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Question 1 (12 Pts)

a) Let X be a random variable with a standard Laplace distribution; that is, the cdf of
X is

F (x) =

{
1
2 exp(x) if x ≤ 0

1− 1
2 exp(−x) if x ≥ 0.

Calculate VaRα (X) and AVaRα (X) for α ∈ [1/2, 1). (3 Pts)

b) Let X be a random variable such that E [|X|] <∞. Show that

AVaRα (X) = VaRα (X) +
1

1− α
E
[
(X −VaRα (X))+

]
for all α ∈ (0, 1). (3 Pts)

c) Name one advantage of VaR over AVaR and one advantage of AVaR over VaR. (2 Pts)

d) Let (Ω,F ,P) be a probability space and consider the risk measure ρ : L1(Ω,F ,P)→ R
given by

ρ(X) = max{AVaR 0.75(X),VaR 0.95(X)}.

Which properties of a coherent risk measure does ρ have? Please, justify your answers.
(4 Pts)

Solution 1

a) VaRα (X), α ≥ 1/2, can be obtained by inverting F |R+ . This gives

VaRα (X) = − log(2(1− α))

for all α ≥ 1
2 . Hence, using a simple change of variable we obtain

AVaRα (X) =
1

1− α

∫ 1

α
VaRu (X) du

= − 1

1− α

∫ 1

α
log(2(1− u)) du

= − 1

2(1− α)

∫ 2(1−α)

0
log(s) ds

for all α ∈ [1/2, 1). Since limx→0 x log(x) = 0 we obtain

AVaRα (X) = − 1

2(1− α)

∫ 2(1−α)

0
log(s) ds

= − 1

2(1− α)
(2(1− α) log(2(1− α))− 2(1− α)) = 1− log(2(1− α))

for all α ∈ [1/2, 1).
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b) The stated identity follows by direct computation. In fact, we have

AVaRα (X) =
1

1− α

∫ 1

α
VaRu (X) du

= VaRα (X) +
1

1− α

∫ 1

α
(VaRu (X)−VaRα (X)) du

= VaRα (X) +
1

1− α

∫ 1

0
(VaRu (X)−VaRα (X))1(α,1)(u)du

= VaRα (X) +
1

1− α
EU
[
(q−U (X)−VaRα (X))+

]
where U ∼ Unif(0, 1), α ∈ (0, 1). Using the quantile transformation theorem, we obtain

AVaRα (X) = VaRα (X) +
1

1− α
E
[
(X −VaRα (X))+

]
for all α ∈ (0, 1).

c) · VaR is defined on L0(P) but AVaR only on L1(P).

· VaR is in general not subaddative as an example showed in the lecture, but due
to a representation theorem proved in class AVaR is a coherent risk measure.

· VaR is a frequency measure, i.e. it does not see what happens in the tails, whereas
AVaR is a severity measure and therefore incorporates the behaviour in the tails.

· AVaR is much more difficult to estimate and backtest than VaR.

d) First recall that a risk measure is called coherent if it satisfies the axioms of monotonic-
ity (M), positive homogeneity (P), subadditivity (S) and has the translation property
(T). Moreover, we have seen in the lecture that VaR satisfies (M), (T), (P) but in
general not (S) and that AVaR is a coherent risk measure. Since the maximum has the
following properties

1. max{x+ a, y + a} = max{x, y}+ a for all x, y, a ∈ R;

2. max{λx, λy} = λmax{x, y} for all x, y ∈ R and all λ > 0;

3. max{x+ y, z + w} ≤ max{x, z}+ max{y, w} for all x, y, z, w ∈ R.

ρ satisfies (M), (P) and (T), but (S) does not hold. To see this it suffices to find a pair
of random variable (X1, X2) such that

ρ(Xi) = AVaR 0.75 (Xi) and VaR 0.95 (X1 +X2) > AVaR 0.75 (X1) + AVaR 0.75 (X2) .

In fact, in this case we obtain

ρ(X1 +X2) ≥ VaRβ (X1 +X2) > AVaRα (X1) + AVaRα (X2) = ρ(X1) + ρ(X2).

