From TMX data to motor insurance relevant scoring

How to leverage data science

Actuarial data science (Après-Midi workshop)
October 6th, 2021

Riccardo Tisseur, Cristiano Misani
Swiss Re’s modular end-to-end telematics solution consists of several pillars

Comprehensive solution with internal support from a reinsurer to insurers

<table>
<thead>
<tr>
<th>Telematics solution</th>
<th>Swiss Re support</th>
<th>Reinsurance</th>
</tr>
</thead>
</table>
| **Coloride app** (white-label or SDK) for behavioural and contextual data collection
Coloride hardware tag for trip, crash, fraud, and acceleration detection
Device-agnostic **IoT telematics platform** (MS Azure) to store and enhance data
Automotive portal with portfolio analytic functionalities for insurers | **Scoring & analytics** support to analyse driver and contextual data
Actuarial support to translate the data in insurance metrics
Behavioural economic support to develop a solution that suits the customers needs | Swiss Re offers to share the risk of implementing a telematics solution in return for
reinsurance
Alternatively, the solution is offered on a **fee**-based model |
Swiss Re Scoring is built by an insurer for insurance partners
Dynamic, machine-learning based platform to turn data into effective risk segmentation

Speeding
e.g., accelerometer, speed limit

Distraction
Phone distraction duration and level

Maneuvers
e.g., harsh acceleration, braking, roundabout, intersection, lane change

Context
e.g., time of day, area, km driven, proximity to school, pedestrian crossing

My Scores
post-drive coaching: comparisons to myself/others

ADAS risk score
scoing of impact of advanced driver assistance system (ADAS) features

- Swiss Re scores can be used for **behavioural** (usage-based insurance (UBI): pay-how-you-drive (PHYD) and/or pay-as-you-drive (PAYD)) and/or **vehicle risk scoring models**
- Swiss Re’s team of **scoring, analytics and actuary experts** support you in turning telematics and ADAS **data into risk-relevant insights for insurance pricing**
Accurate trip recording

Automatic start/stop and transport-mode recognition

- It is impossible to control the operating system
- Trip-recording results vary depending on the smartphone (e.g., sensor quality, memory, and utilized capacity)
- A minimum amount of sensors are required
- The GPS quality is crucial for trip recording
- We have invested a lot in low battery usage, trade off between battery consumption and trip recording precision

- Different triggers
- Speed
- Maneuver recognition
- Distraction analysis
- Pattern recognition
- Different triggers
- Upload trip data
- Possibility to upload only via WLAN
TMR performance

Model trained giving priority to the recall of the car transport mode, and the precision of the secondary ones. Performance on European pilots, may be retrained with trip mode corrections supplied by the client.

<table>
<thead>
<tr>
<th>Transport Mode</th>
<th>Support</th>
<th>Recall</th>
<th>Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>boat</td>
<td>12</td>
<td>100,00%</td>
<td>100,00%</td>
</tr>
<tr>
<td>car</td>
<td>12710</td>
<td>98,68%</td>
<td>94,98%</td>
</tr>
<tr>
<td>cycling</td>
<td>407</td>
<td>71,74%</td>
<td>91,54%</td>
</tr>
<tr>
<td>motorcycle</td>
<td>851</td>
<td>53,94%</td>
<td>88,78%</td>
</tr>
<tr>
<td>other</td>
<td>13</td>
<td>30,77%</td>
<td>2,60%</td>
</tr>
<tr>
<td>plane</td>
<td>115</td>
<td>77,39%</td>
<td>88,12%</td>
</tr>
<tr>
<td>public</td>
<td>1000</td>
<td>77,90%</td>
<td>92,63%</td>
</tr>
<tr>
<td>skiing</td>
<td>349</td>
<td>93,70%</td>
<td>92,90%</td>
</tr>
<tr>
<td>train</td>
<td>316</td>
<td>82,59%</td>
<td>95,96%</td>
</tr>
</tbody>
</table>
Event Detection: Data collection and processing

