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Question 1 (11 Pts)

a) Let X be a random variable with cdf

F (x) =
1

1 + e
�x�µ

�

, x 2 R,

for parameters µ 2 R and � > 0. Calculate VaR↵(X) and ES↵(X) for ↵ 2 (0, 1). (3 Pts)

b) Denote by L
2(⌦,F ,P) the space of all square-integrable random variables on a probability

space (⌦,F ,P). Which axioms of coherence does the mapping ⇢ : L2(⌦,F ,P) ! R, given by

⇢(X) := sd(X) =

r
E
h
(X � E [X])2

i
,

satisfy? Please, prove your statements. (4 Pts)

c) Construct a two-dimensional random vector (X1, X2) such that

(i) Xi ⇠ Exp(�i) for �i > 0, i = 1, 2, and

(ii) VaR↵(X1 +X2) = VaR↵(X1) + VaR↵(X2) for all ↵ 2 (0, 1). (4 Pts)

Solution 1

a) In order to compute VaR↵ (X), we simply invert the cdf and obtain

VaR↵ (X) = qX(↵) = µ+ � log

✓
↵

1� ↵

◆
.

As for AVaR↵ (X), we note that since X is continuously distributed, we have

ES↵ (X) = AVaR↵ (X) =
1

1� ↵

Z 1

↵
VaRu (X) du = µ+ �

1

1� ↵

Z 1

↵
log

✓
u

1� u

◆
du.

Changing the variable to z = u
1�u and subsequently applying the integration by parts for-

mula, we obtain

ES↵ (X) = µ+ �
1

1� ↵

Z 1

↵
log(z)

1

(1 + z)2
dz

= µ+ �
1

1� ↵

 
� log(z)

1

1 + z

�1

z= ↵
1�↵

+

Z 1

↵
1�↵

1

z

1

1 + z
dz

!

= µ+ �
1

1� ↵

 
(1� ↵) log

✓
↵

1� ↵

◆
+


log

✓
z

1 + z

◆�1

z= ↵
1�↵

!

= µ+ �
1

1� ↵

✓
(1� ↵) log

✓
↵

1� ↵

◆
� log(↵)

◆

= µ+ � log

✓
↵

1� ↵

◆
� �

log(↵)

1� ↵
.

b) Let and X,Y 2 L
2(⌦,F ,P). If � 2 R+, then

sd(�X) =
p

Var (�X) =
p
�2Var (X) = �sd(X),

so standard deviation is positive homogeneous. Now, let m 2 R. We have that

sd(X +m) =
p
Var (X +m) =

p
Var (X) = sd(X),
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so standard deviation is not translation invariant. Since

⇢(X,Y )  1,

by Cauchy–Schwarz inequality, we also have that

sd(X + Y ) =
p

Var (X) + Var (Y ) + 2Cov (X,Y )

=
p

Var (X) + Var (Y ) + 2⇢(X,Y )sd(X)sd(Y )


p

Var (X) + Var (Y ) + 2sd(X)sd(Y ) =
q�

sd(X) + sd(Y )
�2

= sd(X) + sd(Y ).

So standard deviation is subadditive. Lastly, let X ⇠ Unif(a, b) and Y ⇠ Unif(c, d) for some
a < b < c < d, which guarantees that X  Y a.s. But it is obvious that if b � a � d � c,
then will have sd(X) � sd(Y ), which disproves the monotonicity of standard deviation. In
summary, standard deviation is positive homogeneous and subadditive, but not translation
invariant and monotone.

c) The most direct solution is as follows. Let U ⇠ Unif(0, 1) and let qi(u) = � 1
�i

log(1 � u),
i = 1, 2. Since, qi is the quantile function of Exp(�i) distribution, we have by the quantile
transformation lemma that qi(U) ⇠ Exp(�i). Setting Xi = qi(U), we have X1 + X2 =
q1(U) + q2(U) = (q1 + q2)(U). The quantile transformation then implies that q1 + q2 is the
quantile function of X1 +X2. We thus have by the definition of VaR that

VaR↵ (X1 +X2) = (q1 + q2)(↵) = q1(↵) + q2(↵) = VaR↵ (X1) + VaR↵ (X2) .

