F (t− 1)+,

GWB(t)− = max{GWB(t− 1)+, max
k=0,1,...,4

{1 + η(t− 1, t− 1 +
k

4
)} × F (t− 1)+},

GAWA(t) = max(GAWA(t− 1), f(sw)×GWB(t)−),

F (t)+ = max(0, F (t)− −R(t)),

GWB(t)+ = max(0, GWB(t)− −R(t)),

X(t) = max(0, R(t)− F (t)−),

π(Y ) = EQ

∑
τ≥0

(1 + r(τ))−τX(τ)

 .
If we now pick a given, mortality cover – the simplest one – namely the payment of GWB(t) in case of
death, we can calculate the value of the insurance option as follows:
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π(Y ) = EQ

 ∞∑
τ≥0

(1 + r(τ))−τX(τ)× τpx0

 ,
where we assume that no guarantee fee is charged. The inclusion of a guarantee fee can be viewed as an
additional annuity which consumes the funds, but only until its depletion.

Next we look at a concrete example, once with and once without ratchet guarantee (aka “step-up”).
Figures 7.10 and 7.11 show the way the guarantee manifests in the case with and without the ratchet
option. The figure 7.10 plots the quantiles (with respect to a risk neutral simulation) of the guarantees
X. Moreover figure 7.11 shows the additional guarantee fee (green) and the GMDB payment (blue). Note
that all guarantee payments occur in later years as a consequence that the ratchet does not affect the
funds value, but rather the (virtual) GWB account. Only when the funds run out of money the guarantee
starts to bite.

Figure 7.10. Guarantees for a GMWB with ratchet; x: time; y: payout of respective option
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Figure 7.11. Guarantees for a GMWB without ratchet; x: time; y: payout of respective option

7.6.2 Hedge Attribution Analysis

The following table provides a structure of a possible hedge attribution analysis. Such an analysis could
for example be performed monthly.

Position Assets Liabilities Net
M $

1 MV BoP xxx.x xxx.x xxx.x

2 Market (δ) xxx.x xxx.x xxx.x
3 Market (γ) xxx.x xxx.x xxx.x
4 Rho (ρ) xxx.x xxx.x xxx.x
5 Volatility

(ν)
xxx.x xxx.x xxx.x

6 Theta (θ) xxx.x xxx.x xxx.x

7 Dividends xxx.x – xxx.x
8 Basis Risk – xxx.x xxx.x
9 Knock Out xxx.x xxx.x xxx.x
10 Unexplained xxx.x xxx.x xxx.x

11 MV EoP xxx.x xxx.x xxx.x

12 Total
PnL

xxx.x xxx.x xxx.x
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Figure 7.12. Guarantees for a GMWB with ratchet including the funds transfer feature; x: time; y:
payout of respective option

Note the following:

– In contrast to the current hedge attribution analysis one would also calculate the volatility component
for the liabilities. This does not necessarily mean that this component is also hedged.

– In the position “Knock Out” one would calculate for Liabilities the deviation between expected and
effective policyholder behaviour. If more people would lapse or void their guarantees compared with
assumptions this position would show the experience variance. One could think of showing the whole
PH behaviour aspect in one position or eventually split it further.

– The following relations hold
∑

(1) . . . (10) = (11) and (12) = (11)− (1).
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8. Policyholder Bonus Mechanism

The aim of this chapter is to introduce the concept of policyholder bonus and the corresponding effects.

8.1 Concept of Surplus: Traditional Approach and Legal Quote

Lets reconsider example 6.4.10. We have used in this context a interest rate for pricing of 2%. According
to the EU laws the technical interest rate must normally not exceed 60% of the average government bond
yields. This would mean that at that time the average government bond yield was above 3.3 % – assume
4 %. If we redo the corresponding calculations, we get the following:

Age Unit Units for Units for Total Value Value
Mortality Premium Units i = 2% i = 4%

50 Z(0) – -9562.20 -9562.20 -9562.20 -9562.20
51 Z(1) 1000.00 -9466.57 -8466.57 -8300.56 -8140.94
52 Z(2) 1089.00 -9362.44 -8273.44 -7952.17 -7649.26
53 Z(3) 1174.93 -9250.09 -8075.16 -7609.40 -7178.79
54 Z(4) 1257.56 -9129.84 -7872.27 -7272.76 -6729.25
55 Z(5) 1336.69 -9002.02 -7665.32 -6942.72 -6300.34
56 Z(6) 1412.12 -8866.99 -7454.87 -6619.71 -5891.69
57 Z(7) 1483.67 -8725.12 -7241.45 -6304.11 -5502.90
58 Z(8) 1551.18 -8576.79 -7025.61 -5996.29 -5133.54
59 Z(9) 1614.50 -8422.41 -6807.90 -5696.55 -4783.14
60 Z(10) – 88080.30 88080.30 72256.53 59503.90

Total 0 -7368.19

Looking at these results we see that the difference in value using the technical pricing rate of 2 % and
the market yield of 4 % amounts to 7368.19, which represents 7.3 % of the maturity benefit. Since the
corresponding differences can also become bigger than that consumer protection regulation was introduced
in the form of legal quotes. The idea there was that for example 90 % of the profit has to allocated to
the policyholder and the shareholder receives maximally the remaining 10 %. Assume that in a concrete
year, we have:

– Mathematical reserve: 45’000 USD,

– Investment return: 4.2 %,

– Required technical interest rate: 2.0 %.
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In this case we get the following income statement:

Item Amount

Investment Income 1890 USD
Technical Interest - 900 USD

Gross Profit 990 USD
of which PH 891 USD
of which SH 99 USD

and we remark the following:

1. The biggest part of the gross profit is allocated to the policyholder and the shareholder receives only
the smaller part.

2. Since the return on the assets is random, this is also true for the bonus payment, which however can
not become negative.

3. As a consequence the shareholder assumes an additional downside risk if he operates an investment
strategy which also allows investment returns below the technical interest rate with a positive prob-
ability.

4. It is worth mentioning that the insurance company can also give a higher policyholder bonus than
the legal minimum defined by the legal quote. Obviously the shareholder return is then reduced
accordingly.

After the split of the gross investment return into policyholder bonus and shareholder return, one needs
to look how the bonus is used. Here there are different possibilities. The bonus can be used to

– Reduce the premium. Hence assuming a regular premium of 4900 USD, the policyholder would only
need to pay 4001 USD.

– Accumulate it on a bank account. The bonus is invested in a bank account type of investment where a
yearly interest rate is credited. At the end of the policy the insured receives the value of this account.

– Increase the benefits. In this case the policyholder bonus is used as a single premium to increase the
insurance benefits.

We finally want to revisit the above example with different investment returns:

Return -5% 0% 2% 5%

Investment Income -2250 0 900 2250
Technical Interest -900 -900 -900 -900

Gross Profit -3150 -900 0 1350
of which PH 0 0 0 1215
of which SH -3150 -900 0 135

Finally we want to remark that there are two slightly different approaches to legal quotes. In the UK
context the insurance company balance sheet is split into policyholder and shareholder funds. The legal
quote applies to the policyholder funds. In case of an under-coverage of the policyholder funds, the
shareholder is required to compensate for this just as in the example above for an investment return
of -5%. In continental Europe, such as in Germany and France the legal quote is applied to the whole
balance sheet. The difference between the two concepts is that in the UK context the shareholder receives
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the full return on his assets. On the other hand the shareholder has to share the return on “his” assets
with the policyholder according to the legal quote requirements. In a next step we will look at insurance
policies from a different point of view, namely from the policyholders’ point of view. Also here we want
to apply a market consistent approach and hence the value of the premium before and after paying them
to the insurance company is equal, but it is allocated to different stakeholders. We want to illustrate this
concept based on an example. We assume that

1. the policy is defined as above as an endowment policy with the parameters set of example 6.4.10,
and that

2. the pricing interest rate amounts to i = 2% with a market interest rate of i = 4%.

3. Furthermore we assume that there is a legal quote of 90 % of the difference in present values as shown
above.

4. Finally we assume that the present value of the administration charges amounts to 0.2 % of the
present value of the benefits and that the tax rate of the insurance company amounts to 35 %.

In this case we know that:

1. The premium amounts to P = 1.02× 9562.20 = 9753.44.

2. The present value of the premiums amounts (at 4%) to −1.02× 58033.16.

3. The present value of death benefits amounts (at 4%) to 7285.59.

4. The present value of maturity benefits amounts (at 4%) to 28481.29.

5. The present value of surrender payments amounts (at 4%) to 14533.06.

6. The present value of gross profit amounts (at 4%) to 7368.19.

Based on this information we can now decompose the present value of the payments of the policyholder
(-59k USD) into its parts:

Type Stakeholder Amount %-age
Mortality PH 7285.59 12.3 %
Maturity PH 28481.29 48.1 %
Surrender PH 14897.09 25.1 %
PH Bonus PH 6631.37 11.2 %
Subtotal PH PH 57295.34 96.7 %
Admin Employees of Insurer 1160.66 1.9 %
Tax Tax authorities 257.88 0.4 %
Profit SH 478.93 0.8 %
Total (equals PV Prem.) 59193.82 100.0 %

After having seen why policyholder bonus is generated, we need to better understand what is done with
the bonus allocated to a policy, since this materially impacts the underlying investment strategies and
the corresponding risks. There are from a high level point of view two different ways how gross bonus can
be used, namely for the benefit of an individual policyholder or for the entire collective of policyholders
together. In the first case the individual policyholder benefits from the excess funds allocated to his
policy, be in the form of a reduction of premiums or be it that his benefits are increased. Besides the
direct allocation of the gross bonus to individual policyholders, there is also the possibility that a part of
the money is used for the entire insurance portfolio together, in the sense of mutualisation of insurance
risk. This is known as reserve strengthening and is a consequence that the mathematical reserves for an
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insurance portfolio are estimated based on statistical methods, which involve some uncertainty. In case a
new estimation of the expected reserves needed turns out to be higher than the reserves within the balance
sheet, it is necessary to strengthen them in order to be able to honour the corresponding commitments.
Now there are two possibilities how such a reserve strengthening is financed, by the shareholder, or as
mentioned before by the collective of policyholders by using a part of the gross profits stemming from
the in-force portfolio.