From raw data to event

Raw data collection

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Latitude</th>
<th>Longitude</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.09.2016</td>
<td>13:25:04</td>
<td>44.904976</td>
<td>8.874011</td>
<td>0.060</td>
<td>-0.100</td>
<td>0.010</td>
</tr>
<tr>
<td>18.09.2016</td>
<td>13:25:05</td>
<td>44.904977</td>
<td>8.874008</td>
<td>0.070</td>
<td>-0.030</td>
<td>0.000</td>
</tr>
<tr>
<td>18.09.2016</td>
<td>13:25:05</td>
<td>44.904978</td>
<td>8.874006</td>
<td>0.072</td>
<td>-0.033</td>
<td>0.007</td>
</tr>
<tr>
<td>18.09.2016</td>
<td>13:25:06</td>
<td>44.904979</td>
<td>8.874004</td>
<td>0.039</td>
<td>0.052</td>
<td>0.004</td>
</tr>
<tr>
<td>18.09.2016</td>
<td>13:25:06</td>
<td>44.904982</td>
<td>8.874003</td>
<td>0.057</td>
<td>-0.067</td>
<td>0.011</td>
</tr>
<tr>
<td>18.09.2016</td>
<td>13:25:07</td>
<td>44.904983</td>
<td>8.874001</td>
<td>0.060</td>
<td>-0.081</td>
<td>0.009</td>
</tr>
</tbody>
</table>

Mobile Phone Axis orientation

Accelerometer axes are orientated on the vehicle frame in order to have longitudinal, lateral and vertical acceleration of the vehicle.

Cleaning of data & interpolation

GPS coordinate are cleaned and interpolated.

Feature extraction & Maneuver/Event classification

- **Maneuver detected – Sensor based**
 - Acceleration
 - Braking
 - Cornering
 - Harsh Steering

- **Maneuver detected – Context + Sensor based**
 - U-turn
 - Harsh Intersection
 - Roundabout

- **Phone distraction**
 - Level 1
 - Level 2
Our scoring starts with an intimate understanding of the in-situ risk

• During our ‘track days’, we perform maneuvers with a dedicated fleet including regular passenger cars as well as BMW M2 & M3 und Tesla Model X
• We use machine learning methods to train decision trees with the recorded maneuvers
• To maximize maneuver-recognition accuracy, we use an articulated parameter set to enable identification and repeatability
• Unlike our competitors, we rely on ‘photographic blueprints’ of maneuvers rather than kinematic thresholds
From driver scoring to scoring for insurance

Driver scoring

- **Purpose** is to give drivers **timely feedback**
 - Good driving behaviour is positively reinforced
 - Earned vouchers and rewards constitute an additional service (rather than premium differentiation)
- **Focus** is on **motivation** rather than precision
 - No rewards for clearly bad driving and risk-affecting behaviour
- Rough convergence to a coherent risk classification

Insurance scoring

- **Purpose** is to work out a **telematics personalization**
 - Identify new, highly predictive factors
 - Improve the predictive power of existing pricing models and redistribute it to telematics parameters
 - Achieve a competitive advantage in the market
- **Focus** is on **precision**
- Applications beyond premium differentiation possible

Increasing scoring complexity

- **Basic telematics features** (e.g., distance driven)
- **Contextual factors** (e.g., road type, time of the day)
- **Maneuvers** (e.g., frequency of harsh braking)
- **Extended driver analytics** (e.g., maneuver’s level, distraction events)
- **Comprehensive behavior in context** (e.g., braking in proximity of different traffic signs)

Data volume

- **Driver scoring**
 - Basic telematics features (e.g., distance driven)
 - Contextual factors (e.g., road type, time of the day)
 - Maneuvers (e.g., frequency of harsh braking)

- **Insurance scoring**
 - Basic telematics features (e.g., distance driven)
 - Contextual factors (e.g., road type, time of the day)
 - Maneuvers (e.g., frequency of harsh braking)
 - Extended driver analytics (e.g., maneuver’s level, distraction events)
 - Comprehensive behavior in context (e.g., braking in proximity of different traffic signs)
Swiss Re Driver Score

Four elements comprise the points earned from each trip driven. This is the trip score:

- **Attentive driving**: Takes into account how many times the driver is distracted (pick-up and unlock) by his/her phone.
- **Conscious driving**: Considers the portion of the trip where the driver exceeds the speed limit and by how much the speed limit is exceeded.
- **Contextual**: There are two contextual components:
 1. Time of Day – night driving and rush hour driving are considered to be more risky.
 2. Inner urban area: % of time spent on urban roads where the speed limit <= 50km/h.
- **Smooth driving**: Applies how many times harsh manoeuvres are performed.