Next we give a simple example of this failure. Pick two independent Ber(p)-distributed
random variables X1, X2 with success probability p ∈ (0, 1); that is, their common cdf
is given by

F (x) =


0, x < 0,

1− p, 0 < x < 1,

1, x ≥ 1.
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Since VaRα (Xi) = inf{x : F (x) ≥ α}, i = 1, 2, we obtain

VaRα (Xi) =

{
0, 0 < α ≤ 1− p,
1, 1− p < α < 1.

and

AVaRα (Xi) =

{
p

1−α , if α ∈ (0, 1− p]
1, if α ∈ (1− p, 1)

for i = 1, 2. On the other hand, the independence of X1 and X2 shows

X1 +X2 =


0 with P [X1 +X2 = 0] = (1− p)2,

1 with P [X1 +X2 = 1] = 2p(1− p),
2 with P [X1 +X2 = 2] = p2

and therefore

FX1+X2(x) =


0, x < 0,

(1− p)2, 0 ≤ x < 1,

1− p2, 1 ≤ x < 2,

1, x ≥ 2.

As above, this shows

VaRα (X1 +X2) =


0, 0 < α ≤ (1− p)2,

1, (1− p)2 < α ≤ 1− p2,

2, 1− p2 < α < 1.

If we choose p = 0.04, then we have 0.95 < 1− p = 0.96 and (1− p)2 = 0.9216 < 0.95,
from which we obtain VaR 0.95 (Xi) = 0, and therefore,

ρ(X1) + ρ(X2) = 2 AVaR 0.75 (X1) = 2
4

25
< 1 = VaR 0.95 (X1 +X2) ≤ ρ(X1 +X2).

Question 2 (10 Pts)

a) Let Xi ∼ Sd(ψi), i = 1, . . . , n, be independent random vectors and α1, . . . , αn ∈ R.
Show that Z =

∑n
i=1 αiXi is spherically distributed. (3 Pts)

b) Assume that the daily losses of an investment during the next t days are given by

(X1, . . . , Xt) ∼Mt(0,Σ, F̂W )

for a non-negative random variable W and a t × t-matrix Σ = σ2P , where σ > 0 is a
constant and P a correlation matrix with Pij = ρ for all i 6= j. Show that there exists
a function f : N→ R such that

VaRα (X1 + · · ·+Xt) = f(t) VaRα (X1)

for all α ∈ (0, 1). Can you compute f explicitly? (4 Pts)
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c) Let X ∼ Ed(µ,Σ, ψ) and Y ∼ Ed(ν,Σ, ϕ) be two independent random vectors. Is
Z = X + Y again elliptically distributed? If yes, derive m ∈ Rd, M ∈ Rd×d and
ξ : R+ → R such that Z ∼ Ed(m,M, ξ). If no, give a counterexample. (3 Pts)

Solution 2

a) First recall that a random variable Z is spherical if UZ
(d)
= Z for every orthogonal

matrix U ∈ Rd×d. Thus it suffices to prove ϕZ = ϕUZ for every orthogonal matrix
U ∈ Rd×d where ϕZ , ϕUZ stand for the characteristic function of Z, UZ, respectively.
Thus using that Xj ∼ Sd(ψj), 1 ≤ j ≤ n, and they are independent we obtain

ϕUZ(t) = E
[
eit·UZ

]
= E

[
ei(U

T t)·Z
]

= E
[
ei

∑n
j=1(αjU

T t)·Xj
]

=
n∏
j=1

E
[
ei(αjU

T t)·Xj
]

=
n∏
j=1

ψj(‖αjUT t‖2) =
n∏
j=1

ψj(‖αjt‖2) =
n∏
j=1

ϕXj (αjt) = ϕZ(t)

for every orthogonal matrix U ∈ Rd×d and all t ∈ Rd, which in turn shows that Z is
spherically distributed.

b) As seen in the lecture, if X ∼Mt(0,Σ, F̂W ) then we have

X1 + · · ·+Xt = 1>X ∼M1(0, 1>Σ1, F̂W )

where 1 = (1, . . . , 1) ∈ Rt. Moreover, its scale matrix can be rewritten as

1>Σ1 = σ21>P1 = σ2

(
t∑
i=1

1 +
t∑

i,j=1
i 6=j

ρ

)
= σ2

(
t+ t(t− 1)ρ

)
= tσ2

(
1 + ρ(t− 1)

)
.