Alternatively, we know from the lecture that VaR is comonotone additive, so the copula of
(X1, X2) needs to be the comonotonicity copula M(u, v) = min{u, v}. We also know from
the lecture that M is the copula of the random vector (U,U), where U ⇠ Unif(0, 1). Since
the quantile function of Exp(�i) distribution is given by qi(u) = � 1

�i
log(1� u), we can set

(X1, X2) :=

✓
� 1

�1
log(1� U),� 1

�2
log(1� U)

◆
.

We then have that Xi ⇠ Exp(�i) by the quantile transformation lemma, and the comono-
tonicity of X1 and X2 follows from the invariance of copulas under strictly increasing trans-
formations.

Lastly, one could describe the random vector by its distribution. Denoting the marginal cdfs
of X1 and X2 by F1 and F2 respectively, it follows from Sklar’s theorem that the cdf F of
(X1, X2) reads

F (x1, x2) = M
�
F1(x1), F2(x2)

�
= min

�
1� exp(��1x1), 1� exp(��2x2)

 

= 1�max
�
exp(��1x1), exp(��2x2)

 
= 1� exp

�
�min{�1x1,�2x2}

�

for all x1, x2 > 0.

Question 2 (10 Pts)

a) Let X be a d-dimensional random vector with a td(⌫, 0,⌃)-distribution for d � 2, ⌫ > 0 and
a positive definite d⇥ d-matrix ⌃. Are the components of X exchangeable? (3 Pts)

b) Let X ⇠ Sd( ) for some d � 2. Show that all univariate marginal distributions of X are
equal. (3 Pts)
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c) Denote by S2+ the set of all positive semidefinite symmetric 2 ⇥ 2-matrices, and let X be a
two-dimensional random vector with a N2(µ,⌃)-distribution for a fixed mean vector µ 2 R2

and a covariance matrix ⌃ in the set

S =

⇢
⌃ 2 S2+ : ⌃ii = �

2
i for i = 1, 2, and ⇢  ⌃12

�1�2
 ⇢

�
,

where �i > 0, i = 1, 2, and �1  ⇢  ⇢  1 are given constants. The set S models correlation
uncertainty between the components of X. Consider a vector w 2 R2

+ and a probability
level ↵ 2 (1/2, 1). Compute the worst-case value-at-risk

sup
⌃2S

VaR↵

 
�

2X

i=1

wiXi

!

of the portfolio loss �
P2

i=1wiXi. (4 Pts)

Solution 2

a) We say that a random vector X = (X1, . . . , Xd) is exchangeable if

(X1, . . . , Xd)
(d)
= (X⇡(1), . . . , X⇡(d))

for any permutation ⇡ of {1, . . . , d}. Since every permutation of {1, . . . , d} can be represented
by a d⇥ d-matrix P with

Pij = {⇡(i)=j}

for all i, j 2 {1, . . . , d} and since we know from the lecture that t distribution is (as a
normal variance mixture) closed under a�ne transformations, we have that Y := PX ⇠
td(⌫, 0, P⌃P>). It is therefore enough to find a positive definite d ⇥ d-matrix ⌃, such that
P⌃P> 6= ⌃. Without loss of generality, take ⌃ diagonal with ⌃11 > ⌃22 and P a permutation
matrix corresponding to a permutation that swaps the first and second component ofX (that
is a matrix obtained by swapping the first and the second row of the d⇥ d identity matrix).
In that case it follows that (P⌃P>)11 = ⌃22 and (P⌃P>)22 = ⌃11, that is, P⌃P> 6= ⌃.

Alternatively, assuming ⌫ > 2 so that E
⇥
X

2
⇤
< 1, we know from the class that

Cov (X) =
⌫

⌫ � 2
⌃.

Considering again a permutation that only swaps Xi and Xj , i 6= j, we get that Var (Yi) =
Var (Xj) =

⌫
⌫�2⌃jj and Var (Yj) = Var (Xi) =

⌫
⌫�2⌃ii such that if ⌃ii 6= ⌃jj , the marginal

distributions of X and Y di↵er, which means that we cannot have equality in distribution
of X and Y .

b) Let 1j 2 Rd for a j 2 {1, . . . , d} denote a vector whose components are all 0 except for
the j-th component that is equal to 1. Then the j-th margin of X is given by Xj = 1>j X.
Let us show that the characteristic function of Xj is independent of j. Since we know that
X ⇠ Sd( ), we know from the lecture that the characteristic function �X : Rd ! C of X is
given by

�X(u) =  

⇣
kuk2

⌘
.

