Halb-Mack Stochastische Reservierung

Bahnhofskolloquium

Dezember 2013
US NAIC Schedule P Data: medical malpractice

<table>
<thead>
<tr>
<th>Year</th>
<th>Loss Payments</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>217’239</td>
</tr>
<tr>
<td>2005</td>
<td>222’707</td>
</tr>
<tr>
<td>2006</td>
<td>235’717</td>
</tr>
<tr>
<td>2007</td>
<td>275’923</td>
</tr>
<tr>
<td>2008</td>
<td>267’007</td>
</tr>
<tr>
<td>2009</td>
<td>276’235</td>
</tr>
<tr>
<td>2010</td>
<td>252’449</td>
</tr>
<tr>
<td>2011</td>
<td>209’222</td>
</tr>
<tr>
<td>2012</td>
<td>107’474</td>
</tr>
<tr>
<td>2013</td>
<td>20’361</td>
</tr>
</tbody>
</table>
A Loss Development

<table>
<thead>
<tr>
<th>Year</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>217'239</td>
</tr>
<tr>
<td>2005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>222'707</td>
</tr>
<tr>
<td>2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>235'717</td>
</tr>
<tr>
<td>2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>275'923</td>
</tr>
<tr>
<td>2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>267'007</td>
</tr>
<tr>
<td>2009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>276'235</td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>252'449</td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>209'222</td>
</tr>
<tr>
<td>2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>107'474</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20'361</td>
</tr>
</tbody>
</table>
A Loss Development Triangle

<table>
<thead>
<tr>
<th>Year</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>47'258</td>
<td>95'054</td>
<td>131'616</td>
<td>165'117</td>
<td>181'937</td>
<td>198'395</td>
<td>206'068</td>
<td>213'374</td>
<td>217'239</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>9'433</td>
<td>51'855</td>
<td>98'976</td>
<td>149'169</td>
<td>175'588</td>
<td>197'590</td>
<td>211'242</td>
<td>217'986</td>
<td>222'707</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>11'996</td>
<td>54'742</td>
<td>118'964</td>
<td>163'695</td>
<td>190'391</td>
<td>213'972</td>
<td>225'199</td>
<td>235'717</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>9'517</td>
<td>73'420</td>
<td>146'347</td>
<td>199'262</td>
<td>244'987</td>
<td>260'333</td>
<td>275'923</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>12'479</td>
<td>78'212</td>
<td>157'400</td>
<td>209'959</td>
<td>244'018</td>
<td>267'007</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>18'229</td>
<td>90'710</td>
<td>166'325</td>
<td>227'891</td>
<td>276'235</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>14'952</td>
<td>94'303</td>
<td>186'577</td>
<td>252'449</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>17'995</td>
<td>110'181</td>
<td>209'222</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>20'390</td>
<td>107'474</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>20'361</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- **Accident Years:** 1-10
- **Development Years:** 2-10
- **Calendar Years:** 3-10

Note: The data represents the development of losses over time, with each year's losses developing into future years.
A Loss Development Triangle

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>5,934</td>
<td>47,258</td>
<td>95,054</td>
<td>131,616</td>
<td>165,117</td>
<td>181,937</td>
<td>198,395</td>
<td>206,068</td>
<td>213,374</td>
<td>217,239</td>
</tr>
<tr>
<td>2005</td>
<td>9,433</td>
<td>51,855</td>
<td>98,976</td>
<td>149,169</td>
<td>175,588</td>
<td>197,590</td>
<td>211,242</td>
<td>217,986</td>
<td>222,707</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>11,996</td>
<td>54,742</td>
<td>118,964</td>
<td>163,695</td>
<td>190,391</td>
<td>213,972</td>
<td>225,199</td>
<td>235,717</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>9,517</td>
<td>73,420</td>
<td>146,347</td>
<td>199,262</td>
<td>244,987</td>
<td>260,333</td>
<td>275,923</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>12,479</td>
<td>78,212</td>
<td>157,400</td>
<td>209,959</td>
<td>244,018</td>
<td>267,007</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>18,229</td>
<td>90,710</td>
<td>166,325</td>
<td>227,891</td>
<td>276,235</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>14,952</td>
<td>94,303</td>
<td>186,577</td>
<td>252,449</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>17,995</td>
<td>110,181</td>
<td>209,222</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>20,390</td>
<td>107,474</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>20,361</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A Loss Development Square