On the other hand, 1>X admits a stochastic representation as

1>X
(d)
=
√

1>Σ1
√
WZ =

√
t
(
1 + ρ(t− 1)

)
σ
√
WZ

(d)
=
√
t
(
1 + ρ(t− 1)

)
X1,

where Z ∼ N(0, 1). Since VaR is a positive homogeneous, distribution-based risk
measure, we get

VaRα (X1 + · · ·+Xt) = VaRα

(√
t
(
1 + ρ(t− 1)

)
X1

)
=
√
t
(
1 + ρ(t− 1)

)
VaRα (X1)

for all α ∈ (0, 1).

c) Yes, the random variable Z is again elliptically distributed. To see this, let us derive
the characteristic function φZ of Z. It follows from the independence of X and Y that
φZ(u) = φX(u)φY (u) for all u ∈ Rd. Using the formula for the characteristic function
of an elliptical distribution derived in class we obtain

φZ(u) = φX(u)φY (u) = eiu
>µψ(u>Σu)eiu

>νϕ(u>Σu) = eiu
>(µ+ν)ψ(u>Σu)ϕ(u>Σu)

for all u ∈ Rd. Defining m = µ+ ν, M = Σ and ξ(u) = ψ(u)ϕ(u), we further get

φZ(u) = eiu
>mξ(u>Mu), u ∈ Rd.

It thus follows that Z ∼ Ed(m,M, ξ).
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Question 3 (10 Pts)

a) Let X be an Exp(λ)-distributed random variable for a parameter λ > 0. Calculate the
distribution function and the moments of Y = exp(X). (3 Pts)

b) Does Y have a density? If yes, can you compute it? (1 Pts)

c) Now, consider a two-dimensional random vector (X1, X2) such that Xi ∼ Exp(λi) for
parameters λi > 0, i = 1, 2. Under which conditions does the linear correlation between
Y1 = exp(X1) and Y2 = exp(X2) exist? (2 Pts)

d) Assume λ1 = 3 and λ2 = 4. What is the range of possible correlations between Y1 and
Y2? (4 Pts)

Solution 3

a) The pdf of X ∼ Exp(λ) is given by fX(x) = λe−λx for x ≥ 0. Thus, the distribution
of X is given by

FX(x) =

∫ x

0
λe−λy dy = 1− e−λx

for all x > 0 and FX(x) = 0 for all x ≤ 0. This in turn shows

FY (y) = P [exp(X) ≤ y] = FX
(

log(y)
)

= 1− y−λ

for all y > 1 and FY (y) = 0 for all y ≤ 1. A straight forward calculation shows

E
[
Y k
]

= λ

∫ ∞
0

ekze−λz dz =
λ

k − λ
e(k−λ)z

∣∣∣∞
0

=
λ

λ− k

for all k ∈ N such that k < λ and otherwise E
[
Y k
]

=∞

b) Since the cdf FY from a) is smooth on (1,∞) its pdf is given by

fY (y) =
dFY
dy

(y) =
λ

yλ+1

for all y > 1 and otherwise vanishes.

c) The linear correlation of X1, X2 exists if Xi ∈ L2(P) and Var (Xi) > 0 for i = 1, 2.
Using b) we conclude that this is equivalent to min{λ1, λ2} > 2 as in this case the
second condition is automatically satisfied.