Analogously to before, let uj 2 Rd denote a vector whose components are all 0 except for
the j-th component that is equal to u 2 R. We then have that

�Xj (u) = E
h
exp

⇣
iu1>j X

⌘i
= E

h
exp

⇣
iu

>
j X

⌘i
= �X(uj) =  

⇣
kujk2

⌘
=  (u2),
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which is what we wanted to show. Since the characteristic function of a random variable
uniquely determines its distribution, we are done.

Alternatively, this can be proved by proving the contraposition, that is proving that if all
univariate margins of X are not the same, then there exists no characteristic generator  
such that X ⇠ Sd( ). Without loss of generality, assume that

X2
(d)
= X3

(d)
= . . .

(d)
= Xd and X1

(d)

6= X2.

Then for any permutation ⇡ of {1, . . . , d} such that ⇡(1) 6= 1 when have that

(X1, . . . , Xd)
(d)

6= (X⇡(1), . . . , X⇡(d))

because if the marginal distributions are not the same, the joint distribution cannot be either.
But since ⇡ can be represented by an orthogonal matrix P⇡, we have found an orthogonal
matrix P⇡ such that

P⇡X

(d)

6= X,

which means that there exists no characteristic generator  such that X ⇠ Sd( ).

The simplest way to do this, however, is directly. Let X ⇠ Sd( ). Then we have UX = X in
distribution for any orthogonal d⇥d-matrix U . Since every permutation matrix is orthogonal,
considering the permutation matrix P which swaps the i-th and j-th element, we must clearly
have Xi = Xj is distribution since PX = X in distribution. This can be repeated for every
pair of the components of X.

c) Since we know that X ⇠ N2(µ,⌃) for some ⌃ 2 S, we know from the class that �w
>
X ⇠

N(�w
>
µ,w

>⌃w). We thus have

VaR↵

⇣
�w

>
X

⌘
= �w

>
µ+

p
w>⌃w��1(↵) = �w

>
µ+

q
w

2
1�

2
1 + w

2
2�

2
2 + 2w1w2⌃12�

�1(↵),

where ��1 is the quantile function of N(0, 1). Because of the above, we can write

sup
⌃2S

VaR↵

⇣
�w

>
X

⌘
= sup

⇢⇢⇢

⇢
�w

>
µ+

q
w

2
1�

2
1 + w

2
2�

2
2 + 2w1w2�1�2⇢�

�1(↵)

�

= �w
>
µ+

r
w

2
1�

2
1 + w

2
2�

2
2 + 2w1w2�1�2 sup

⇢⇢⇢
{⇢}��1(↵)

= �w
>
µ+

q
w

2
1�

2
1 + w

2
2�

2
2 + 2w1w2�1�2⇢�

�1(↵)

= �w
>
µ+

p
w>⌃w��1(↵) = VaR↵

⇣
�w

>
Y

⌘
,

where the second equality uses standard properties of the supremum (the function x 7!
p
x

is increasing and ��1(↵) > 0 since we assume ↵ 2 (1/2, 1)), ⌃ is a 2 ⇥ 2-matrix with
⌃ii = �

2
i for i = 1, 2 and ⌃12 = ⌃21 = �1�2⇢ and Y ⇠ N2(µ,⌃). That is, the worst-case

value-at-risk is in this case attained when the correlation between X1 and X2 are as large
as the uncertainty set S allows.

Question 3 (8 Pts)

a) Compute the lower tail dependence coe�cient �l of the two-dimensional copulas W (u, v) =
(u+ v � 1)+ and M(u, v) = min{u, v}. (3 Pts)
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b) Let (X1, X2) be a two-dimensional random vector with joint distribution given by the cdf

F (x1, x2) = exp
⇣
�(�x1 � x2)

1/�
⌘

for x1, x2  0 and � � 1.