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>5'934</td>
<td>47'258</td>
<td>95'054</td>
<td>131'616</td>
<td>165'117</td>
<td>181'937</td>
<td>198'395</td>
<td>206'068</td>
<td>213'374</td>
<td>217'239</td>
</tr>
<tr>
<td>2005</td>
<td>9'433</td>
<td>51'855</td>
<td>98'976</td>
<td>149'169</td>
<td>175'588</td>
<td>197'590</td>
<td>211'242</td>
<td>217'986</td>
<td>222'707</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>11'996</td>
<td>54'742</td>
<td>118'964</td>
<td>163'695</td>
<td>190'391</td>
<td>213'972</td>
<td>225'199</td>
<td>235'717</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>9'517</td>
<td>73'420</td>
<td>146'347</td>
<td>199'262</td>
<td>244'987</td>
<td>260'333</td>
<td>275'923</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>12'479</td>
<td>78'212</td>
<td>157'400</td>
<td>209'959</td>
<td>244'018</td>
<td>267'007</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>18'229</td>
<td>90'710</td>
<td>166'325</td>
<td>227'891</td>
<td>276'235</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>14'952</td>
<td>94'303</td>
<td>186'577</td>
<td>252'449</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>17'995</td>
<td>110'181</td>
<td>209'222</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>20'390</td>
<td>107'474</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>20'361</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

calendar year 2022
A Loss Development Square

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>5'934</td>
<td>47'258</td>
<td>95'054</td>
<td>131'616</td>
<td>165'117</td>
<td>181'937</td>
<td>198'395</td>
<td>206'068</td>
<td>213'374</td>
<td>217'239</td>
</tr>
<tr>
<td>2005</td>
<td>9'433</td>
<td>51'855</td>
<td>98'976</td>
<td>149'169</td>
<td>175'588</td>
<td>197'590</td>
<td>211'242</td>
<td>217'986</td>
<td>222'707</td>
<td>224'455</td>
</tr>
<tr>
<td>2006</td>
<td>11'996</td>
<td>54'742</td>
<td>118'964</td>
<td>163'695</td>
<td>190'391</td>
<td>213'972</td>
<td>225'199</td>
<td>235'717</td>
<td>241'665</td>
<td>244'504</td>
</tr>
<tr>
<td>2007</td>
<td>9'517</td>
<td>73'420</td>
<td>146'347</td>
<td>199'262</td>
<td>244'987</td>
<td>260'333</td>
<td>275'923</td>
<td>285'629</td>
<td>291'979</td>
<td>294'358</td>
</tr>
<tr>
<td>2008</td>
<td>12'479</td>
<td>78'212</td>
<td>157'400</td>
<td>209'959</td>
<td>244'018</td>
<td>267'007</td>
<td>283'515</td>
<td>291'797</td>
<td>300'773</td>
<td>305'375</td>
</tr>
<tr>
<td>2009</td>
<td>18'229</td>
<td>90'710</td>
<td>166'325</td>
<td>227'891</td>
<td>276'235</td>
<td>306'495</td>
<td>320'739</td>
<td>334'502</td>
<td>340'161</td>
<td>346'427</td>
</tr>
<tr>
<td>2010</td>
<td>14'952</td>
<td>94'303</td>
<td>186'577</td>
<td>252'449</td>
<td>297'167</td>
<td>326'180</td>
<td>343'125</td>
<td>352'447</td>
<td>363'673</td>
<td>369'122</td>
</tr>
<tr>
<td>2011</td>
<td>17'995</td>
<td>110'181</td>
<td>229'222</td>
<td>274'772</td>
<td>322'117</td>
<td>355'709</td>
<td>369'967</td>
<td>383'721</td>
<td>392'424</td>
<td>399'426</td>
</tr>
<tr>
<td>2012</td>
<td>20'390</td>
<td>107'474</td>
<td>203'137</td>
<td>268'721</td>
<td>322'309</td>
<td>355'155</td>
<td>373'739</td>
<td>383'606</td>
<td>390'761</td>
<td>394'640</td>
</tr>
<tr>
<td>2013</td>
<td>20'361</td>
<td>112'636</td>
<td>229'414</td>
<td>312'250</td>
<td>362'737</td>
<td>395'955</td>
<td>414'758</td>
<td>430'788</td>
<td>437'228</td>
<td>447'198</td>
</tr>
</tbody>
</table>

ultimates
US NAIC Schedule P Data

- http://www.casact.org/research/index.cfm?fa=loss_reserves_data

- Many carriers

- 6 lines of business
 1. personal auto
 2. commercial auto
 3. medical malpractice
 4. workers compensation
 5. general liability
 6. product liability
Agenda