d) Since min{λ1, λ2} = 3, exercise c) shows that the linear correlation is well-defined.
Hence, Hoeffding’s identity implies ρ ∈ [ρmin, ρmax] whereas the the minimal, maximal
linear correlation is attained if Y1 and Y2 are coupled by the counter-monotonicity,
comonotonicity copula W (u, v) = (u + v − 1)+, M(u, v) = min{u, v}, respectively.
Hence, we have ρmin = ρ(Y1, Y2) and ρmax = ρ(Y1, Y2) in the respective cases. To cal-
culate ρmin, ρmax explicitly, we need E [Y1], E [Y2], Var (Y1), Var (Y2) and Cov (Y1, Y2).
Using the calculations from b), one easily obtains

E [Y1] =
3

2
, E [Y2] =

4

3
, Var (Y1) =

3

4
, Var (Y2) =

2

9
.
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Finally, to compute Cov (Y1, Y2) we need E [Y1Y2]. If Y1, Y2 are coupled by the counter-

monotonicity, comonotonicity copula, respectively, we know (Y1, Y2)
(d)
= (qY1(U), qY2(1−

U)), (Y1, Y2)
(d)
= (qY1(U), qY2(U)) for some U ∼ Unif(0, 1) and qY1 , qY2 are quantile

functions of Y1, Y2. By inverting the distrubtion functions of Y1, Y2 we obtain

qY1(u) = (1− u)−1/3 qY2(v) = (1− v)−1/4

for all u, v ∈ (0, 1). Hence, we obtain

E [Y1Y2] = E [h(Y1, Y2)] = E [h(qY1(U), qY2(1− U))] =

∫ 1

0
(1− x)−1/3x−1/4 dx

and

E [Y1Y2] = E [h(Y1, Y2)] = E [h(qY1(U), qY2(U))] =

∫ 1

0
(1− x)−(1/3+1/4) dx =

12

5

where h : R2 → R is given by h(x, y) = xy for all x, y ∈ R. Recalling that the Beta
function is given by B(x, y) =

∫ 1
0 t

x−1(1 − t)y−1 dy for all x, y > 0 and B(x, y) =
Γ(x)Γ(y)/Γ(x+ y) we can rewrite the first expression as

E [Y1Y2] = B(3/4, 2/3) =
Γ(3/4)Γ(2/3)

Γ(17/12)
≈ 1.87.

Moreover, we have

Cov (Y1, Y2) = E [Y1Y2]− E [Y1]E [Y2] = E [Y1Y2]− 2

=

{
B(3/4, 2/3)− 2, if Y1, Y2 are coupled by W,
2
5 , if Y1, Y2 are coupled by M,

(Beta function not necessary to get 1/2 point for Cov (Y1, Y2) in first case.) Using
ρ(Y1, Y2) = Cov (Y1, Y2) /

√
Var (Y1) Var (Y2) we finally obtain

ρmin = ρ(Y1, Y2) =
B(3/4, 2/3)− 2√

6/36
≈ −0.31

and

ρmax = ρ(Y1, Y2) =
2/5√
6/36

=
2
√

6

5
.

Question 4 (10 Pts)

a) Let (X,Y ) be a two-dimensional random vector with joint distribution function

F (x, y) =
1

xα

xα−1 + e−y
x > 1, y ∈ R, α > 0.

Compute the marginal distributions and the copula of (X,Y ). (5 Pts)
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b) Let F : R→ [0, 1] be a cdf satisfying

lim
x→∞

(1− F (x))eλx = b

for constants λ, b > 0. Does F belong to the maximum domain of attraction of a
standard extreme value distribution Hξ? If yes, determine the shape parameter ξ and
a pair of normalizing sequences. (5 Pts)

Solution 4

a) Taking the limits x→∞, y →∞ and noting xα/(xα−1) = 1/(1−x−α) we immediately
see that the margins are given by

F1(x) = lim
y→∞

F (x, y) = 1− x−α and F2(y) = lim
x→∞

F (x, y) =
1

1 + e−y
,

respectively. Since the margins F1, F2 are continuous Sklar’s theorem ensures that the
copula C of (X,Y ) is unique and given by