Calculate the marginal distributions and the copula of (X1, X2). (5 Pts)

Solution 3

a) We know from the lecture that

�l = lim
↵#0

C(↵,↵)

↵
,

so using the fact that (2↵� 1)+ = 0 for all ↵  0.5 we obtain

�l(M) = lim
↵#0

min{↵,↵}
↵

= lim
↵#0

↵

↵
= 1 and �l(W ) = lim

↵#0

(2↵� 1)+

↵
= 0.

b) We first compute the marginal cdfs FX1 and FX2 of X1 and X2, respectively. The marginal
distributions are easily computed as

FX1(x1) = F (x1,1) = F (x1, 0) = exp
⇣
�(�x1)

1/�
⌘
,

FX2(x2) = F (1, x2) = F (0, x2) = exp
⇣
�(�x2)

1/�
⌘
.

We now want to use Sklar’s theorem, which states that we can compute the copula of X
as C(u, v) = F (qX1(u), qX2(v)). We thus need to compute the quantile function of X1 (the
margins are identical). By inverting FX1 , we get that

qX1(u) = qX2(u) = �(� log(u))� .

The copula is therefore given by

C(u, v) = exp

✓
�
⇣
(� log(u))� + (� log(v))�

⌘1/�◆
,

which is the Gumbel copula.

Question 4 (11 Pts)

Let X be a random variable with cdf

F (x) = 1� x
�↵

, x � 1,

for a parameter ↵ > 0.

a) Does X have a density? If yes, derive it. (1 Pts)

b) Find all k = 1, 2, . . . such that E
⇥
|X|k

⇤
< 1. (2 Pts)

c) Does F belong to MDA(H⇠) for a generalized extreme value distribution H⇠? If yes, what
is ⇠ and what are the normalizing sequences? (3 Pts)

d) Calculate the excess distribution function Fu(x) = P [X � u  x | X > u], x � 0. (2 Pts)
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e) Does there exist a parameter ⇠ 2 R and a positive measurable function � such that

lim
u!1

sup
x>0

��Fu(x)�G⇠,�(u)(x)
�� = 0,

where G⇠,� is a generalized Pareto distribution? If yes, what are ⇠ and �? (3 Pts)

Solution 4

a) The density exists and can be computed as follows.

fX(x) =
d

dx
FX(x) = ↵x

�↵�1
{x�1}.

b) Using the density from the previous exercise, we directly compute

E
h
|X|k

i
= E

h
X

k
i
=

Z 1

1
x
k
fX(x)dx =

Z 1

1
↵x

k�↵�1
dx.

The above integral converges if and only if

k � ↵� 1 < �1 () k < ↵,

so E
⇥
|X|k

⇤
< 1 for all k 2 {1, 2, . . .} with k < ↵.

Alternatively, we could use the fact that FX is in the MDA of Fréchet distribution with
parameter ⇠ = 1/↵ (this will be shown in the solution to next exercise), which then gives by
a result that we have seen in the class that E

⇥
|X|k

⇤
< 1 () k < 1/⇠ = ↵.

c) It can be seen from the previous exercise that the tail of the given distribution decays like
a power and also that E

⇥
|X|k

⇤
< 1 () k < ↵. We would thus expect FX 2 MDA(H⇠)

for ⇠ = 1/↵ > 0, that is the Fréchet distribution. This observation helps with constructing
the normalizing sequences as

cn =
1

↵

✓
1

n

◆�1/↵

and dn =

✓
1

n

◆�1/↵

.

We then have for all x 2 R satisfying cnx+ dn > 1 for all but finitely many n 2 N that

F
n
X(cnx+ dn) =

�
1� (cnx+ dn)

�↵�n =

 
1�

�
1 + 1

↵x
��↵

n

!n

! exp

 
�
✓
1 +

1

↵
x

◆�↵
!

as n ! 1. For any other x 2 R there exists an N 2 N such that cnx+dn  1 for all n � N ,
which means that Fn

X(cnx+ dn) = 0 for all n � N and therefore limn!1 F
n
X(cnx+ dn) = 0.

With our choice of sequences this means that we need for all but finitely many n 2 N that

1

↵

✓
1

n

◆�1/↵

x+

✓
1

n

◆�1/↵

> 1 () 1

↵
x+ 1 >

✓
1

n

◆1/↵

() x > �↵+ ↵

✓
1

n

◆1/↵

.