8.2 Portfolio Calculations

When doing ALM it is normally important to use efficient calculation processes since a lot of simulations
are needed. Let’s look at the moment at an insurance portfolio with 1 million polices. During the year
end calculation, one needs normally to calculate the mathematical reserves for the past, the current and
the next year, in order to save these values in the data base to be able to interpolate them for a possible
policy surrender. Assume for the moment that your tariff engine is performing such a calculation in 0.01
seconds. Hence the whole year end calculation takes you 8h 20min. When doing ALM this is obviously
too long when requiring 10000 simulations, since this would result in about 3500 years run-time on the
same infrastructure. Some acceleration can be gained by using a grid, but even then it seems to make
sense to look for faster methods to do the above task. In this section we will look at such approaches,
which can concretely be implemented. If we consider a simple set up we have a set of policies P, and
each policy can be characterised by its Markov representation, eg the state space Si, the discount factors
(which is normally the same for all polices), the transition probabilities (which are normally structurally
similar per different state space) and finally the benefits vectors aij(t) and ai(t). In a lot of cases one can
also restrict the state space to a common one, which we call S. In order to be concrete we want to have
a look at the set of all insurance policies on one life, be it a lump sum or an annuity. In this case we
choose S = {∗, †, ‡} as corresponding state space for a person with age ξ, where ‡ represents the state of
a surrendered policy. In this set up we introduce the linear vector space of all insurance policies for this
person ξ by

Fξ = {xξ = (aij(t), ai(t)) : i, j ∈ S and t ∈ N}.
We now remark that both the mathematical reserve and the expected cash flow operators

Φt,j(xξ) : Fξ → R, xξ 7→ Vj(t)[xξ]

Ψt,j(xξ) : Fξ → R, xξ 7→ E[CF (s)[xξ]|Xt0 = j]

are linear (continuous) functionals from Fξ → R, where ξ denotes the policy considered, t and s the
respective times and j ∈ S a state. When recognising this fact we can now construct the space of all
insurance policies for a given portfolio P = {ξ1, ξ2, . . . ξn} by defining the respective Cartesian product
such as:

S =
∏
i∈P

Si, and

F =
∏
i∈P
Fi.

In the same sense we can now define the mathematical reserve and expected cash flow operator of the
whole insurance portfolio as the corresponding sum:

Φt(x) : F → R, x((ξi)i∈P) 7→
∑
i∈P

Vj(ξi)(t)[xξi ] and

Ψt(x) : F → R, x((ξi)i∈P) 7→
∑
i∈P

E[CF (s)[xξi ]|Xt0 = j(ξi)].
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Until now we have gained nothing except for a more complex representation of what we already know.
The way we can now make the whole thing much more efficient is to use the given structure and the fact
that the two operators defined above are linear. In the concrete set up where each policy is characterised
by the three states above we can define a new “pseudo” state space

S̃ = {x0, x1, . . . , x120, y0, y1, . . . , †, ‡},

where the states x0, . . . , x120 stand for males which are alive and have the respective age at time t0.
Similarly y0, . . . , y120 stand for the respective females. There is only a need to map the respective
xξ ∈ Fξ into F̃ . Assume that R50 ⊂ P is a homogeneous set of policies representing the males ages 50.
In this case we have the following benefit functions:

aPrex50 =
∑
ξ∈R50

aPre∗ (ξ)

aPostx50,x50 =
∑
ξ∈R50

aPost∗,∗ (ξ)

aPostx50,† =
∑
ξ∈R50

aPost∗,† (ξ)

aPostx50,‡ =
∑
ξ∈R50

aPost∗,‡ (ξ)

Please note that in order to implement the approach described above, one needs to be careful with respect
to the definition of time. In the usual Markov model the time t is calculated with respect to the age of
each policyholder in a certain year. For the above purpose, it is useful to enumerate by the number of
years into the future, starting at t = 0. Hence one needs to correspondingly adjust the time of the benefit
functions. We remark that for all the other states in S̃ \ {†, ‡} the same approach is used. It is also
worth noting that this “pseudo” Markov chains can be interpreted as “normal” Markov chains, where
the initial state of the portfolio is given by a probability distribution, over which one integrates. After
having done so, we can now perform a lot of the calculations much faster. After having applied the above
mapping into F̃ , the calculations do not depend anymore on the actual size of the portfolio. By this we
gain considerable amounts of times when doing the actual calculations. Looking at the sample portfolio
above we would possibly use 1h calculation time to perform the mapping on F̃ , including the data base
queries. Once this is done the calculation of the mathematical value and expected cash flow operator
take some 1 to 2 seconds on a common laptop. Hence doing ALM in a lot of cases result in run-times of
several minutes. In the same sense stress scenarios can be calculated much faster. Finally I would like to
mention that this approach has been applied concretely for the examples in section 8.3 using 402 states
for F̃ by also splitting annuities from capital insurance. Using this approach one can also map deferred
widows pension using a collective approach and hence one can cover the vast majority of traditional life
insurance covers sold by a life insurance company. Since structurally the method is a slight variation of
the Markov recursion, this method can actually be implemented using the same core Markov calculation
objects.

8.3 Portfolio Dynamics and ALM

The aim of this section is to look at the portfolio dynamics induced by the relationship between assets
and liabilities and the corresponding asset liability management (ALM). To this end we fix (Ω,A, P ),
together with a filtration G = (Gt)t∈N. We assume that we have represented the benefits and premiums
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in a suitable (“pseudo”) Markov model with state space S̃ and benefits vector space F̃ . In this case we
can represent the benefits for the entire portfolio by x = ((aPosti,j (t))i,j∈S̃ , (a

Pre
i (t))i∈S̃)t∈N ∈ F̃ , and we

know that we can decompose this into

x = xBenefits + xPremium,

where xBenefits and xPremium represent the corresponding benefit vectors in F̃ for benefits and pre-
miums, respectively. At this point the bonus concept enters. If for example the benefits are increased,
the corresponding xBenefits is increased accordingly. Formally one introduces hence a random vector αt
which represents the relative benefit level. This means that α0 = 1 and also that α is previsible. For
traditional bonus promises, the bonus allocated to the individual policy become a guarantee, means that
α is increasing in t for each trajectory and hence we define the new benefit representation of the policy
at time t as follows:

x̂Benefits = ((αt × aPosti,j (t))i,j∈S̃ , (αt × aPrei (t))i∈S̃)t∈N,

remarking that this is now a random quantity, since α is a random vector. In consequence the entire
portfolio after bonus allocation is given by

x̂ = x̂Benefits + xPremium.

The mechanism to increase α is performed by using the allocated bonus as a single premium. In a next
step we want have a look at a concrete example. The first step is to define a stochastic model, which
generates the corresponding states of the world. In the concrete set up we are assuming a world with a
constant interest rate with one risky asset (say a share) with has a non constant, stochastic volatility. We
are using the Heston model, which is given by

dVt = κ(θ − Vt)dt+ η
√
VtdW

1
t

dSt = µSt dt+
√
Vt St dW

2
t .

This model is given by two stochastic differential equations, where the first equation describes the volatility
of the shares. This volatility process has a structural similarity with the interest rate models we have
seen before, in the sense that the volatility process is also mean reverting. In order to solve this stochastic
differential equation system we can use a numerical method such as the Milstein scheme (see for example
[KP92]). After having done this, it is important to understand how the simulation works. In principle one
does first a loop over the different simulation and calculates the quantities, which need to be analysed.
The following code performs the corresponding task:

1 # 4. Stepper
2 # ---------------------------
3 for i in 1... n:
4 sim.vNewTrajectory()
5 (pl, cf, ... ) = CalcPV(sim, lvp, lvl)

... keep and analyse results for run i

Hence first one generates a new trajectory of the world (line 4, in this case based on the Heston model),
and secondly on calculates the development of the insurance portfolio, as outlined above in the subroutine
CalcPV (line 5). Hence it makes sense to look at this part of the code in order to understand what happens:

... code left away
1 for i in 1... MaxTime:
2 TargetSurplus = ... target surplus level required
3 perf = ((1+iRF) * (1-EquityProportion) +

EquityProportion* sim.dGetValue(1,float(i)) / sim.dGetValue(1,float(i-1.)))
4 cf[i] = psi[i-1] * lvl.dGetCF(i) + lvp.dGetCF(i)
5 l[i] = psi[i-1] * lvl.dGetDKTilde(i) + lvp.dGetDKTilde(i) - cf[i]
6 a[i] = a[i-1] * perf - cf[i]
7 ExAssets = a[i] - l[i]
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8 # Calculate Excess Assets and Pl, afterwards adjust assets by pl for SH
9 if ExAssets > 0.:

10 ExAssets = max(0., ExAssets - TargetSurplus)
11 Bonus = ExAssets * RelBonusAllocation * LegalQuote
12 pl[i-1] = ExAssets * RelBonusAllocation * (1-LegalQuote)
13 else:
14 Bonus = 0.
15 pl[i-1] = ExAssets
16 a[i] -= pl[i-1]
17 e[i] += pl[i-1]
18 psi[i] = psi[i-1] + Bonus / (psi[i-1] * (lvl.dGetDKTilde(i) - lvl.dGetCF(i)))

What this code does, is the following:

1. In a first step, the minimal required surplus of the policyholder funds (line 1) and the performance
of the assets (line 2) is calculated. We see that in the concrete set up we have a mixture of assets. A
part of them yielding risk free and the reminder, the equity portion having an equity yield.

2. In lines 4,5 and 6 the cash-flows and the assets and liabilities are calculated at the end of the period.
We see that

Ψi(x̂
Benefits) = psi[i-1] * lvl.dGetCF(i), and

Ψi(x
Premium) = lvp.dGetCF(i).

3. In a next (lines 7 to 15) step the excess assets are calculated in order to determine, whether there is
a bonus in the corresponding year. If there are excess assets (line 9), the bonus is calculated.

4. Finally the benefit level for the subsequent year is calculated (line 18)

We remark that the initialisation of the code plus the analysis have been left in order to focus on the
essential parts of the calculation. After having done this, we want to have a look at some sample output
of the program. Figure 8.1 and 8.2 show the mathematical reserves and the expected cash flows for the
benefits and the premiums respectively. Moreover figure 8.3 show the quantiles of the profit and loss over
time for the 5%, 10%, 33%, 50 %, 67%, 90% and 95% quantiles for both the profit and loss account and the
corresponding dividends. We remark that this figure shows that the underlying portfolio is insufficiently
financed and suffers considerable losses between the time 5 and 15, and also that the losses start earlier
in cases where we observe an adverse equity performance. The output of the program looks as follows:

Input Parameter / Main Results

------------------------------

Simulations 5000

>> PV Benefits ..... .....DK 1 = 22,786,998,031

>> PV Premium. ..... .....DK 0 = -4,091,249,171

>> Mathematical Reserves..DK = 18,695,748,860

>> Underlying Assets .....A0 = 22,635,000,000

>> Shareholder Equity.....E0 = 1,584,450,000

Distribution of Economic Profit

-------------------------------

Min Return 0.0962

Max Return 0.2473

Average 0.1792

0.5% Quantile 0.1288

1.0% Quantile 0.1324

5.0% Quantile 0.1452
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Figure 8.1. Mathematical reserve and expected cash flows of portfolio (benefits only)

10.0% Quantile 0.1529

25.0% Quantile 0.1654

99.5% Quantile 0.2289

Time used

---------

Step Calc EP Time used 2.3515 s

Step Calc PF Time used 3.6497 s

Step Calc PF Time used 3.2491 s

Step A0 and E0 Time used 0.0190 s

Step Simulation Stepper Time used 81.8312 s

Time used for preparation 9.2 s

Time used for simulations 81.8 s

Time per simulation 0.0163 s

We see in particular that the implementation via the “pseudo” Markov model results in an extremely
fast calculation of the portfolio in about 9 seconds. Also the simulation is performed very fast, despite
the fact that a relatively slow laptop was used. The output of the above run is summarised also in figure
8.4.
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Figure 8.2. Mathematical reserve and expected cash flows of portfolio (premiums only)
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Figure 8.3. Quantiles for profits and losses

Figure 8.4. Summary of ALM analysis
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9. Financial Risks and their Modelling

The aim of this chapter is to educate the readers, in order that they understand the basics of financial risk
management and so that they can interpret the numbers within this report. For the underlying abstract
valuation concept we refer to chapter 6.

