Two years of the COVID-19 pandemic from a infectious disease modeller's perspective: confirmed premonitions, new insights, and unsolved puzzles

Roland Regoes

Integrative Biology, ETH Zurich

Jan 10, 2022

SIR model R₀ fatality risk previous epidemic

new insights

Overview

1. Insights from past epidemics/pandemics

- the basic conceptual framework: SIR model
- the basic reproduction number R₀
- fatality risk (CFR, IFR)
- examples: SARS 2003/4, pandemic influenza 2009
- 2. SARS-CoV-2/COVID-19 specific insights
 - R₀ of SARS-CoV-2 variants
 - IFR, IHR
 - waning immunity
 - vaccines and their efficacy
- 3. Aspects I/we still do not understand
 - abrupt seasonality
 - epidemic saturation

premonitions

R model 0 tality risk revious epidemics

new insights

premonitions

SIR model R₀ fatality risk previous enidemic

new insights

remaining puzzles

Premonitions

(Re-)emergent diseases

premonitions SIR model

R₀ fatality risk previous epidemics

new insights

The first mathematical study on infectious diseases preventions

Daniel Bernoulli (1700-1782)

Fig. 1 in Dietz & Heesterbeek, Math Biosc 2002

"section from a painting by Nicholaus Grooth 1760"

without the mortality caused by smallpox ... France would gain 25'000 persons every year.

Bernoulli D, Essai d'une nouvelle analyse de la mortalité causée par la petite vérole, Mem Math Phy

Acad Roy Sci Paris 1766.

premonitions

SIR model R₀ fatality risk previous epidemics new insights

Ronald Ross (1857 — 1932)

- discovered that bird malaria is transmitted by mosquitoes (Nobel Prize in physiology or medicine 1902)
- laid foundations of dynamical modeling of infectious diseases
 - independent discovery of mass-action infection
 - mosquito theorem
 - a priori pathometry
 - theory of happenings

premonitions

SIR model R₀ fatality risk previous epidemics new insights

Ross' theory of happenings

his theory of happenings also defines explicitly the dynamical feedback that sets infectious diseases apart from other conditions:

> Different kinds of happenings may be separated into two classes, namely (a) those in which the frequency of the happening is independent of the number of individuals already affected; and (b) those in which the frequency of the happening depends on this quantity...to class (b) belong infectious diseases, membership of societies and sects with propagandas, trade-unions, political parties, etc., due to propagation from within, that is, individual to individual.

> > Ross Proc Roy Soc 1916, p211

cited in Halloran, Longini & Struchiner Design and Analysis of Vaccine Studies (2010), p4

premonitions

SIR model R₀ fatality risk previous epidemics new insights remaining puzzle

premonitions

SIR model

R₀ fatality risk previous epidemics

new insights

remaining puzzle

The SIR model

premonition

SIR model

R₀ fatality risk previous epidemics new insights

SIR model (Kermack and McKendrick 1927)

premonition

SIR model R₀ fatality risk previous epidemics new insights remaining puzzle

Time courses of the SIR model

premonition

SIR model

R₀ fatality risk previous epidemics

new insights

remaining puzzles

Weeks

Time courses of the SIR model

Weeks

premonitions

SIR model

R₀ fatality risk previous epidemics

new insights

Not using this framework can lead to wrong conclusions

The COVID-19 has been successfully contained in China but is spreading all over the world. We calibrate the logistic growth model, the generalized logistic growth model, the generalized Richards model and the generalized growth model to the reported number of infected cases from for the whole of China, 29 provinces in China, and 19 countries and regions that are undergoing major outbreaks. We dissect the development of the epidemics in China and the impact of the drastic control measures both at the aggregate level and within each province. We quantitatively document four phases of the outbreak in China with a detailed analysis on the heterogeneous situations across provinces. The extreme containment measures implemented by China were very effective with some instructive variations across provinces. Borrowing from the experience of China, we made scenario projections on the development of the outbreak in other countries. We identified that Europe and US have passed the inflection point and entered into an after-peak trajectory, which is estimated longer than what a classical Logistic model predicts, in contrast to most provinces in China where the after-peak trajectory is much faster. We expect Europe to have 1.83 million final total confirmed cases (2452 per million population) and US to have 1.26 million final total confirmed cases (3851 per million population). We identified three groups of countries in different level of outbreak progress, and provide informative implications for the current global pandemic.