This clearly holds for x 2 R with x > �↵. So the limiting cdf is indeed that of GEV
distribution with parameter ⇠ = 1/↵.

d) As seen in the lecture, we have that

Fu(x) = P [X � u  x |X > u] =
P [u < X  x+ u]

P [X > u]
=

FX(x+ u)� FX(u)

1� FX(u)
,

which leads to

Fu(x) =
1� (x+ u)�↵ � 1 + u

�↵

u�↵
= 1� (x+ u)�↵

u�↵
= 1�

⇣
1 +

x

u

⌘�↵
.
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e) Pickands–Balkema–de Haan theorem gives us that

lim
u!1

sup
x�1

��Fu(x)�G⇠,�(u)(x)
�� = 0 (1)

if and only if FX 2 MDA(H⇠). We have shown that FX 2 MDA(H1/↵), thus (1) holds for
⇠ = 1/↵ and for some measurable function � : [1,1) ! (0,1) yet to be determined. We
have

lim
u!1

sup
x>0

��Fu(x)�G1/↵,�(u)(x)
�� = lim

u!1
sup
x>0

�����

✓
1 +

x

↵�(u)

◆�↵

�
⇣
1 +

x

u

⌘�↵
����� .

Picking �(u) = u
↵ , we clearly obtain

lim
u!1

sup
x>0

��Fu(x)�G1/↵,�(u)(x)
�� = lim

u!1
sup
x>0

����
⇣
1 +

x

u

⌘�↵
�
⇣
1 +

x

u

⌘�↵
���� = 0.

So we can indeed take �(u) = u
↵ .

Question 5 (10 Pts)

a) Assuming that you can simulate U ⇠ Unif(0, 1) and Z ⇠ Nd(0, Id), where Id denotes the
d-dimensional identity matrix, describe an algorithm for simulating X ⇠ Md(µ,⌃, F̂W ).

(3 Pts)

b) Name three methods for estimating a copula C from data. (3 Pts)

c) Explain what principal component analysis is. (4 Pts)

Solution 5

a) Let qW denote a quantile function of the random variable W .

(1) Simulate Z ⇠ Nd(0, Id);

(2) Simulate W independent from Z by simulating U ⇠ Unif(0, 1) and setting W = qW (U);

(3) Compute the Cholesky decomposition ⌃ = AA
>;

(4) Return X = µ+
p
WAZ.

b) Method of moments using rank correlation, maximum likelihood estimation, inference func-
tions for margins estimator, maximum pseudo-likelihood estimator, non-parametric estima-
tor by forming a pseudo-sample from the copula.

c) The goal of PCA is dimension reduction. The main idea is that if X1, . . . , Xn 2 Rd almost lie
in a lower dimensional subspace A with dim(A) = p < d, then the projections of X1, . . . , Xn

onto A constitute a good approximation of the original observations X1, . . . , Xn and we can
e↵ectively work in a p-dimensional setting without losing much information.

PCA works as follows. Let X 2 Rd be a random vector with E
⇥
X

2
⇤
< 1 and denote

µ = E [X] and ⌃ = Cov (X). ⌃ is symmetric and positive semidefinite; we can write
⌃ = U⇤U>, where ⇤ = diag(�1, . . . ,�d) is the diagonal matrix of eigenvalues of ⌃ that are,
without loss of generality, ordered so that �1 � �2 � · · · � �d � 0 and U is an orthogonal
matrix whose columns are given by the eigenvectors of ⌃ in the order corresponding to the
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order of �1, . . . ,�d in the matrix ⇤. One then defines the principal component transform
Y = U

>(X � µ). We have

E [Y ] = U
>E [X]� U

>
µ = 0

and

Cov (Y ) = U
>Cov (X � µ)U = U

>⌃U = U
>
U⇤U>

U = ⇤,

where the last equality follows from the orthogonality of U . The above means that the
components Y1, . . . , Yd of Y are uncorrelated and Var (Yi) = �i. If we therefore have that �i
is low for some i 2 {1, . . . , d}, it means that if “drop them”, we can reduce the dimension
of X without much loss of information.
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