9.1 The Model underlying Financial Risks

In order to develop a model for managing and measuring financial risks we have a look at the balance
sheet, which have seen earlier in this book:

Balance sheet Book Book Market Market
A L A A

Cash 6200 47100 6200 48513 MR
Bonds 35700 2200 37842 3569 SHE
Shares 4400 4800

Properties 1100 1300
Loans 1400 1400

Alternatives 500 540

Total 49300 49300 52082 52082

It is clear that we need to decouple the valuation πt from the underlying asset. So formally the balance
sheet consists of assets (Ai)i∈SA

and Liabilities (Li)i∈SL
and we assume that both index sets SA and SL

are finite. Now assume we have 1000 shares from HSBC. We could say that these 1000 shares are “one”
asset. On the other hand we could model the same holding as holding 1000 pieces of the asset “1 HSBC
share”. Therefore we denote by (αi)i∈SA

and (λi)i∈SL
the number of units which we own at the certain

point of time. Furthermore we want to separate the shareholder equity from the liabilities and we denote
it E .

If we write α1A1 we assume that we are holding α1 units of the assetA1. Hence our portfolio is an abstract
finite dimensional linear vector space Y = span{(Ai)i∈SA

, (Li)i∈SL
, E}. In this context our balance sheet

is a point x =
∑
i∈SA

αiAi +
∑
i∈SL

λiLi ∈ Y.

As seen before some assets and liabilities can be further decomposed in simpler assets and liabilities and
hence we can find a suitable basis for the vector space Y = span{e1, . . . , en}, where (ek)k∈Nn

is its basis,
and we remark that we can also write our balance sheet as x =

∑
k∈Nn

γk ek.

The idea to introduce Y is to have a normalised vector space. Assume for example that we hold some
ordinary bonds. In this case we would use as ek = Z(k), the corresponding zero coupon bonds, etc.
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We finally remark that the balance sheet x ∈ Y actually represents a random cash flow vector, and hence
we strictly have xt or Xt(ω) ∈ X if we assume that the changes of the portfolio follow a stochastic process
(cf. appendix 7). For measuring the risk of the actual balance sheet it is normally sufficient to assume
that y ∈ Y does not change.

Next we need to look at the second part, namely the valuation πt, and we remark that:

– The valuation is dependent on time.

– We assume that the valuation is a linear functional πt : Y → R which allocates to each asset its value
(see also appendix 6).

– A liability L is characterised by π(L) ≤ 0. In the same sense and asset has a positive value. As a
consequence an x ∈ Y can in principle be both an asset or a liability, depending on the economic
environment and also depending on the valuation functional.

After having defined the different parts we need to have a closer look at what equity or capital (E) means.
In the context of the balance sheet we observe that the sum of the value of all assets equals the sum of
the value of all liabilities (neglecting the sign). Hence we have the following:

x =
∑
i∈SA

αiAi +
∑
i∈SL

λiLi + E ∈ X , and

π(x) = π

(∑
i∈SA

αiAi +
∑
i∈SL

λiLi + E
)

= 0, and hence

SHE = π(E) = −π
(∑
i∈SA

αiAi +
∑
i∈SL

λiLi
)
.

This means that we can always calculate the value of the shareholders’ equity if we know the value of all
other assets and liabilities.

Finally we want to show how to tackle the stochastic valuation functional πt. Since we live in a linear
vector space Y with a basis (ek)k∈Nn

, it is sufficient to define the price πt(ek). The idea is to decouple
the operator from the economy and the corresponding set up is to define the state of the economy by a
stochastic process (Rt)t∈R ∈ Rm. You could think that one of the components could be inflation, another
could be the level of the 10 year interest rate, etc. In this setup we can define:

πt(ek) = fk(Rt),

where fk : Rm → R is a sufficiently regular function. If we assume for example that Rt[10] is the interest
rate for the 10 year bond, then we have (depending on our definition of π)

πt(Z(10)) = (1 +Rt[10])−10.

The idea of financial risk management is to assess and control the change of the value of the shareholder
equity, e.g. the profit and loss induced by this change. If we assume for the moment that the time t is
denoted in years, one is normally interested in the following quantity:
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PLT = (πT (E)− π0(E)) .

The loss which we encounter within the time interval [0, T ]. Banks normally look at one week, eg T = 1/52,
Solvency II looks at T = 1. One measures the risk, as indicated before based on the random variable
PLT .

Here again is a more formal environment: In order to assess the financial risk of an insurance company
the following steps are needed.

1. Define the valuation methodology πt,

2. Define (note this is a big model assumption) which stochastic process Rt models the economy,

3. Define the universe of all assets and liabilities Y,

4. Define and calculate the functions (fk)k∈Nn
,

5. Analyse the possible balance sheets x ∈ Y and decompose each Ai and Li into the basis (ek)k∈Nn
,

6. Define the risk measure to be used such as VaR, etc.,

7. Implement the model.

The implementation of the above steps in its purest form is very complex and therefore one normally has
to make approximations.

9.2 Approximations

A common approximation starts with the simplification of the function fk, by using a Taylor approxima-
tion. Since we are interested in

PLT = πT (E)− π0(E)

= [πT − π0] ◦
(∑
i∈SA

αiAi +
∑
i∈SL

λiLi
)
,

we use the following first order Taylor approximation

πT (ek)− π0(ek) = fk(RT )− fk(R0)

≈ ∇fk(x)‖x=R0
×∆(R).

If we apply this formula to all assets and liabilities we get a model where the gains and losses are linear
in the risk factors R. If there is a balance sheet x =

∑
k∈Nn

γk ek we can obviously sum over the different
ek and we get the following approximation:

πT (x)− π0(x) =
∑
k∈Nn

γk × (fk(RT )− fk(R0))

≈ δT ×∆(R),
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where

δ =
∑
k∈Nn

γk × ∇fk(x)‖x=R0
,

and where we denote with xT the transposed of a matrix or vector.

Another simplification is to use a stochastic process, which is analytically easy to tackle. Both the risk
metrics method and also the Swiss solvency test use a multi-dimensional normal distribution for Z = ∆R.

Hence we have

Z ∼ N (0, Σ),

where we Σ denotes the covariance matrix. One can express this matrix by the standard deviation vector s
for each of the risk factors and the correlation matrix ρ. In a first step we define the matrix S = (vi×δij)i,j .
Furthermore we need to know that if X1 ∼ N (µ1, Σ1) is a multidimensional normal distribution and A
and b are a matrix and a vector, respectively, we then know that X2 := A×X1+b ∼ N (µ1+b, A×Σ×AT ).
Using this formula we finally get the following relationship:

Σ = S × ρ× S,

keeping in mind that S = ST .

If we use the two approximations, the calculation of the VaR at a level α (eg 99.5%) can be calculated
as follows. In a first step we denote by

ζ = F−1
N (0,1)(α),

and we get in consequence:

V aRPL(α) = F−1
N (0,1)(α),

= ζ ×
√

(s× δ)ρ(s× δ)T .

Hence the value at risk can easily be calculated using some simple matrix multiplications. The example
which follows is based on these approximations.

At this point it is important to remark that every model has flaws and hence it is of utmost importance
to understand the limitations of a model. The risk to choose a “wrong” or “inaccurate” model is called
model risk. Here it important how a model is constructed. Figure 9.1 aims to show this. In principle
there are the reality (left hand side of the figure) which one tries to model in order to answer “difficult”
questions which can not be answered directly. In order to do that one creates a model (right hand side
of the figure) and one should be able to answer the corresponding questions within the model. Next one
translates the results back to reality and “hopes” that the diagram is commutative. From this point of
view the model risk is the missing “approximate” commutativity of the model. As a corollary one needs
to acknowledge that each model is suited and best adapted for a certain purpose and that it is dangerous
to use the model outside that.
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Figure 9.1. Models and Model Risk

Another interesting aspect with respect to model risk is the fact that one can, from time to time, observe
difficult and lengthy discussions between experts on which model is better. Such discussions can stem from
the fact that these people do not distinguish between reality and the model and hence these discussions
can end up in religion like beliefs.

In the same sense the results of every model depend on the parameters chosen. The risk of inaccurate
model parameters is called parameter risk. An easy example is the equity volatility, which is for example
used for the Black-Scholes model. The value of the corresponding options is heavily dependent of the
volatility chosen. As remarked before the volatility for equity market indexes is normally in the region
of say 17 %. In case of market disruptions this parameter can spike up to 30 % and above. Hence it is
crucial to exactly know how the model behaves with respect to different parameters.

Finally it is worth noting that the distinguishing between model and parameter risk is not always clear.

9.3 Concrete Implementation

For the concrete implementation of a risk model for financial risk there are, in principle, the following
three different approaches:

1. Analytical approach, such as the one used in the Swiss solvency test: Here the required risk capital is
calculated based on a closed formula. The advantage here is the fast calculation times because this
approach is only feasible for a limited class of model.

2. Model based simulation (aka Monte Carlo approach): One can, in principle, use whichever model is
deemed to be adequate and one simulates the corresponding random variables. Here one can also
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use sophisticated methods to link variables together such as the copula method. This method is very
flexible - for the price of having normally longer running times, since one requires normally a sizable
amount of simulations in order to determine the tail probabilities with an adequate accuracy. Assume
for example that we are interested in the 99.5% VaR. In this case we have only 500 simulations which
are beyond this level for a sample of 100000.

3. Historical Simulation: In this case one uses past observed financial data to predict the future. The
big advantage is the fact that we do not need to assume which is the correct distribution. In this
class of methods we can either run through the past time series or one can use the boot-strapping
method. The problem with this method is the fact that there are only quite short time series (say 50
years) for the underlying financial data. Since one is normally interested in rare events such as the
one in a 200 year event one needs to amend this method correspondingly. Furthermore, one needs
also to remark that the behaviour of some financial variables has changed considerably over the past
50 years, such as foreign exchange rates, which were fixed until the 1970s and are now floating.

As seen above there are different methods on which we can implement financial risk management. In this
section we will have a closer look at the multi-normal model, as used in the analytic part of the Swiss
solvency test. First we need to look at the risk factors used and then to calculate the risk capital for the
balance sheet introduced above, based on a simplified model.