C(u, v) = F (qX(u), qY (v))

for all u, v ∈ (0, 1), where qX , qY are arbitrary quantile functions of X, Y , respectively.
By inverting F1, F2 we obtain

qX(u) =

(
1

1− u

)1/α

, qY (v) = log

(
v

1− v

)
for all u, v ∈ (0, 1). Hence,

C(u, v) =
1

1/(1−u)
1/(1−u)−1 + e− log(v/(1−v))

=
1

1
u + 1

v − 1

for all u, v ∈ (0, 1).

b) First note that the condition limx→∞ e
λx(1− F (x)) = b is equivalent to

lim
x→∞

1− F (x)

be−λx
= 1

and therefore 1− F (x) ∼ be−λx as x→∞. Setting

cn = 1/λ dn = log(bn)/λ

we find

lim
n→∞

Fn(cnx+ dn) = lim
n→∞

(
1− 1− F (cnx+ dn)

be−λ(cnx+dn)
be−λ(cnx+dn)

)n

= lim
n→∞

1−
1− F

(
x+log(bn)

λ

)
b exp

(
−λ
(
x+log(bn)

λ

)) e−x
n

n

= exp
(
−e−x

)
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for all x ∈ R.From the second to the third line we have used that

lim
n→∞

(
1 +

an
n

)n
= ea

for all sequences (an)n∈N ⊂ R such that an → a as n → ∞ for some a ∈ R and
1− F (x) ∼ be−λx as x→∞. Thus, F is in the maximum domain of attraction of the
Gumbel distribution H0.

Question 5 (8 Pts)

a) Name different stylized facts of typical daily equity log-return series. (4 Pts)

b) Discuss and compare different methods of generating loss distributions of financial
assets. (4 Pts)

Solution 5

a) The stylized facts of univariate daily equity log-return series are:

(U1) The series show little serial correlation;

(U2) Series of absolute or squared log-returns show profound serial correlation;

(U3) Conditional expected log-returns are close to zero;

(U4) Volatility (conditional standard deviation) varies over time;

(U5) Extreme returns appear in clusters;

(U6) The distribution is leptokurtic or heavy-tailed (power-like tail).

The stylized facts of multivariate daily equity log-return series are:

(M1) Multivariate log-return series show little evidence of cross-correlation, except for
contemporaneous log-returns (i.e. at the same time t);

(M2) Multivariate series of absolute log-returns show profound cross-correlation;

(M3) Correlations between contemporaneous log-returns vary over time;

(M4) Extreme log-returns in one series often coincide with extreme log-returns in several
other series.

b) In the lecture we have seen three methods for generating loss distributions of a portfolio
of assets, namely:

· Analytical method : Model changes in risk factors Xt+1 and risk mappings f in
such a way that the (conditional) loss distribution Lt+1 (or its linearized form
L∆
t+1) can be derived in closed form. As an example we have discussed during

the lecture the variance-covariance method for market risk in which one chooses
f differentable and a iid sequence Xt+1 ∼ Nd(µ,Σ).

· Historical simulation: Approximate the loss distribution Lt+1 by the edf F̂L(x) =
1
n

∑n
i=1 1{`t−i+1≤x} where `t−n+1, . . . , `t are the last n realized losses.

· Monte Carlo simulation: Model Lt+1 and simulate from it. Use simulations
`1, . . . , `n to generate the simulated distribution function F̂L(x) = 1

n

∑n
i=1 1{`i≤x}.
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The main advantage of the analytical method is its simplicity to implement it and the
associated speed of computation. Its main disadvantage is that it is fairly limiting
because the number of multivariate distributions Xt+1 and risk factor mappings f for
which the loss distribution Lt+1 can be determined analytically is quite small

The main advantage of historical simulation is that makes no modelling assumptions
on the data and it does not require any estimation. The main disadvantage is that it
requires a lot of data for all risk factors and predictions are based on past data.

The main advantage of a Monte Carlo simulation is its flexibility and generality as
well as it does not need a lot of assumptions. In theory, any multivariate distribution
can be simulated. The main drawback is that for certain distributions, simulation in
high dimensions can be quite time-consuming and one needs a good model for the loss
distribution Lt+1.
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