Overall Score

\[
Overall Score_n = \sum_{i=1}^{n} Trip \ Score_i \ast Trip \ Weight_i
\]

Trip Weight

\[
Trip \ Weight_i = \frac{Trip \ Length_i}{\sum_{k=1}^{n} Trip \ Length_k}
\]

Final Score

\[
Final \ Score = Overall \ Score \ast Distance \ Multiplier
\]
A deep dive in cycle modelling

Producing a score

Telemetry trip data

SR telematics features

SR Model

SR Driver Score

Historical trip data

Policyholder/claims information

Data requirements ideally 10hz accel, 1hz gps

Population

National average

km driven

SR Risk Score

Scoring modelling and output matrix are designed to be device agnostic
Different modelling techniques display different performance along key measurement criteria. Setting clear expectations a priori helps to select the preferred one.

Model approach comparison

GLM vs. other ML-methods

<table>
<thead>
<tr>
<th>Automatic Feature selection</th>
<th>XGBoost</th>
<th>Random Forest</th>
<th>GLM</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Checkmark]</td>
<td>![Checkmark]</td>
<td>![Cross]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model Runtime</th>
<th>XGBoost</th>
<th>Random Forest</th>
<th>GLM</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Checkmark]</td>
<td>![Checkmark]</td>
<td>![Checkmark]</td>
<td>![Checkmark]</td>
</tr>
<tr>
<td>Longer</td>
<td>Medium</td>
<td>Short</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Performance (AUC)</th>
<th>XGBoost</th>
<th>Random Forest</th>
<th>GLM</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Checkmark]</td>
<td>![Checkmark]</td>
<td>![Checkmark]</td>
<td>![Checkmark]</td>
</tr>
<tr>
<td>High</td>
<td>Medium</td>
<td>Medium</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interpretable results</th>
<th>XGBoost</th>
<th>Random Forest</th>
<th>GLM</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Cross]</td>
<td>![Cross]</td>
<td>![Checkmark]</td>
<td></td>
</tr>
</tbody>
</table>

- Different modelling techniques display different performance along key measurement criteria.
- Setting clear expectations a priori helps to select the preferred one.
Model performance merging different data sources

How to predict claim frequency per year

<table>
<thead>
<tr>
<th>Features</th>
<th>Traditional + Telematics</th>
<th>Telematics</th>
<th>Traditional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lift</td>
<td>12~13</td>
<td>9~10</td>
<td>6~8</td>
</tr>
</tbody>
</table>

- Training and comparing an Xgboost on a different set of features allowed to measure distinctive predictive power
- It's clear that a mixture of telematics + traditional insurance factors brings the most effective measurement of the insurance risk (measured as lift ratio on decile)
Model performance measured on Coloride app

How to assess model accuracy augmentation

Improvement of our TMX app solution with respect to a “traditional” telematics product

- Results presented are drawn from Xgboost computed on the entire dataset using a cross-validation approach.
- Using ROC curve as accuracy metric, it’s almost evident that a model built including peculiar telematics features retrieved from Coloride (as phone distraction, speeding) represents an improvement compared with a more basic model of telematics + traditional insurance.
Pricing is only one of the options!

In our experience and in our clients’ experience, pricing and motor telematics product development is only one way to use the TMX collected information.

Other options include:

- differentiation element for policy payment terms
- differentiated coverages to better clients
- incentive scheme for agencies
- VAS (value added services) proposition
- Rewarding mechanic

...and more
Questions?
Thank you!

Contact us

Riccardo Tisseur
Lead Advanced Analytics
Riccardo_Tisseur@swissre.com
+39 02 6323 6266

Cristiano Misani
Lead Advanced Scoring
Cristiano_Misani@swissre.com
+39 02 6323 6255
©2021 Swiss Re. All rights reserved. You may use this presentation for private or internal purposes but note that any copyright or other proprietary notices must not be removed. You are not permitted to create any modifications or derivative works of this presentation, or to use it for commercial or other public purposes, without the prior written permission of Swiss Re.

The information and opinions contained in the presentation are provided as at the date of the presentation and may change. Although the information used was taken from reliable sources, Swiss Re does not accept any responsibility for its accuracy or comprehensiveness or its updating. All liability for the accuracy and completeness of the information or for any damage or loss resulting from its use is expressly excluded.
Our vision

We make the world more resilient

Our mission

#1 Provide fresh and innovative perspectives

#2 Apply knowledge, expertise and capital

#3 Anticipate, analyze and manage risks

#4 Create smart data- and technology-driven solutions
We’re a leading, diversified global reinsurer, providing expertise and services to clients throughout the world, since 1863.

- **13,189** employees
- **121** nationalities
- **81** offices in **29** countries
- **USD 40.8b** earned premium and fees (FY 2020)