The Swiss solvency test uses the following risk factors:

– Zero coupon prices for CHF, EUR, GBP and USD, for 13 time buckets,

– Interest rate volatility,

– Credit Spreads for four different rating categories,

– Four different currencies vs CHF: EUR, GBP, USD and YEN,

– Seven equity indexes,

– Equity volatility,

– Real estate, hedge funds and private equity indexes,

each of which is modelled as a normal distribution. Before making a concrete example we want to have a
look on how big the different quantities are. Since there are 81 risk factors, this would result in a 81x81
covariance matrix. In consequence we will have a look at a part of it. Firstly we want to look at the
corresponding standard deviations (as of 31/12/08).
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Risk Factor RFi Quantity σ(RFi)

EUR 1 bps 61.82
EUR 2 bps 72.08
EUR 3 bps 73.00
EUR 4 bps 73.12
EUR 5 bps 83.53
EUR 6 bps 70.43
EUR 7 bps 68.09
EUR 8 bps 65.93
EUR 9 bps 64.88
EUR 10 bps 63.54
EUR 15 bps 58.91
EUR 20 bps 60.94
EUR 30 bps 59.95
EURO STOXX in% 18.78
Credit AAA bps 11.08
Credit AA bps 12.00
Credit A bps 23.80
Credit BBB bps 52.60

From the above table we see that the volatility for equities was about 19% and the standard deviation
for spread risk increases if the credit quality deteriorates. In a next step we want to have a look at the
(simplified) correlation matrix:

ρi,j EUR 5 EUR 10 EUR 20 STOXX AA BBB

EUR 5 1.00 0.89 0.66 0.36 -0.14 -0.23
EUR 10 1.00 0.73 0.32 -0.17 -0.21
EUR 20 1.00 0.16 -0.09 -0.09
STOXX 1.00 -0.45 -0.50
AA 1.00 0.61
BBB 1.00

Looking at figure 9.2 we see clearly how the different risk factors are situated in the matrix. One sees
the four times 13 risk factors relating to interest rates as first block, which is highly correlated between
themselves and slightly less between different currencies. Afterwards one sees the correlation with the
credit block, followed by the equity–like investments etc.

From the above table it becomes obvious that the credit spreads have a quite high negative correlation
with stock market prices. This means that credit spreads increase normally at the same time when equity
markets fall. One can observe that increasing stock market prices normally imply increasing interest rates.
These two remarks are for example valid for the credit market crisis in 2008. Here we observed decreasing
stock market indexes, reduced interest rate levels and increased credit spreads.

In order to make a concrete example based on the above data we need to base the calculation on a balance
sheet and we assume:

Item EUR Term Rating

MR -10000 10 Government
Bond 1 5000 5 BBB
Bond 2 4000 20 AA
STOXX 2000

Capital 1000
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Figure 9.2. Correlation Matrix

So as a first step we need to calculate the sensitivities regarding our risk factor vector EUR 5,EUR 10,
EUR 20, STOXX, AA, BBB. We assume for the sake of simplicity each of the bonds and the mathematical
reserve (MR) is zero coupon bonds with the corresponding term. In this case the duration equals the
term, as one can easily verify. Since the volatility for interest rates and credit spread movement is stated
in bps, we also need to calculate the sensitivity of the corresponding values per bp.

Since the MR is considered as a Z(10) there is only a sensitivity with respect to the EUR 10 year risk
factor and an upward movement of 1% reduces the reserve by 10%, so from a capital point of view we
have an entry of +1000. For 1 bp we hence have +10 and the sensitivity factor for this liability reads as
δx1

= (0, 10, 0, 0, 0, 0). In the same sense we can calculate Bond 1 (δx2
) and Bond 2 (δx3

), remarking that
both of them are sensitive also with respect to credit spreads we get

δx2
= (−2.5, 0, 0, 0, 0,−2.5),

δx3
= (0, 0,−8, 0,−8, 0).

For the share we calculate the sensitivity for an increase of 1% and hence we get:

δx4 = (0, 0, 0, 20, 0, 0),

and therefore we get for the total sensitivity:

δTot =
4∑
k=1

δxk

= (−2.5,+10,−8,+20,−8,−2.5).
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In a next step we need to calculate:

s× δTot = (83.53×−2.5, . . . , 52.61×−2.5)

= (−208.83, 635.42,−487.52, 375.70,−96.03,−131.51).

Now we can calculate the standard deviation of the capital, considered as a random variable by:

σ =
√

(s× δ)ρ(s× δ)T
= 546.6M EUR.

As a consequence of this the VaR for the 99.5% corresponds to V aR99.5% = 2.57 × 546.6 = 1404.7 M
EUR. If one further decomposes the VaR, one could look at pure interest rate VaR. In this case one would
look at the corresponding δ:

s× δInterest = (−208.83, 635.42,−487.52, 0, 0, 0),

and we would get in the same way V aRInterest
99.5% = 2.57 × 487.9 = 1253.9. This is the way how one

determines which parts of the balance sheet contribute most to the risk. In the concrete example we get
(in M EUR):

Item Std Deviation 99.5% VaR

Bonds 487.9 1253.9
Equities 375.7 965.5
Credit 204.8 526.3

Simple Sum 1068.4 2745.7
Diversification -521.8 -1341.0
Total 546.6 1404.7

Finally, we want to have a look at the accuracy of the linear approximation, which we have used. For
shares there is nothing to do, since the change in value of the asset is linear. Therefore we want to look
at the accuracy of the approximation for bonds. For simplicity we assume that the yield curve is flat at
i = 4%. In this context we have:

πt(Z(n))[i+∆i]− πt(Z(n))[i] = (1 + i+∆i)
−n − (1 + i)−n.

We remark that the volatility of bonds is about 60 bps, therefore looking at the 99.5% (which is about
2.57× σ) implies, looking at the precision of the approximation, at a shift of c 150 bps.
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Term 20 yrs True Change Delta Approx. Error

-300 0.3631 0.2738 -24.5%
-200 0.2165 0.1825 -15.7%
-150 0.1538 0.1369 -11.0%
-100 0.0972 0.0912 -6.1%
-50 0.0461 0.0456 -1.1%
50 -0.0417 -0.0456 9.3%

100 -0.0794 -0.0912 14.8%
150 -0.1136 -0.1369 20.4%
200 -0.1445 -0.1825 26.2%
300 -0.1979 -0.2738 38.3%

Consequently, we see that this approximation has some non negligible errors, which can be mitigated by
adjusting the duration accordingly. Another source of such non-linearities are options, where a standard
model is inadequate. Hence we want to have a look at a possible solution. In order to do that we need
to go back to first principles, which define the model before approximations. In our case we assume that
the risk factors are following a multi-normal distribution for Z = ∆R. This means that for some of our
assets (Ai)i∈SA

or liabilities (Li)i∈SL
the linear approximation is inadequate. The method which we want

to show here works in general and can either be applied to one or more of the underlying assets and
liabilities. It works for example for plain-vanilla stock options, which can be valued using the :

The price for a put-option with payout C(T, P ) = max(K −S; 0) at time t and strike price K and equity
price S is given by:

P = K × e−r×T × Φ(−d2)− S0 × Φ(−d1),

d1 =
log(S0/K) + (r + σ2/2)× T

σ ×
√
T

,

d2 = d1 − σ ×
√
T ,

Φ(x) =

∫ x

−∞

1√
2π

exp(
−ζ2

2
)dζ.

The risk factors which enter into the calculation of the price π(A) := P are the following:

– Share price St,

– Volatility of the share price σ, and

– The interest rate for the corresponding term r.

In order to understand how these options are synthetically “constructed” one needs to understand the
concept of a replicating portfolio. One holds at every point in time a portfolio Pt with the aim that this
portfolio matches at time T just the payout of the option mentioned above. In order to construct such
portfolios one usually uses the “Greeks”. These Greek letters represent the sensitivity of an option in
case of a change of the underlying economic parameters such as equity price, interest rate level, etc. We
have the following relationships:

∆P =
∂P

∂S
= Φ(d1)

Γ =
∂2P

∂S2

c©Michael Koller Skript AK LV 2012 Vers. 0.70



9.3 Concrete Implementation 139

Figure 9.3. δ–Hedging

=
Φ′(d1)

S × σ ×
√
T

Λ =
∂P

∂σ

= S × Φ′(d1)×
√
T − t

PP =
∂P

∂r

= −(T − t)×K × e−r×(T−t) × Φ(−d2)

Based on the above partial derivatives it is now possible to define different hedging strategies, one of
them being a “delta-hedge”. The idea is to define at each point in time t a portfolio Pt consisting of cash
and shares, which have the same value and for which the partial derivative with respect to equity price
S is the same. Hence we look for a Taylor approximation of order 1 in the variable S. Figure 9.3 shows
such a delta hedge. For the concrete example we have the following put option:
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Interest r = 3.0%
Term 10 years
Equity Price S0 = 1000
Strike K = 900
Volatility σ = 15%
Number of Shares 1000

Value of Put P = 41535.7
Delta ∆P = −137472

What becomes obvious is the fact that the hedge is quite good if the stock market does not move too far
away during the time between the updating of the replicating portfolio, for example updating the hedge
portfolio once a day.

In order to assess the corresponding risk, one can for example use a partial or full simulation approach. In
the first case the whole distribution is simulated with a sufficiently big sample and the effective change in
capital is evaluated and recorded in order to determine the value of the chosen risk measure such as the
VaR or TVaR. One can also use a partial simulation approach remarking that only nonlinear instruments
need to be simulated. Here the question is how to “marry” the simulated and the analytical parts. One
approach is to use control variables.

In order to describe this approach let’s assume that we have one asset A, which is not linearly dependent
on the risk factor and assume for sake of simplicity that we have the following:

π̃t(x)− π0(x) = δT ×∆(R), and

πt(x)− π0(x) = f(∆(R)).

In the above we denote with π̃t(x) and πt(x), the approximated and the “true” change in value, respec-
tively. The function f denotes the “true” change in value for a given ∆(R). So in order to do a partial
simulation approach one needs to do the following:

1. Simulate n (say 50000) times the random variable R, resulting in a series of (rk)k=1,2,...n.

2. Calculate the analytic value of the risk measure Cla for the linear approximation.

3. Calculate the simulated value of the risk measure Clr for the linear approximation, using the series
(rk)k=1,2,...n.

4. Calculate the simulated value of the risk measure Cfr for the “true” value, using the series (rk)k=1,2,...n.

As a consequence of the weak law of big numbers we have Cla = limn→∞ Clr(n). Hence using the difference
Cla − Clr as a correction to Cfr normally improves the quality of the approximation.

The table below show an example for the accuracy of the linear approximation in case of a plain vanilla
put option. At time t = 0 we assume a stock price of 1000 and we consider a strike for the put option
at 900. For this example a sample size of 50000 has been chosen and analysed for the first 500, the first
1000 samples etc.
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Sample size Linear Linear BS - Price BS - Price
Value Error Value Error

500 97680 +0.7% 159238 +1.5%
1000 97911 +0.9% 160029 +2.0%
2000 97908 +0.9% 160017 +2.0%
5000 96412 -0.6% 154571 -1.4%
10000 97911 +0.9% 160029 +2.0%
20000 96672 -0.4% 157896 +0.7%
50000 97038 ref 156831 ref

What can be seen from the above example is that the linear model converges much faster and in this case
the value of the put-option to the company holding it is underestimated.

