

Eidgenössische Finanzmarktaufsicht FINMA Autorité fédérale de surveillance des marchés financiers FINMA Autorità federale di vigilanza sui mercati finanziari FINMA Swiss Financial Market Supervisory Authority FINMA

Economic Scenario Generators

A regulator's perspective

Falk Tschirschnitz, FINMA Bahnhofskolloquium

12. November 2012

Motivation

FINMA has observed:

- Calibrating the interest rate model of choice has become increasingly difficult:
 - High implied volatilities, undulating surface
 - Extremely low nominal interest rates, even negative
- Documentation of the ESG as part of the internal model is usually very limited
 - Choice of particular model is not explained
 - Limitations of the chosen model are not discussed
- \rightarrow The model risk is considerable.

- Why do we need Economic Scenario Generators (ESGs)?
- What are the key properties an ESG should fulfil?
- How can you assess the adequacy of your model choice?

Different uses ask for different types of finma scenario sets

12. November 2012

are at the core of stochastic modelling

- An ESG produces forward-looking scenarios for a specified set of risk factors, e.g.:
 - Interest rate term-structures
 - Inflation
 - Index returns, e.g. for equity, real estate, hedge funds, private equity
 - Exchange rates
- Assumption:

The possible behaviour of risk factors (and their interaction) can be described sufficiently well by certain stochastic models

 Choice of the stochastic model and a set of parameters determines the range of the scenarios produced by ESG Most life insurers require complex stochastic models **finma** for valuation of their liabilities at reference day

6 Bahnhofskolloquium 12. November 2012

Monte Carlo simulation is currently the only feasible method to value complex (life) liabilities

- Idea behind Monte Carlo method:
 - Generate sample paths for set of risk factors over the modelling period.

nma

- Calculate the (discounted) cash flows of the sample paths.
- Aggregate the results.

• Key idea & assumptions for market consistent valuation:

- → We start in a risk-neutral setting by calibrating the ESG to market prices of options and derivatives from deep and liquid markets. (This setting is free of arbitrage.)
- → Best estimate for the liabilities is calculated as expectation.
- → Property of arbitrage-freeness is not affected.
- → Economically coherent.

Valuation of life liabilities: Survey of Swiss companies

- All companies with materially sized business allowing for policyholder participation are expected to model stochastically
- Number of risk factors varies
 - between 3 (nominal interest rate / inflation / equity index)
 - and ~15 (multi-economy / various indices / credit spread)
- Two providers dominate the market, hence the choice of models limited
 - for nominal interest rate: Hull-White / 2Factor-Black-Karasinski / LMM(+)

The choice of the ESG poses some key challenges

- Choice of modelled risk factors
- Choice of ESG-provider
- Choice of complexity of the model
 - Trade-off between simplicity and (perceived) accuracy
- Choice of calibration targets
 - Limited availability / reliability of market prices
 - Limited relevance of historical data for future predictions
- → Actuarial judgement essential that cannot be fully externalised
- → All decisions need to be documented

ESGs need to fulfil some key properties

- Arbitrage free (for valuation purposes)
- Technically, fit for purpose
 - Theoretical basis
 - Data used is accurate, complete and appropriate
 - Robust calibration process

• Adequate :

"No more complex than necessary, given the specific purpose and usage (e.g. product portfolio)"

(Parsimonious principle)

The complexity of the ESG should be adequate **inn** to the complexity of the valuation model

Required properties for IR-models for risk-neutral valuation (1/5)

• Arbitrage free

Relevant criteria:

- Martingale test: all asset classes achieve the same average return
- Leakage test:

starting market value of assets (MVA) should be equal to the present value of all future cash flows plus the present value of the residual MVA

Required properties for IR-models for risk-neutral valuation (2/5)

CHFYield FINMA

finma

Relevant criteria:

Initial bond prices are perfectly matched.

Required properties for IR-models for risk-neutral valuation (3/5)

• Can be calibrated to initial derivative prices

Relevant criteria:

- Clear acceptance criteria
- Robust calibration process

Imp Vol in % -- Assumptions used for SST 2012

14Bahnhofskolloquium12. November 2012

Required properties for IR-models for risk-neutral valuation (3/5)

• Can be calibrated to initial derivative prices

Relevant criteria:

- Clear acceptance criteria
- Robust calibration process
- Well chosen calibration targets

Required properties for

IR-models for risk-neutral valuation (4/5)

• Produces sufficiently rich set of yield curve movements

Relevant criteria: TVOG not underestimated by choice of interest rate model (e.g. path-dependencies likely to be mispriced by 1-factor model) Bahnhofskolloquium 12. November 2012

Required properties for IR-models for risk-neutral valuation (5/5)

- Theoretically sound, numerically stable
- Valuation model and ESG have to be seen as "package"
 - "Sensible" interpretation of extreme scenarios
 - Ability to price options & guarantees by ESG must be sufficient for the options & guarantees intrinsic to the liabilities
 - A bad valuation model cannot be saved by a good ESG
 - Dependency on particular ESG should be minimized

Relevant criteria: Confirmation by Appointed Actuary

FINMAs attempt at testing the adequacy of the interest rate model

- Test 1: What are the relevant market prices to calibrate to?
 - Using a simplified replicating portfolio approach: asset universe restricted to swaps and (liquid) swaptions
 - "Weights" assigned to swaptions indication for "relevance"
- Challenges:
 - Big fitting error expected
 - Results dependent on scenario set used
 - Solution might not be very robust; high offsetting positions
 - Big effort

- However,
 - RP not used for (re-) valuations, so quality of fit not so much of an issue
 - Should be run with IR that can fit IR-vol surface well
 - Interested in an indication of region to calibrate to
 - Particularly suitable for companies already using an RP-approach

FINMAs attempt at testing the adequacy of the interest rate model

- Test 2: What impact has a change of the interest rate model?
- Challenges:
 - Change of IR-model not without implications on asset model
 - Impact might not be attributable to a specific characteristic

- However,
 - Use for both valuations simplified asset model (e.g. following Brownian motion)
 - Change IR-model only gradually
 - 1-factor to 2-factor, keeping distribution
 - normal vs. lognormal, keeping # of factors
 - consistent calibration approach, using results of test 1

Swiss Financial Market Supervisory Authority FINMA Einsteinstrasse 2 CH-3003 Bern

falk.tschirschnitz@finma.ch www.finma.ch