Keywords

Novel coronavirus (COVID-19), logistic growing, epidemic modeling, prediction

premonitions

SIR model

R₀ fatality risk previous epidemics rew insights

premonitions

SIR model

R₀ fatality risk previous epidemic:

new insights

remaining puzzles

The basic reproduction number R_0

Formal definition of R_0

Question: Under which (mathematical) condition can the epidemic spread?

Growth rate of infecteds is larger 0, if

$$dI/dt = \beta SI - aI - rI > 0 \implies \frac{\beta S}{a+r} > 1$$

Hence, infecteds can spread in an uninfected population if

Basic reproduction number:
$$R_0 = \frac{\beta S(0)}{a+r} > 1$$

Intuitive explanation:

1/(a+r) is average duration of infection

 $\beta S(0)$ new infections caused per day by one infected initially

At later stages, t, in the epidemic, one defines

Effective reproduction number:
$$R_e = rac{eta S(t)}{a+r}$$

R_0 and time courses

premonitions

SIR model

R₀ fatality risk previous epidemics

new insights

R₀ estimates across diseases

Virus	R_0	Reference
Measles	${\sim}15$	Anderson & May, <i>Infectious Diseases of Humans</i> '91, Table 4.1
Polio	${\sim}6$	ibid
Chicken pox	${\sim}10$	ibid
Mumps	${\sim}10$	ibid
Rubella	${\sim}10$	ibid
HIV	2–5	ibid
SARS	2–5	Lipsitch et al, Science '03
1918 flu	2–3	Mills et al, <i>Nature</i> '04
2009 pandemic flu	1.2 - 1.7	Yang et al, <i>Science</i> '09
		Fraser et al, <i>Science</i> '09
2014 Ebola	1.2-3.6	Althaus et al, PLoS Curr '14
		Stadler et al, PLoS Curr '14
		WHO Ebola Response Team, N Engl J Med '14

premonitions

SIR model

R₀ fatality risk previous epidemics

new insights

Relevance of R_0 and fraction infected people

- ► a fraction of ≈ 1 − 1/R₀ will be infected (according to this rough consideration!)
- ▶ herd immunity threshold (leading to eventual eradication) achieved if the fraction of completely immune hosts is $p_c = 1 1/R_0$

- heterogeneities in susceptibilities and contacts lead to a lower herd immunity threshold
 - Britton et al, *Science* 2020: $p_c = 43\%$

APPENDIX TABLE 2. Normalized age-specific contact rates c_{ij} as estimated from self-reported data for a typical week, after correction for reciprocity, Utrecht, the Netherlands, 1986°

Age class		Age class (years) of participant				
(years) of contacts	1-5	6-12	13-19	20-39	40-59	≥ 60
0-5	169.14	31.47	17.76	34.50	15.83	11.47
6-12	31.47	274.51	32.31	34.86	20.61	11.50
13-19	17.76	32.31	224.25	50.75	37.52	14.96
20-39	34.50	34.86	50.75	75.66	49.45	25.08
40-59	15.83	20.61	37.52	49.45	61.26	32.99
≥ 60	11.47	11.50	14.96	25.08	32.99	54.23

* To obtain a matrix with transmission rates for a specific infection in a specific population, these entries should be multiplied by the disease-specific value of the infectivity parameter q and divided by the total population size.

Wallinga et al Am J Epi 2006

 R_0

complete herd immunity is difficult to achieve if

- vaccines are not perfect
- immunity is waning

premonitions

SIR model

 R_0

fatality risk

new insights

remaining puzzles

Fatality risk

Problems calculating fatality risks

Fatality risk are often biased because

- not all cases reported (under-ascertainment)
- \implies over-estimated fatality risk
 - of time delays from infections to death ("right-censoring") when incidences are increasing => under-estimated fatality risk

case fatality risk (CFR) — based on reported cases, adjusted for delay effects infection fatality risk (IFR) — based on cumulative incidence as measured by sero-surveys

Kobayashi et al J Clin Med 2020

The IFR is required to parameterize the SIR model: IFR= $\frac{a-d}{a+r}$

fatality risk previous epidemic

SIR model R₀

previous epidemics

new insights

emaining puzzle

Past epidemics/pandemics

SARS 2002-2004

- \blacktriangleright \approx 8000 confirmed cases
- $\blacktriangleright~\approx 800~{\rm deaths}$
- ► *CFR* = 10%