9.4 Interpreting the Results

This section provides a reporting template which can be used for financial risk management. This template
risk report is subdivided into the following parts:

Summary: The aim of this section is to provide a concise summary. In order to get a high level view
on the duration gap between assets and liabilities, the corresponding durations are calculated. Fur-
thermore we see the impact of an increase in interest rates of 10 bps and an increase of 1% in equity
prices, separately for assets and liabilities only and combined. After these deterministic measures we
see some important key measures in terms of VaR, for both a one in ten year (1:10) and a one in
250 year (1:250) event. Here we look at combinations of risk factors. Namely we look separately at
equities, bonds, surrenders and the total. This total VaR needs to be compared with the available
capital (Market Value). Finally, also the Tail VaR or Expected Shortfall (ES) is shown. The figure
underneath shows the required capital for different return periods (separately for assets and for the
total). The two red balls represent the VaR in a 1:10 and a 1:250 year event and these numbers
reconcile to the table.

Decomposition of VaR: In order to better understand where capital is consumed the total VaR is
further decomposed into its components. It is possible to see which parts of the assets and liabilities
consume the majority of the capital. In the concrete example we can see that most of the total
required capital of 3216 M EUR is consumed by credit risk (2042 M EUR). Furthermore it becomes
obvious that the pure ALM risk (in terms of interest rates) is quite small with 764 M EUR. Finally
we see that equity risk and hedge funds account still with 764 M EUR and 464 M EUR respectively.
At the bottom of the page we see that the surrender risk amounts to 736 M EUR.

Individual Capital Assessment (ICA): In order to be able to compare the model with the regulatory
standard ICA model the corresponding results have been included in this section. It needs to be
stressed that the ICA model covers more risk factors, but is not as granular for the market risk
factors as the own model.

Scenarios: In this section some scenarios are shown and in particular, how the company balance sheet
would look after such an event. Section 9.4.2 shows the main characteristics of the scenarios used.
The balance sheet items for each of the scenarios follow a typical IFRS balance sheet. The figures
underneath the table show the change in shareholders equity and the decomposition of the balance
sheet post stress respectively.

Stress Tests: The section stress tests is thought to represent some additional scenarios as described
above. The only difference is the fact that here the scenarios are shown in a summarised version and
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are based on group requirements. The scenarios currently used have been defined by FSA1 and are
quite self-explanatory.

Limits: This section aims to show the limits currently in place to limit the ALM risk. The table shows
the limits currently in place: The target which is limited, the threshold, the current level and the
headroom. The program has been built up in such a way that every number which is checked against
a limit is either printed in green (e.g. within limit) or red (e.g. limit breach).

9.4.1 Notation

In this section the main elements in respect of notation are documented.

VaR Value at risk, eg the Loss which occurs according to a
certain probability. In the analysis a 99.6% VaR is used.
This means that the loss represents a loss which in the
long run is expected to occur every 250 years. It needs
to be noted at this point of time, that analytical models
tend to underestimate such losses since the risk factors
have been modelled as normally distributed.

1:10 This symbol also relates to a VaR, in this case corre-
sponding to the 90th quantile, e.g. once every 10 years.

Duration The modified duration which represents the risk intrinsic
to a bond portfolio

Sensi Bonds
(+10 bps)

The change in value of a bond portfolio if the yield curve
is shifted by 10 bps (= 0.1%).

ES 99% The expected shortfall in a 1 in 100 year event is defined
of the average loss looking at all events occurring less
than once in 100 years. This measure is more sensitive in
the tails than the VaR.

Intangibles The intangibles in the balance sheet (eg goodwill etc.) In
case of an impairment of participation the model reduces
the intangibles in a first step.

MR mathematical reserves for traditional business. They are
moving in line with the interest rates.

UDS Undistributed surplus.
Tax Taxes and deferred tax assets and liabilities are not mod-

elled.
SHE Market Value Shareholder funds. This corresponds in

principle to the corresponding MCEV.
∆ SHE Change in SHE in case of a certain scenario.

– The figure Distribution of Losses shows the probability density function of the losses. The two red
circles represent the VaR 1:10 and in respect of the 99.5% quantile.

– The figure Cash Flow Profile shows the inflows (red: bond payments and yellow: premiums) v.s. the
outflows (blue: expected claims).

– The figure Diversification shows the diversification effect in relation to the main asset risks.

– The figure Decomposition of required Capital and Credit Risk by Rating show which risk and which
credit risk absorbs most of the required capital.

1 Financial Services Authority in the UK.
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9.4.2 Scenarios

In the following section the different used scenarios are defined in some greater detail:

Credit Yen Depr. FSA Hard Depr. ii
Land.

i-rate 2 yrs (bps) 0 -399 -399 50 90 -220
i-rate 7 yrs (bps) 0 -316 -316 50 90 -220
i-rate 10 yrs (bps) 0 -323 -323 50 90 -220
i-rate 25 yrs (bps) 0 -303 -303 50 90 -220
Shares (%) -18 -18 -65 -34 9 -32
Properties (%) -5 -5 -55 -19 -28 -36
AA Credit Spread
(bps)

103 0 103 50 40 110

9.4.3 What can and what cannot be done with this

As indicated above, a model is not reality and hence it is of utmost importance to recognise the limitations
of such a model. In this section we try to show some of the limitations of the model currently used. One
of the possible risks of this model is that it is overly simplistic.

From a high level point of view the main shortcomings of the model are:

The model is linear: The different risk factors enter linearly into the calculation of the loss. Therefore
for options, the corresponding delta equivalent is used. In a next step such effects should be captured
better.

The model uses a standard multi-normal distribution.

Management actions: Management actions are not taken into account.

Insurance and operational risks: The model purely focuses on ALM risk.

Dynamic Lapses: Dynamic lapses are also an area where the model used needs refinement.

9.5 Reporting Example

9.5.1 Summary

Assessment and key Figures Data Quality
– Globally the company has currently not

enough risk capital, from a purely economic
perspective, to run the corresponding ALM
risks, since the margins have become tighter
due to the losses in the equity and corpo-
rate bond portfolio and widening of the credit
spread.

– The statutory reserve set up for GMDB at the
year-end (31.12.2008) was 130m EUR whereas
the more economic vision used in the MCEV
calculation produced a value of 162m EUR.
During the first quarter the statutory reserves
increased to c230m EUR, affecting the IGD
Solvency adversely by c82m EUR.

– Private Equities are currently
within the category hedge funds

– The current analysis is still in draft
form and is based on data as of
31.12.2008.
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Item Assets Liabilities Total

Duration 5.81 5.12

Sensi Bonds (+10bps) -177.87 144.98 -32.88
Sensi Equities (+1%) 14.90 -0.21 14.69

1:10 Bonds 1505.30 1174.40 352.94
1:10 Equities 370.32 15.68 380.18

1:10 Total 1809.60 983.14 1600.50

VaR Bonds 3025.60 2360.40 709.39
VaR Sx – 736.69 736.69
VaR Equities 744.32 31.51 764.13

VaR Total 3637.10 1976.00 3216.90
ES 99% 3098.60
Market Value – 45343.00 2780.00

Figure 9.4. Distribution of Losses
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9.5.2 Decomposition of VaR

Assessment and key Figures Data Quality
– The total required risk capital amounts to 3.2

bn EUR (pre Tax) and to c 2.1 bn EUR (post
Tax), compared with a available risk capital of
c 2.7 bn EUR (after Tax). The 2.1 bn EUR
compare to 2.5 bn EUR for the YE2008 ICA
calculation. The biggest difference is the fact
the ALM Capital does not take into account
risk other than market and surrender risks.
The biggest additional contribution is the ex-
pense risk capital of c 0.6 bn EUR. Adding this
to the ALM Capital the two numbers get closer
with a difference below 0.1 bn EUR. Overall,
both metrics result in similar numbers.

– The ALM mismatch consumes about 1
2 and

the equities et al exposure ca. 1
2 of the total

risk capital. This indicates the company has
a rather high risk in equities, private equities,
properties and hedge funds. In particular, the
capital needed for alternative investments is
almost 20% of the total available risk capital.

– Most of the ALM mismatch stems from the
long duration liabilities which are not matched
with corresponding assets.

– Replicating the portfolio for one
major product line under review

– Available risk capital not yet calcu-
lated and the current figure is based
on an estimation.

– GMDB exposure reflected via δ–
equivalent for equities and volatility
via θ. Interest rate sensitivity not
yet reflected.
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Item Assets Liabilities Total
Market Value – 45343.00 2780.00

Bonds EUR ¡3 48.26 52.35 11.78
Bonds EUR 3-7 616.54 454.94 162.66
Bonds EUR 8-12 1446.40 810.34 636.14
Bonds EUR 13-24 1007.60 925.96 109.24
Bonds EUR ¿25 26.64 263.45 236.81
Bonds EUR Total 3025.60 2360.40 709.39
Div. Ben. -119.88 -146.66 -447.24
Bonds GBP ¡3 – – –
Bonds GBP 3-7 – – –
Bonds GBP 8-12 – – –
Bonds GBP 13-24 – – –
Bonds GBP ¿25 – – –
Bonds GBP Total – – –
Div. Ben. – – –
Bonds USD ¡3 – – –
Bonds USD 3-7 – – –
Bonds USD 8-12 – – –
Bonds USD 13-24 – – –
Bonds USD ¿25 – – –
Bonds USD Total – – –
Div. Ben. – – –
Bonds CHF ¡3 – – –
Bonds CHF 3-7 – – –
Bonds CHF 8-12 – – –
Bonds CHF 13-24 – – –
Bonds CHF ¿25 – – –
Bonds CHF Total – – –
Div Ben. – – –
All Bonds 3025.60 2360.40 709.39
Div. Ben. – – –

Credit Risk 2042.20 – 2042.20
Shares MSCIEMU 744.32 – 744.32
Shares MSCICHF – – –
Shares MSCIUK – – –
Shares MSCIUS – – –
All Shares 744.32 31.51 764.13
Div. Ben. – – -11.70
FX GBP – – –
FX USD – – –
FX GBP – – –
FX Total – – –
Div. Ben. – – –
Real Estate 131.20 9.45 121.75
Alternatives 464.46 – 464.46
Participations 191.90 – 191.90

Total 3637.10 1976.00 3216.90
Div. Ben. -920.34 -425.30 965 29

Surrenders – 736.69 736.69
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9.5.3 Figures

Assessment and key Figures Data Quality
– The duration of the bonds with 5.6 years is

considerably shorter than the ones of the lia-
bilities with 10.6 years. In part this is due to
the special characteristics of a particular insur-
ance portfolio and corresponding analysis are
under way.

– From a liquidity point of view the company
has considerable amounts of bonds maturing
within 1 year and 2 years leading to an excess
liquidity of ca 2bn EUR and 1bn EUR respec-
tively.

– The table relating the shift in asset value for
a shift in credit spreads shows clearly the high
credit quality of the underlying assets corre-
sponding to a average rating of slightly above
AA

– Replicating portfolio for particular
product line under review

– Derivatives not yet reflected in anal-
ysis

Figure 9.5. Cash Flow Profile
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Figure 9.6. Diversification

Credit Quality +10 bps Spread Percentile ∆ Profit

EURO AAA -89.13 1% 2905.30
EURO AA -23.76 5% 2054.20
EURO A -42.69 10% 1600.50
EURO BBB -24.16 33% 538.04
USD AAA – 66% -537.70
USD AA – 90% -1600.50
USD A – 95% -2054.20
USD BBB – 99% -2905.30

Total -179.76 99.5% -3216.90

9.5.4 Scenarios

Assessment and key Figures Data Quality
– The main three scenarios consist of a widening

of credit spreads by a further 50%, a falling of
the interest rates to YEN levels and a global
severe depression.