- Mack Chain Ladder Procedure
- Half-Mack Procedure
- Half-Mack Sampling
Chain Ladder Procedure

Notations:

\(a \) = accident year
\(d \) = development year
\(C_{a,d} \) = cumulative losses

Algorithm:

\[
\lambda_{d-1} = \frac{\sum_{a=1}^{n-d+1} C_{a,d}}{\sum_{a=1}^{n-d+1} C_{a,d-1}}
\]

\[
C_{a,d} = \lambda_{d-1} \cdot C_{a,d-1}
\]
Mack Chain Ladder Procedure

Hypothesis:

\[C_{a,d} \text{ independent for each accident year } a \]

\[
E[C_{a,d}|C_{a,1} \ldots C_{a,d-1}] = \lambda_{d-1} \cdot C_{a,d-1}
\]

\[
V[C_{a,d}|C_{a,1} \ldots C_{a,d-1}] = \sigma_{d-1} \cdot C_{a,d-1}
\]

- Variance proportional to the mean
- Same development pattern for all accident years
- Future depends only on the last diagonal
- Independent accident years
Mack Chain Ladder Procedure

Hypothesis:

\[C_{a,d} \] independent for each accident year \(a \)

\[
E[C_{a,d}|C_{a,1}\cdots C_{a,d-1}] = \lambda_{d-1} \cdot C_{a,d-1}
\]

\[
V[C_{a,d}|C_{a,1}\cdots C_{a,d-1}] = \sigma_{d-1} \cdot C_{a,d-1}
\]

Consequences:

\[
\lambda_{d-1} = \frac{\sum_{a=1}^{n-d+1} C_{a,d}}{\sum_{s=1}^{n-d+1} C_{a,d-1}} \quad \rightarrow \quad E[R]
\]

\[
\sigma_{d-1} = \frac{1}{n-d} \sum_{a=1}^{n-d+1} C_{a,d-1} \left(\frac{C_{a,d}}{C_{a,d-1}} - \lambda_{d-1} \right)^2 \quad \rightarrow \quad V[R]
\]

Application:

- Assume an underlying distribution of the reserves
- Fit with the first 2 moments
Mack Chain Ladder Procedure

- Systematic & statistical errors
- Non-parametric

- No smoothing/adjustment of the development factors
- No tail factors
- Only 2 moments

![Diagram showing ±μ and ±σ]
Mack Chain Ladder Procedure

Hypothesis:

\[C_{s,d} \text{ independent for each accident year } s \]

\[E\left[C_{a,d} | C_{a,1} \cdots C_{a,d-1}\right] = \lambda_{d-1} \cdot C_{a,d-1} \]

\[V\left[C_{a,d} | C_{s,1} \cdots C_{a,d-1}\right] = \sigma_{d-1} \cdot C_{a,d-1} \]

Consequences:

\[\begin{align*}
\lambda_{d-1} &= \frac{\sum_{a=1}^{n-d+1} C_{a,d}}{\sum_{a=1}^{n-d+1} C_{a,d-1}} \quad \rightarrow \quad E[R] = E[a2u_d] \\
\sigma_{d-1} &= \frac{1}{n-d} \sum_{a=1}^{n-d+1} C_{a,d-1} \left(\frac{C_{a,d}}{C_{a,d-1}} - \lambda_{d-1}\right)^2 \quad \rightarrow \quad V[R] = V[a2u_d]
\end{align*} \]

Application:

- Assume an underlying distribution of the reserves
- Fit with the first 2 moments
- Take over the first 2 moments only of the development factors
- Fit a model to the development factors
Agenda

- Mack Chain Ladder Procedure
- Half-Mack Procedure
- Half-Mack Sampling
Loss Development Pattern
Loss Development Pattern

Reserving actuaries tricks:
- Adjustments to experience
- Smoothing
- Fit to a model

\[F(t)^{-1} = \left[1 - \exp\left(-\frac{t - \tau}{\lambda} \right) \right]^{-\alpha} \]