SIR model R₀ fatality risk previous epidemics

new insights

remaining puzzles

Wallinga and Teunis 2006 Amer J Epi, Fig 1

- \blacktriangleright $R_0 \approx 3$
- ► *R_e* declined after intervention
- resurgence in Canada

Second wave of SARS 2003 in Canada

Phase II of the Toronto SARS Outbreak

During early and mid-May, as recommended by provincial SARS-control directives, all hospitals discontinued SARS expanded precautions (i.e., routine contact precautions with use of an N95 or equivalent respirator) for non-SARS patients without respiratory symptoms in all hospital areas other than the emergency department and the ICUs. In addition, staff no longer were required to wear masks or respirators routinely throughout the hospital or to maintain distance from one another while eating.

On May 20, five patients in a rehabilitation hospital in Toronto were reported with febrile illness. One of these five patients was determined to have been hospitalized in the orthopedic ward of North York General (NYG) Hospital during April 22 to 28, and a second was found on May 22 to have SARS-associated SCoV by nucleic acid amplification test. On investigation, a second patient was determined to have been hospitalized in the orthopedic ward of NYG hospital during April 22 to 28. After the identification of these cases, an investigation of pneumonia cases at NYG hospital identified eight cases of previously unrecognized SARS among patients.

SIR model R₀ fatality risk previous epidemics

new insights

2009 influenza pandemic

- \blacktriangleright < 1'000'000 reported cases, > 18'000 reported deaths
- $\blacktriangleright \ R_0 \approx 1.4 \Longrightarrow 1 1/R_0 \approx 1 1/1.4 = 29\%$

new insights

remaining puzzles

Van Kerkhove et al 2012, Fig 3B

- estimated cumulative incidence 24%
- $\implies \approx 2\times 10^9$ infected people
 - estimated IFR = 0.02% (they call it CFR)
- $\Rightarrow~pprox$ 400'000 deaths

SIR model R₀ fatality risk previous epidemics

Epidemic SARS-CoV-2 dynamics with interventions

Anderson et al Lancet 2020

SIR model R₀ fatality risk

new insights

remaining puzzles

SARS-CoV-2/COVID-19 specific insights

Reproduction number estimates for SARS-CoV-2

Author	Country		R (95% CI)	Weight
Shen et al., 2020	China		3.13(1.41, 6.96)	2.13
J. T. Wu et al., 2020	China	4	2.68 (2.49, 2.88)	3.59
Shao et al., 2020	China	•	3.32 (3.25, 3.40)	3.61
Wan et al., 2020	China	•	1.44 (1.41, 1.48)	3.61
Zhao Musa et al., 2020	China		2.56 (2.49, 2.63)	3.61
Zhang et al., 2020	China	•	5.50 (5.21, 5.81)	3.60
Sanche et al., 2020	China	+	5.77 (4.57, 7.29)	3.41
Song et al., 2020	China	•	3.62 (3.30, 3.98)	3.58
Kucharski et al., 2020	China		1.64 (0.73, 3.69)	2.10
Imai et al., 2020	China		2.60 (1.70, 3.97)	3.02
Zhao Lin et al., 2020	China	+	3.53 (2.10, 5.94)	2.79
Majumder & Mandl, 2020	China	-+	2.55 (2.05, 3.17)	3.43
Q. Li et al., 2020	China		2.20 (1.32, 3.67)	2.81
Tang et al., 2020	China	•	6.47 (5.75, 7.28)	3.56
Liu et al., 2020	China and overseas	•	2.90 (2.78, 3.02)	3.61
Riou & Althaus, 2020	China and overseas		2.20 (1.34, 3.62)	2.84
Read et al., 2020	China and overseas	+	3.11 (2.37, 4.09)	3.34
Mizumoto & Chowell, 202	0Diamond Princes Cruise ship, Japan	→	5.80 (1.35, 24.83) 1.09
Zhang et al., 2020	Diamond Princess Cruise ship, Japan	•	2.28 (2.06, 2.52)	3.57
Yuan et al. , 2020	France	•	6.32 (5.72, 6.99)	3.57
Lai et al., 2020	GISAID data		2.10 (1.52, 2.90)	3.25
Yuan et al., 2020	Germany	•	6.07 (5.51, 6.69)	3.58
Yuan et al., 2020	Italy	•	3.27 (3.17, 3.38)	3.61
Kuniya, 2020	Japan	•	2.60 (2.41, 2.81)	3.59
Iwata & Miyakoshi, 2020	Outside of China	+	6.50 (5.73, 7.37)	3.55
Jung et al., 2020	Outside of china	+	3.19 (2.71, 3.76)	3.51
Choi & Ki, 2020	South Korea 🔹		0.56 (0.52, 0.61)	3.59
Shim et al., 2020	South K orea	•	1.50 (1.40, 1.60)	3.60
Ki, 2020	South Korea		0.48 (0.26, 0.88)	2.58
Hyafil and Morina, 2020	Spain		2.26 (1.29, 3.96)	2.69
Yuan et al., 2020	Spain	+	5.08 (4.50, 5.73)	3.56
Overall (1-squared = 99.59	6, p = 0.000)	\$	2.87 (2.39, 3.44)	100.00
NOTE: Weights are from n	andom effects analysis			
	0403	1 24	8	