– The current analysis is work in
progress and is based on data as of
30.12.08
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Figure 9.7. Decomposition of required Capital

Item Start Y to D Credit YEN Depression

Cash 6221.10 6221.10 6221.10 6187.00 6187.00
Bonds 35734.00 35734.00 33730.00 41567.00 39564.00
Shares 4468.30 4207.50 4207.50 4207.50 3499.50
Properties 1137.10 1081.70 1081.70 1081.70 528.15
Hedge Funds 595.70 521.24 521.24 521.24 59.57
Private Equity 64.00 56.00 12.80 56.00 6.40
Loans 1452.10 1452.10 1452.10 1452.10 1452.10
Unit Linked Assets 14330.00 14330.00 14330.00 14330.00 14330.00
Other Assets 3612.00 3612.00 3612.00 3612.00 3612.00

Intangibles 204.90 152.75 167.65 152.75 -63.30
MR 47066.00 47066.00 47326.00 51773.00 51773.00
Unit Linked Liabilities 14330.00 14330.00 14330.00 14330.00 14330.00
UDS – – – – 37.60
Debt – – – – –
Deferred Tax 127.70 127.70 127.70 127.70 127.70
Other Lia 3801.90 3797.90 3797.90 3797.90 3758.00
SHE 2493.00 2046.20 -245.49 3139.00 -851.01
∆ SHE -446.82 -2738.50 645.97 -3344.00

Year-to-date: The interest rates decreased by c 200 bps at the short and 30 bps
at the long end. At the same time credit spreads widened between 90 bps
(AAA) and 380 bps (BBB). Stock markets reduced by 35+%.

Credit Scenario: An additional spread widening of 50%.
YEN Scenario: Based on the current scenario, interest rates have been lowered

to levels where the Yen was at the its deepest level
Depression: YEN interest rates, a 40% credit spread widening and a cumulative

reduction of 65% for shares, PE, HF and properties.
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Figure 9.8. Credit Risk by Rating

Figure 9.9. ∆ SHE for the scenarios Figure 9.10. BS for Scenarios

c©Michael Koller Skript AK LV 2012 Vers. 0.70



9.5 Reporting Example 151

9.5.5 ICA Capital

Assessment and key Figures
– The falls in available economic capital and the increase in capital requirements

are largely driven by:
– Falls in equity markets and increases in credit risks have lead to minimum
investment guarantees “biting”, with a direct burn-through impact on share-
holder assets.
– Saving products experienced significant erosion in value of future profits
(VIF), with asset returns over the year close to minimum guarantees.
– Falls in the equity market meant unit linked contracts experienced an increase
in Guaranteed Minimum Death Benefit (GMDB) risk.

– Changes in YE2008 stress methodology, in particular, the “softening” of equity
and credit spread tests were key to keeping the funds from going into deficit on
an economic basis.

– The company has completed an equity de-risking initiative, leading to a further
fall in capital requirement for equity risk.

– The company believes a significant part of the credit spread widening is linked to
liquidity premium and for some products, creates an artificial and unnecessarily
high capital requirement.

– A separate exercise will need to be performed to quantify the reputational
risk associated to structured products that have been sold with the underlying
guarantees provided by third parties. The default risk is borne by the client but
a reputational risk would remain with the company (total reserves 4,844m). This
is not part of the YE08 SSTEC requirements, but will be investigated given the
potentially material impact.

in M EUR YE 2007 YE 2008 1Q2009 4Q2009

Available Economic Capital 3657 2780
Reg. Capital Required 2083 2508

Cover 176% 111%

Diversification Benefit 39% 41%

MV Assets 59390 56390
MV Liabilities 54674 52558

9.5.6 Stress Tests

Nr Name Equity ∆ Assets ∆ Lia ∆ Equity

B/S 2493.00
Y to D 2046.20 -450.81 -3.98 -446.82

1 Equities -10% 1763.00 -603.96 126.01 -729.97
2 Equities -20% 1479.90 -757.11 256.01 -1013.10
3 Equities -40% 1043.60 -1063.40 386.01 -1449.40
4 Equity Vola + 10% 2044.10 -450.81 -1.88 -448.92

5 Property -7.5% 1908.00 -529.70 55.33 -585.03
6 Property -15% 1769.80 -608.58 114.65 -446.82
7 Property -30% 1558.40 -766.35 168.28 -934.64

8 I rates -50 bps 2210.60 438.52 720.94 -282.42
9 I rates -100 bps 2375.00 1327.80 1445.90 -118.01
10 I rates -200 bps 2703.80 3106.50 2895.70 210.79
11 I rates Twist: long down 1988.70 834.64 1339.00 -504.31
12 I rates Twist: long up 2102.20 -1750.40 -1359.60 -390.84

13 Cred spread +50 bps 1147.40 -1349.60 -3.98 -1345.60
14 Cred spread +100 bps 248.60 -2248.40 -3.98 -2244.40
15 Cred spread +200 bps -1549.00 -4046.00 -3.98 -4042.00

16 FSA 530.28 -2703.00 -740.28 -1962.70
17 FSA Hard Landing 1287.10 -2533.00 -1327.00 -1205.90
18 FSA Depression 2010 206.99 875.04 3161.10 -2286.00

9.5.7 Limits

In this section the various limits are checked:
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Figure 9.11. Required ICA Capital by Risk

Limit Threshold Actual Headroom

VaR Equity Asset (20%) ♦ 409.24 744.32 -335.08
Total VaR (80%) ♦ 1636.90 3216.90 -1580.00
Base Point Sensitivity 87.98 -32.88 55.10
Alternatives VaR (10%) ♦ 204.62 464.46 -259.84
Credit VaR (20%) ♦ 409.24 2042.20 -1633.00
Credit Scenario SHE > 0 0.00 3139.00 3139.00
Yen Scenario SHE > 0 0.00 -245.49 245.49
Combined 2 Scenario SHE > 0 0.00 1287.10 1287.10
Depression Scenario SHE > 0 0.00 -851.01 851.01
Properties VaR (10%) 204.62 131.20 73.42

9.6 Summary Reporting Example

Figure 9.12 provides an example of a summary on a page for the financial risk a company is facing. The
aim is to be concise and also action oriented. Hence the table envisages the following entries:

Name The name of the risk is indicated together with a measure for its size, such as the amount of
assets affected, a risk measure etc.

Risk Category The risk category aims to indicate which type of risk is described, such as credit risk,
liquidity risk, . . .

Risk The risk is described in a concise manner in order that a knowledgeable third party can understand,
what the risk is.

Actions This one is the most important column, since the mitigation actions performed and planned
are described. This helps to see the development with respect to the corresponding risk
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Remarks Here additional information needed to better understand the issue is documented.

The principle for the writing of such reportings must be relevant, concise and action oriented.

Figure 9.12. Financial Risk Reporting

c©Michael Koller Skript AK LV 2012 Vers. 0.70



154 9. Financial Risks and their Modelling

c©Michael Koller Skript AK LV 2012 Vers. 0.70



190 12. Technical analysis

c©Michael Koller Skript AK LV 2012 Vers. 0.70



A. Notes on stochastic integration

This appendix summarises definitions and results in the area of stochastic integration and martingales.
For obvious reasons we will not present proofs for all results. In fact we will only give a survey of various
results and then refer to the corresponding literature. Foremost we refer to the monographs [Pro90] and
[IW81].

A.1 Stochastic processes and martingales

Definition A.1.1. A probability space (Ω,A, P ) is called filtered, if there exists a family of σ-algebras
F = (Ft)t≥0 such that

1. F0 ⊃ {A ∈ A|P (A) = 0},
2. Fs ⊂ Ft for s ≤ t.

The filtration is called right continuous, if Ft =
⋂
t′>t Ft′ ,∀t ≥ 0.

Definition A.1.2. A random variable T : Ω → [0,∞] is a stopping time, if {T ≤ t} ∈ Ft for all t ∈ R+.

Theorem A.1.3. T is a stopping time if and only if {T < t} ∈ Ft for all t ∈ R+. ([Pro90] Thm. 1.1.1.)

Definition A.1.4. Let X,Y be stochastic processes. X is called modification of Y , if

Xt = Yt P–almost surely for all t.

X and Y are indistinguishable, if

Xt = Yt,∀t P–almost surely.

Definition A.1.5. 1. A stochastic process is called càdlàg (continue à droite, limites à gauche), if its
trajectories are right continuous with left limits.

2. A stochastic process is called càglàd (continue à gauche, limites à droite), if its trajectories are left
continuous with right limits.

3. A stochastic process is adapted, if Xt ∈ Ft (Xt is Ft-measurable).

Theorem A.1.6. 1. Let Λ be an open set and X be an adapted càdlàg process. Then T := inf{t ∈ R+ :
Xt ∈ Λ} is a stopping time.
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2. Let S, T be stopping times and α > 1. Then the following random variables are also stopping times:
min(S, T ), max(S, T ), S + T , α · T .

Proof. [Pro90] Thm. 1.1.3 and Thm. 1.1.5.

Definition A.1.7. Let (Ω,A, (Ft)t≥0, P ) be a filtered probability space. A stochastic process Xis called
martingale, if

– Xt ∈ L1(Ω,A, P ), i.e. E[|Xt|] <∞,

– E[Xt|Fs] = Xs holds for s < t.

Remark A.1.8. If one replaces in the previous equation “=” by “≤” (“≥”), the process X is called
supermartingale (submartingale).

Theorem A.1.9. Let X be a supermartingale. Then the following conditions are equivalent:

1. The mapping T → R, t 7→ E[Xt] is right continuous.

2. There exists a unique modification Y of X which is càdlàg.

Proof. [Pro90] Thm. 1.2.9.

Theorem A.1.10. Let X be a martingale. Then there exists a unique càdlàg modification Y of X.

Theorem A.1.11 (Doob’s stopping theorem). Let X be a right continuous martingale with closure
X∞, i.e. Xt = E[X∞|Ft]. Moreover, let S and T be stopping times such that S ≤ T P–almost surely.
Then the following statements hold:

1. XS , XT ∈ L1(Ω,A, P ),

2. XS = E[XT |FS ].

Proof. [Pro90] Thm. 1.2.16.

Definition A.1.12. Let X be a stochastic process and T be a stopping time. The stopped stochastic
process (XT

t )t≥0 is defined by XT
t = Xmin(t,T ) for all t ≥ 0.

Theorem A.1.13 (Jensen’s inequality). Let φ : R → R be a convex function and X ∈ L1(Ω,A, P )
with φ(X) ∈ L1(Ω,A, P ). Furthermore let G be a σ-algebra. Then the following inequality holds:

φ ◦ E[X|G] ≤ E[φ(X)|G].

Proof. [Pro90] Thm. 1.2.19.