- Location
- Shape
- Scale

loss development pattern
loss development factor
development year
continuous time
Loss Development Patterns

![Graph showing the relationship between 1/a2U_d and d. The graph plots a curve that increases as d increases, indicating a non-linear relationship.](image-url)
Half-Mack Loss Development Patterns

Fit with χ^2 statistic

- Best estimate minimizes χ^2 function

CL estimation → model

$$\chi^2 = \sum_{d=1}^{T} \left(\frac{a2u_d - F(d)}{\Delta a2u_d} \right)^2$$

MCL error

- Goodness of fit $\frac{\chi^2_{\text{min}}}{\text{dof}}$
Half-Mack Reserves Distribution

- best fit: $\chi^2 = \chi_{\text{min}}^2$

- χ^2 confidence intervals
 - 1σ interval: $\chi^2 \leq \chi_{\text{min}}^2 + 1$
 - p intervals: $\chi^2 \leq \chi_{\text{min}}^2 + \chi^2(p)$

→ reserves distribution
The Mack Chain Ladder Procedure

- Systematic & statistical errors
 - Non-parametric
- Natural smoothing of the development factors
- Full distribution of reserves
- Automatic tail factors
- Accounts for market experience

- No smoothing/adjustment of the development factors
- Only 2 moments
- No tail factors

\[\mu, \sigma \]
The Half-Mack

Reserving Risk
- Estimate a_2u_d with errors Δa_2u_d
- Fit a_2u_d with $F(d)$
- $F(d)$ determines reserves
- $F(d)$ confidence intervals determine reserves distribution

Parameter Risk in General
- Estimate q_x with errors Δq_x
- Fit q_x with $G(x)$
- $G(x)$ determines EV
- $G(x)$ confidence intervals determine EV distribution
Agenda

- Mack Chain Ladder Procedure
- Half-Mack Procedure
- Half-Mack Sampling
Half-Mack χ^2 Analytic Solution

Hypothesis:
- $a2u_d$ fluctuate normally
- $a2u_d$ fluctuations are independent

Relaxation 1:
- $a2u_d$ fluctuate with fatter tail

Relaxation 2:
- $a2u_d$ fluctuate with dependence
Half-Mack Loss Development Patterns

![Graph showing loss development patterns with 1/a2ud on the y-axis and d on the x-axis. The graph includes various data points and error bars.](image-url)
\(\chi^2 \) statistic assumes Gaussian errors

\[\Rightarrow \text{Sample with fault tails} \]

- Sample the \(a2u_d \)
- Fit the best \(F(d) \)
Half-Mack Reserves in Comparison

US medical malpractice
Half-Mack χ^2 Analytic Solution

Hypothesis:

\[a_2 u_d \text{ normally distributed} \]
\[a_2 u_d \text{ independent} \]

Relaxation 1:

\[a_2 u_d \text{ distributed with fatter tail} \]

Relaxation 2:

\[a_2 u_d \text{ distributed with dependence} \]
Half-Mack Sampling

χ^2 statistic assumes independent errors
- Sample the a_{2u_d}
- Fit the best $F(d)$
Half-Mack Sampling

\(\chi^2 \) statistic assumes independent errors \(\Rightarrow \) sample with **Gaussian copula**

- Sample the \(a^2 u_d \)
- Fit the best \(F(d) \)
Half-Mack Reserves in Comparison

- Mack Chain Ladder
- Half-Mack Gaussian
- Half-Mack Gaussian -0.5
- Half-Mack Gaussian 0.5

US medical malpractice
Mack Chain Ladder Procedure

Half-Mack Procedure

Half-Mack Sampling
Half-Mack Reserves in Comparison

US MedMal

US MTPL

US WorkComp
The Half-Mack Chain Ladder Procedure

- Systematic & statistical errors
- Non-parametric
- Natural smoothing of the development factors
- Full distribution of reserves
- Automatic tail factors
- Accounts for market experience

- No smoothing/adjustment of the development factors
- Only 2 moments
- No tail factors
Half-Mack & Actuarial Judgment

US product liability
The Half-Mack procedure is a powerful instrument to account for parameter risk.

The Half-Mack procedure is yet another stochastic reserving tool.

There is no silver bullet: actuarial engineering remains an art 😊
Contact

Frank Cuypers

+41 (41) 725 32 94

frank.cuypers@prs-zug.com