premonitions

SIR model R₀ fatality risk

new insights

remaining puzzles

 $\implies R_0 \approx 3$

Billah et al PLoS ONE 2020, Fig 2

Transmission advantages of new variants

Campbell et al Eurosurveillance 2021, Fig 1

• $R_0(Alpha) \approx 4$ • $R_0(Delta) \approx 6$

Infection Fatality Risk

- ▶ Geneva sero-survey: ascertainment rate (ratio reported cases/infection) by age
- extrapolate to all of Switzerland (adjusting for epidemic burden via deaths)

premonitions

SIR model R₀ fatality risk previous epidemics

new insights

Excess mortality in Switzerland comparable to 1918 influenza Monthly

Year

new insights

Immunity

Immunity — induced by infection or vaccination — can prevent

- infection
- severe disease
- death
- transmission

Immune responses, such as antibodies

- can serve as markers for past infection
- can be protective
- which immune responses cause protection has not been definitively determined yet
- neutralizaing antibodies are a "predictive correlate"

(Khoury et al, Nat Med 2021; Gilbert et al, Science 2021)

SIR model R₀ fatality risk previous enidemics

new insights

Antibody levels wane

premonitions

SIR model R₀ fatality risk previous epidemics

new insights

remaining puzzle

Buss et al, Science 2021, Fig 1A

- loss in sero-positivity needs to be adjusted in sero-surveys
- indicated potential loss of protection over time

Vaccine efficacies against symptomatic infections with original variant

vaccine	VE(sympt inf)	95% CI
mRNA-1273 (Moderna)	94.1%	89.3–96.8%
BNT162b2 (BioNTech)	95%	90.3–97.6%

SIR model R₀ fatality risk previous epidemic

new insights

remaining puzzles

Baden et al, N Engl J Med 2020

Pollack et al, N Engl J Med 2020

 epidemiologic studies estimate lower vaccine efficacy against symptomatic infection for Alpha and Delta

variant	VE(sympt inf)	95% CI
Alpha	89%	87-90%
Delta	79%	78-80%

UKHSA, Vaccine Surveillance Report, week 32, 2021

protection against symptomatic infection also wanes

vaccine	time after vaccination	VE(sympt inf)	95% CI
mRNA-1273 (Moderna)	180 days	59%	18–79%
BNT162b2 (BioNTech)	> 210 days	23%	-2-41%

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3949410

Vaccine efficacies against hospitalization/death in Switzerland

premonitions

SIR model R₀ fatality risk previous epidemic:

new insights

Anderegg et al, preprint 2021, Fig 2

Waning vaccine efficacies against hospitalization and death in 60-69 year olds

premonitions

SIR model R₀ fatality risk previous epidemic

new insights

remaining puzzle

Anderegg et al, preprint 2021, Fig 3

SIR model

R₀ íatality risk

new insights

remaining puzzles

Why does the transmission drop so abruptly in spring?

Task force projections

Actual daily incidences

remaining puzzles

Swiss National COVID-19 Science Task Force, Scientific Update, Apr 20, 2021

Why does the epidemic saturate before all susceptible are depleted?

https://ibz-shiny.ethz.ch/covid-19-re-international/

premonitions

SIR model R₀ fatality risk previous enidemics

new insight