A.2 Stochastic integrals

In this section we present a short introduction to the theory of stochastic integration. We follow the
approach of [Pro90].
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Essentially one can understand a stochastic integral with respect to a semimartingale as a pathwise
Stieltjes integral, and the latter should be known from lectures in analysis. The main idea for this type
of integrals is to consider the limit of sums of the form

∑
f(Tk) (Tk+1 − Tk)

for partitions with decreasing mesh size. In the following we assume that a filtered probability space
(Ω,A, (Ft)t≥0, P ), which satisfies the common regularity conditions, is given.

Definition A.2.1. 1. A stochatic process H is called simple predictable, if it can be represented as

Ht = H0 · χ{0}(t) +
n∑
i=1

Hi · χ]Ti,Ti+1](t),

where
0 = T1 ≤ . . . ≤ Tn+1 <∞

is a finite family of stopping times and the Hi ∈ Ft, (Hi)i=0,...,n are finite P -almost everywhere.

The set of simple predictable processes will be denoted by S. Furthermore, Su denotes the set S equipped
with the topology of uniformly convergence in (t, ω) on R× L∞(Ω,A, P ).

2. The vector space of finite, real valued random variables equipped with the convergence in probability
is denoted by L0.

Next, we want to define the expression
∫
H dX for certain processes (Xt)t∈R and (Ht)t∈R. In order to be

able to call such an operator, denoted by IX , integral, it should at least be linear and a theorem like the
Lebesgue convergence theorem should hold.

For the convergence theorem we assume the following continuity: If Hn converges uniformly to H, then
IX(Hn) should converge in probability to IX(H).

Given a process X. We define IX : S→ L0 by

IX(H) = H0X0 +
n∑
i=1

Hi

(
XTi −XTi+1

)
,

where

Ht = H0 · χ{0}(t) +
n∑
i=1

Hi · χ]Ti,Ti+1](t).

This definition of IX(H) is independent of the representation of H.

Definition A.2.2 (Total semimartingale). A stochastic process (Xt)t≥0 is called total semimartin-
gale, if

1. X is càdlàg and

2. IX is a continuous mapping from Su to L0.
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Definition A.2.3 (Semimartingale). A stochastic process (Xt)t≥0 is a semimartingale, if Xt (compare
with Definition A.1.12) is a total semimartingale for all t ∈ [0,∞[.

Remark A.2.4. Thus semimartingles are defined as well behaving integrators.

The following theorem summarizes the most important properties of the operator IX :

Theorem A.2.5. 1. The set of all semimartingales is a vector space.

2. Let Q be a measure which is absolutely continuous with respect to P . Then every P -semimartingale
is also a Q-semimartingale.

3. Let (Pn)n∈N be a sequence of probability measures such that (Xt)t≥0 is a Pn-semimartingale for each
n. Then (Xt)t≥0 is an R-semimartingale, for R =

∑
n∈N λn Pn, where

∑
n∈N λn = 1.

4. (Stricker’s Theorem) Let X be a semimartingale with respect to the filtration (Ft)t≥0, and (Gt)t≥0 be
a sub-filtration of (Ft)t≥0 such that X is adapted to (Gt)t≥0. Then X is a G-semimartingale.

Proof. The statements follow from the definition of a semimartingale. The proofs, which are recommended
as an exercise to the reader, can be found in [Pro90] Chapter II.2.

Now we want to characterise the class of semimartingales.

Theorem A.2.6. Every adapted process with càdlàg paths and finite variation on compact sets is a
semimartingale.

Proof. This theorem is based on the fact that

|IX(H)| ≤ ||H||u
∫ ∞

0

|dXs|,

where
∫∞

0
|dXs| denotes the total variation.

Theorem A.2.7. Every square integrable martingale with càdlàg paths is a semimartingale.

Proof. Let X be a square integrable martingale with X0 = 0, H ∈ S. The continuity of the operators IX
is a consequence of the following inequality:

E
[
(IX(H))2

]
= E

( n∑
i=0

Hi

(
XTi −XTi+1

))2


= E

[
n∑
i=0

H2
i

(
XTi −XTi+1

)2]

≤ ||H||2uE
[
n∑
i=0

(
XTi −XTi+1

)2]

= ||H||2uE
[
n∑
i=0

(
XTi

2 −XTi+1
2
)]

= ||H||2uE
[
XTn+1

2
]

≤ ||H||2uE
[
XT∞

2
]
.
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Example A.2.8. Brownian motion is a semimartingale.

Now, after defining semimartingales, we want to enlarge the class of integrands. A class which is very
well suited for this purpose is the set of càglàd processes. We will use this class, since for it the proofs
remain relatively simple.

Definition A.2.9. The set of adapted càdlàg (càglàd) processes is denoted by D (L, respectively). Fur-
ther, bL denotes the set of processes X ∈ L with bounded paths.

Up to now we are familiar with the topology of the uniform convergence (on Su) and the topology of the
convergence in probability on L0. We define a further notion of convergence.

Definition A.2.10. Let t ≥ 0 and H be a stochastic process. Then we set

H∗t = sup
0≤s≤t

|Hs|.

A sequence (Hn)n∈N converges uniformly on compact sets in probability (short: convergence in ucp-
topology) to H, if

(Hn −H)∗t → 0

in probability for n→∞ and all t ≥ 0.

Ducp, Lucp and Sucp denote the corresponding sets equipped with the ucp-topology.

Remark A.2.11. 1. The ucp-topology is metrizable. An equivalent metric is for example:

d(X,Y ) =
∞∑
i=1

1

2n
E [min(1, (X − Y )∗n] .

2. Ducp is a complete metric space.

The following theorem is essential for the extension of the integral IX .

Theorem A.2.12. The vectorspace S is dense in L with respect to the ucp-topology.

Proof. [Pro90] Thm. 2.4.10.

Note that, IX can be extended if we can show that IX is continuous. To show the continuity we start
with a definition.

Definition A.2.13. Let H ∈ S and X be a semimartingale. Then we define JX : S→ D by

JX(H) = H0X0 +
n∑
i=0

Hi

(
XTi −XTi+1

)
,

where

Ht = H0 · χ{0}(t) +
n∑
i=1

Hi · χ]Ti,Ti+1](t)

for Hi ∈ FTi
and stopping times 0 = T1 ≤ . . . ≤ Tn+1 <∞.
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Definition A.2.14 (Stochastic integral). Let H ∈ S and X be a càdlàg process. Then JX(H) is called
the stochastic integral of H with respect to X and we use the notations:

H ·X :=

∫
Hs dXs := JX(H).

Now we have defined the stochastic integral on S, and we want to extend it onto L. For the extension we
need the following theorem.

Theorem A.2.15. Let X be a semimartingale. Then the mapping JX : Sucp → Ducp is continuous. Also
the extension of JX onto Sucp will be called stochastic integral, and the notations of Definition A.2.14
will be used also for the extension.

Proof. [Pro90] Thm. 2.4.11.

Remark A.2.16. To extend JX onto D we use the fact that Ducp is a complete metric space.

The process JX(H) =
∫
Hs dXs evaluated at the time t ≥ 0 will be denoted by

H ·X t :=

∫ t

0

Hs dXs :=

∫
[0,t]

Hs dXs.

A.3 Properties of the stochastic integral

After defining the stochastic integral we will now summarise its properties. We will concentrate on the
statements without giving proofs.

Theorem A.3.1. 1. Let T be a stopping time. Then (H ·X)T = H · χ[0,T ] ·X = H ·XT .

2. Let G,H ∈ L and X be a semimartingale. Then also Y := H ·X is a semartingale. Furthermore, we
have

G · Y = G · (H ·X) = (G ·H) ·X.

Proof. [Pro90] Thm. 2.5.12 and 2.5.19.

Definition A.3.2. Let X be a càdlàg process. Then we define

X−(t) = lim
s↑t

X(s),

∆X(t) = X(t)−X−(t).

Definition A.3.3. A random partition σ of R is a finite sequence of stopping times such that

0 = T0 ≤ T1 ≤ . . . ≤ Tn <∞.

A sequence (σn)n∈N of random partitions of R converges to the identity, if the following conditions hold:

1. lim
n→∞

(supk T
n
k ) =∞ P -almost surely,

2. ||σn|| := supk |Tnk+1 − Tnk | converges P -almost surely to 0.
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Let Y be a process and σ be a random partition. Then we define

Y σ := Y0 · χ{0} +
∑
k

YTk
· χ]Tk,Tk+1].

Remark A.3.4. It is easy to show that∫
Y σs dXs = Y0X0 +

∑
k

YTk

(
XTk+1 −XTk

)
for all semimartingales X and all Y in S, D and L.

Using random partitions one calculate the stochastic integral by the following theorem.

Theorem A.3.5. Let X be a semimartingale, Y ∈ D and (σn)n∈N be a sequence of random partitions
which converges to the identity. Then∫

0+

Y σn
s dXs =

∑
k

YTn
k

(
XTn

k+1 −XTn
k

)
converges in ucp-topology towards the stochastic integral

∫
(Y−) dX.

Proof. [Pro90] Thm. 2.5.21.

Definition A.3.6. Let X and Y be semimartingales. Then we define

[X,X] = ([X,X]t)t≥0 the quadratic variation process by

[X,X] := X2 − 2

∫
X−dX,

and accordingly

[X,Y ] := XY −
∫
X− dY −

∫
Y− dX

is the covariation process.

Theorem A.3.7. Let X be a semimartingale. Then the following statements hold:

1. [X,X] is càdlàg, monotone increasing and adapted.

2. [X,X]0 = X2
0 and ∆[X,X] = (∆X)2.

3. If a sequence (σn)n∈N of random partitions converges to 1, then

X2
0 +

∑
i

(XTn
i+1 −XTn

i )2 −→ [X,X] in ucp-topology for n→∞.

4. Let T be a stopping time. Then [XT , X] = [X,XT ] = [XT , XT ] = [X,X]T .

Proof. [Pro90] Thm. 2.6.22.
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Remark A.3.8. – The mapping (X,Y ) 7→ [X,Y ] is bilinear and symmetric.

– The polarization identity holds:

[X,Y ] =
1

2
([X + Y,X + Y ]− [X,X]− [Y, Y ]) .

Theorem A.3.9. The bracket process [X,Y ] of two semimartingales X and Y has paths of bounded
variation on compact sets and it is a semimartingale.

Proof. [Pro90] Cor. 2.6.1.

Theorem A.3.10 (Partial integration).

d(XY ) = X− dY + Y− dX + d[X,Y ].

Proof. [Pro90] Cor. 2.6.2.

Theorem A.3.11. Let M be a local martigale. Then the first and second of the following statements are
equivalent and the third is a consequence of the first two.

1. M is martingale with E[M2
t ] ≤ ∞ ∀t ≥ 0,

2. E [[M,M ]t] <∞ ∀t ≥ 0,

3. E[M2
t ] = E [[M,M ]t]∀t ≥ 0.

Proof. [Pro90] Cor. 2.6.4.

Theorem A.3.12. Let X,Y be semimartingales and H,K ∈ L. Then the following statements hold:

1. [H ·X,K · Y ]t =
∫ t

0
HsKsd[X,Y ]s ∀t ≥ 0,

2. [H ·X,H ·X]t =
∫ t

0
H2
sd[X,X]s ∀t ≥ 0.

Proof. [Pro90] Thm. 2.6.29.

Theorem A.3.13 (Itô-formula). Let X be a semimartingale and f ∈ C2(R). Then

f(Xt)− f(X0) =

∫ t

0+

f ′(X−s )dXs +
1

2

∫ t

0+

f ′′(X−s )d[X,X]conts

+
∑

0<s≤t

{
f(Xs)− f(X−s )− f ′(X−s )∆Xs

}
.

Proof. [Pro90] Thm. 2.7.32.

Remark A.3.14. A function f ∈ C2(R) has the deterministic integral representation

f(t)− f(0) =

∫ t

0

f ′(s)ds.

For a stochastic integral two further terms appear. The term
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1

2

∫ t

0+

f ′′(X−s )d[X,X]conts

is due to the quadratic variation of the process and the term∑
0<s≤t

{
f(Xs)− f(X−s )− f ′(X−s )∆Xs

}
is due to the jumps of the process.

Theorem A.3.15 (Transformation theorem). Let V be a stochastic process with right continuous
paths of bounded variation. Furthermore, let f ∈ C1(R). Then (f(Vt))t≥0 is a process of bounded variation
and

f(Vt)− f(V0) =

∫ t

0+

f ′(Vs−) dVs +
∑

0<s≤t

(
f(Vs)− f(Vs−)− f ′(Vs−)∆Vs

)
.

Theorem A.3.16 (ItÃ´-formula). Let X be a continuous semimartingale and f ∈ C2(R). Then also
f(X) is a semimartingale and it satisfies

f(Xt)− f(X0) =

∫ t

0+

f ′(Xs)dXs +
1

2

∫ t

0+

f ′′(Xs)d[X,X]s.
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[DAV09] DAV Unterarbeitsgruppen “Rechnungsgrundlagen der Pflegeversicherung” und “Todesfallrisiko”. Her-
leitung der Rechnungsgrundlagen DAV 2008 P für die Pflegerenten(zusatz)versicherung, und Raucher- und Nich-
trauchersterbetafeln für Lebensversicherungen mit Todesfallcharakter, und Herleitung der Sterbetafel DAV 2008
T für Lebensversicherungen mit Todesfallcharakter. Blätter der DGVFM, 30/1:31-140, 141-187, 189-224, 2009.

[Doo53] J. L. Doob. Stochastic Processes. Wiley, 1953.

[Dot90] M. Dothan. Prices in Financial Markets. Oxford University Press, 1990.

[DS57] N. Dunford and J. T. Schwartz. Linear Operators Part 1: General Theory. Wiley - Interscience, 1957.

[Duf88] D. Duffie. Security markets: Stochastic Models. Academic Press, 1988.

[Duf92] D. Duffie. Dynamic Asset Pricing Theory. Prinston University Press, 1992.

[DVJ88] D. J. Daley and D. Vere-Jones. An Introduction to the Theory of Point Processes. Springer, 1988.

[Fel50] W. Feller. An Introduction to probability theory and its applications. Wiley, 1950.



202 References

[Fis78] M. Fisz. Wahrscheinlichkeitsrechnung und mathematische Statistik. Deutscher Verlag der Wissenschaften,
1978.

[Ger95] H. U. Gerber. Life Insurance Mathematics. Springer, 2 edition, 1995.

[HK79] J. M. Harrison and D. Kreps. Martingales and multiperiod security markets. Journal of Economic Theory,
20:381–401, 1979.

[HN96] O. Hesselager and R. Norberg. On probability distributions of present values in life insurance. J. Insurance
Math. Econom., 18/1:135–142, 1996.

[Hoe69] J. M. Hoem. Markov chain models in life insurance. Blätter der Deutschen Gesellschaft für Versicherungs-
mathematik, 9:91–107, 1969.

[HP81] J. M. Harrison and S. R. Pliska. Martingales, stochastic integrals and continuous trading. Stochastic
Processes and their Applications, 11:215–260, 1981.

[Hua91] C. Huang. Lecture notes on advanced financial econometrics. Technical report, Sloan School of Manage-
ment, MIT, Massachusetts, 1991.

[Hul97] J. C. Hull. Options, Futures and other Derivatives. Prentice Hall, 1997.

[IW81] N. Ikeda and S. Watanabe. Stochastic differential equations and diffusion processes. North-Holland, 1981.

[KP92] P. Kloeden and E. Platen. Numerical Solution of Stochastic Differential Equations, volume 23 of Appli-
cations of Mathematics. Springer, 1992.

[KS88] I. Karatzas and S.E. Shreve. Brownian Motion and Stochastic Calculus. Springer, 1988.

[Mol92] C. M. Moller. Numerical evaluation of markov transition probabilities based on the discretized product
integral. Scand. Actuarial J., pages 76–87, 1992.

[Mol95] C. M. Moller. A counting process approach to stochastic interest. Insurance Mathematice and Economics,
17:181–192, 1995.

[MS07] T. Moller and M.Steffenson. Market-Valuation Methods in Life and Pension Insurance Cambridge Uni-
versity Press, 2007

[NM96] R. Norberg and C. M. Moller. Thiele’s differential equation by stochastic interest of diffusion type. Scand.
Actuarial J., 1996/1:37–49, 1996.

[Nor90] R. Norberg. Payment measures, interest and discounting. Scand. Actuarial J., pages 14–33, 1990.

[Nor91] R. Norberg. Reserves in life and pension insurance. Scand. Actuarial J., pages 3–24, 1991.

[Nor92] R. Norberg. Hattendorff’s theorem and thiele’s differential equation generalized. Scand. Actuarial J.,
pages 2–14, 1992.

[Nor94] R. Norberg. Differential equations for higher order moments of present values in life insurance. Insurance:
Mathematics and Economics, pages 171–180, 1994.

[Nor95a] R. Norberg. Stochastic calculus in actuarial science. Working paper, Laboratory of Actuarial Mathe-
matics University of Copenhagen, 1995.

[Nor95b] R. Norberg. A time-continuous markov chain interest model with applications to insurance. J. Appl.
Stoch. Models and Data Anal., 11:245–256, 1995.

[Nor96a] R. Norberg. Addendum to hattendorff’s theorem and thiele’s differential equation generalized. Scand.
Actuarial J., pages 2–14, 1996.

c©Michael Koller Skript AK LV 2012 Vers. 0.70



References 203

[Nor96b] R. Norberg. Bonus in life insurance: Principles and prognoses in a stochastic environment. Working
paper, Laboratory of Actuarial Mathematics University of Copenhagen, 1996.

[Nor98] R. Norberg. Vasicek beyond the normal. Working paper, Laboratory of Actuarial Mathematics University
of Copenhagen, 1998.

[Par94a] G. Parker. Limiting distributions of the present value of a portfolio. ASTIN Bulletin, 24/1:47–60, 1994.

[Par94b] G. Parker. Stochastic analysis of a portfolio of endowment insurance policies. Scand. Actuarial J.,
2:119–130, 1994.

[Par94c] G. Parker. Two stochastic approaches for discounting actuarial functions. ASTIN Bulletin, 24/2:167–181,
1994.

[Per94] S. A. Persson. Pricing Life Insurance Contracts under Financial Uncertainty. PhD thesis, Norwegian
School of Economics and Business Administration, Bergen, 1994.

[Pli97] S. R. Pliska. Introduction to Mathematical Finance. Discrete Time Models. Blackwell Publishers, 1997.

[Pro90] P. Protter. Stochastic Integration and Differential Equations, volume 21 of Applications of Mathematics.
Springer, 1990.

[PT93] H. Peter and J. R. Trippel. Auswertungen und Vergleich der Sterblichkeit bei den Einzelkapitalver-
sicherungen der Schweizerischen Lebensversicherungs- und Rentenanstalt in den Jahren 1981 - 1990. Mitteilungen
der Schweiz. Vereinigung der Versicherungsmathematiker, pages 23–44, 1993.

[RH90] H. Ramlau-Hansen. Thiele’s differential equation as a tool in product developpement in life insurance.
Scand. Actuarial J., pages 97–104, 1990.

[Rog97] L. C. G. Rogers. The potential approach to the term structure of interest rates and foreign exchange
rates. Mathematical Finance, pages 157–176, 1997.

[Vas77] O. Vasicek. An equilibrium characterisation of the term structure. Journal of Financial Economics,
5:177–188, 1977.

[WH86] H. Wolthuis and I. Van Hoek. Stochastic models for life contingencies. Insurance Mathematics and
Economics, 5:217–254, 1986.

[Wil86] A. D. Wilkie. Some applications of stochastic interest models. Journal of the Institute of Actuaries
Student Soc., 29:25–52, 1986.

[Wil95] A. D. Wilkie. More on a stocastic asset model for actuarial use. British Actuarial Journal, 1, 1995.

[Wol85] H. Wolthuis. Hattendorf’s theorem for a continuous-time markov model. Scand. Actuarial J., 70, 1985.

[Wol88] H. Wolthuis. Savings and Risk Processes in Life Contingencies. PhD thesis, University of Amsterdam,
1988.

c©Michael Koller Skript AK LV 2012 Vers. 0.70



Index

admissible, 93
ALM, 81, 123
analytical approach, 133
arbitrage, 93
asset liability management, 81, 123

Black-Scholes formula, 138
Black-Scholes model, 99
Brownian motion, 9

cash flow
– deterministic, 35
– deterministic value, 36
– matching, 82
– policy, 38
– positive, 73
– present value, 36
– stochastic, 37, 73
– stochastic, integral of, 37
– strictly positive, 74
Cauchy-Schwartz inequality, 73
Chapman-Kolmogorov equation, 11
consistent, 94
contingent claim, 93
cost of capital, 76, 79
covariance matrix, 132
covariation process, 197

decomposition of measures, 36
deflator, 74
delta-hedge, 139
difference equation
– moments, 62
– Thiele’s, 44
differential equation
– Kolmogorov’s, 14
– moments, 63
– Thiele’s, 55, 104, 167
discount rate, 21
duration, 82

embedded value, 181
equivalence principle, 46
example
– disability insurance, 17, 30, 35, 48
– – pvfp, 186
– endowment policy, 46, 58

– – pvfp, 184
– life insurance, 16, 29, 57, 58
– – pvfp, 184
– pension, 51, 59
expectation, 8
– conditional, 9
expected cash flow
– operator, 122
expected shortfall, 78

financial risks, 129
function of bounded variation, 8, 35
functional
– positive, 74

GAWA, 115
generalised death benefit, 5
generalised pension payments, 5
GLB, 110
GMAB, 110
GMDB, 110
GMIB, 110
GMWB, 110, 112
Greeks, 138
greeks, 107
guaranteed minimum accumulation benefit, 110
guaranteed minimum income benefit, 110
guaranteed minimum withdrawal benefit, 110
guaranteed withdrawal balance, 115
guaranteed-for-life income benefit, 110
GWB, 115

Hattendorff, 172, 176
Heston model, 124
Hilbert space, 73
historical simulation, 134

indicator function, 7
integration, partial, 198
interest intensity, 22
interest rate, 21
– yearly, 21
interest rate model
– Cox-Ingersoll-Ross, 27
– Markovian interest intensities, 27
– Vasicek, 27, 155
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