Moving beyond history: A loss driver approach to projecting and quantifying casualty exposure
Agenda

• The Casualty Context
• An Existing Exposure Approach
• Towards Liability Risk Drivers
• Modelling Liability Risk Drivers
• Indicator Retrieval
• Data Analysis
• Application of LRD (Examples)
• Potential Collaborations on Data Analysis
• Q & A
The Casualty Context

1. Causation
2. Occurrence
3. Manifestation
4. Claims Made
5. Pay-out
Liability Valuation – Need for a forward-looking approach

• Market failures lead to Liability Crises
 → inadequate premiums & rise in claims/indemnity awards
 → insurers withdraw from public liability or even default
 → no cover available for many or only at prohibitive prices
 → businesses have to close
 Examples: USA mid '80s, Australia 2000

• Current approaches are
 - somehow backward looking and therefore inadequate for liability, which is long tail
 - weak in dynamic environments (emerging markets, tort reforms, etc.)
 - for RI treaties relatively unspecific with respect to industry segment and neglect other risk drivers (such as turnover size) altogether (at least on the treaty reinsurance side)
Agenda

• The Casualty Context
• **An Existing Exposure Approach**
• Towards Liability Risk Drivers
• Modelling Liability Risk Drivers
• Indicator Retrieval
• Data Analysis
• Application of LRD (Examples)
• Potential Collaborations on Data Analysis
• Q & A
What is Increased Limit Factors (ILF)?

An approach to redistribute the cedent's premium to layers

- Premium redistribution based on a loss ratio estimation and a constant double limit surcharge (Increased Limit Factor) assumption
- All internal and external factors on losses are combined into two factors
ILF Model Overview

• The ILF approach is based on the cedent premium P, the sum insured SI, the loss ratio LR and the ILF Factor f (portion of the premium that needs to be charged additionally, if the sum insured is doubled $f \in [0,1]$).

• It is used to calculate the expected loss EL in the layer. In the example the layer is $(SI - SI/4)$ excess $SI/4$.

• The excess frequency is set implicitly by the loss ratio assumption.
Agenda

• The Casualty Context
• An Existing Exposure Approach
• Towards Liability Risk Drivers
• Modelling Liability Risk Drivers
• Indicator Retrieval
• Data Analysis
• Application of LRD (Examples)
• Potential Collaborations on Data Analysis
• Q & A
Short vs. Long Tail: Risk Factors

Example Earthquake

Table: Hazard + Vulnerability + Values + Conditions

Example Liability Event

Diagram: Understanding what drives risk in Liability is key to improve UW quality
NatCat Modelling – The 4 Box Principle

- **Hazard**: Where, how often, with what intensity do events occur?
- **Vulnerability**: What is the extent of damage at a given event intensity?
- **Value distribution**: Where are the insured objects located and what is their value?
- **Insurance conditions**: What proportion of the loss is insured?

Computer Model

Expected Annual Loss
What are the Risk Drivers in Liability?

Liability Risk Drivers Model

Expected Annual Loss

→ Understanding what drives risk in Liability is key to improve UW quality
Main advantages:
1. LRDs are periodically assessed.
2. Perceived changes in risk landscape can immediately be factored in.
3. External and group-wide data are combined to calibrate the model.

Example: Product Liability Risk

Breakdown of the cause-effect chain into "LRDs":

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>New products, emerging risks?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propensity to sue, …?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Likelihood of mass litigation?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product Liability Loss</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Casualty vs. Nat Cat: Risk R&D and Tool Dev. History

Nat Cat

till 1970
no quantitative methods, loss surprises

1980
first attempts for quantified risk assessment, CRESTA info plans

1990
tools for main areas and perils, data standards and exchange

2000
world-wide cat risk assessment, sophisticated software, hazard/vulnerab. data bases, systematic/organized data flow

2013
tools: DONE secondary and multiline effects? assessability limits?

- + new LoBs/ToBs
- + costing/UW/steering
- + systematic data exchange

...\n
Liability

until recently: status of most Casualty models and tools

LRD (2007-2013)
Agenda

• The Casualty Context
• An Existing Exposure Approach
• Towards Liability Risk Drivers
• **Modelling Liability Risk Drivers**
• Indicator Retrieval
• Data Analysis
• Application of LRD (Examples)
• Potential Collaborations on Data Analysis
• Q & A
What is Swiss Re Liability Risk Drivers™?

A forward-looking costing tool and loss model for Liability business

- Exposure assessment based on a set of loss scenarios
- Assesses effect of internal and external factors on losses
- Incorporates validated underwriter insights
- Calibrated and validated against reliable in-house and external exposure and loss data
Liability Risk Drivers (LRD): Model Approach

• Calculates the expected loss costs of the (re)insurance layer starting from a set of loss scenarios

• Assesses the impact of (changes in) key factors (e.g. legal environment) on the expected loss

• Evaluates effect of (re)insurance terms and conditions on the expected loss (e.g. sub-limit per victim, Spain)

• Past experience is used as testing environment to calibrate/verify the model’s outcome

• Due to its modular approach it can be extended (e.g. new drivers, new scenarios) only by adapting the corresponding module
Model Context
LRD Model
Model Overview

Exposure information

Model

- How much it costs
- What else does also influence the loss
- Where
 - What can go wrong
 - Consequence
- What is covered and how
- Aggregation engine

Expected Loss
Agenda

- The Casualty Context
- An Existing Exposure Approach
- Towards Liability Risk Drivers
- Modelling Liability Risk Drivers
- Indicator Retrieval
- Data Analysis
- Application of LRD (Examples)
- Potential Collaborations on Data Analysis
- Q & A
Indicator Retrieval: Make the LRD Model work!

- Regular and sudden retrieval and processing of indicators/drivers on a broad geographic scale
- Implementation of an indicator retrieval tool to automate model feed (where sensible)
Agenda

• The Casualty Context
• An Existing Exposure Approach
• Towards Liability Risk Drivers
• Modelling Liability Risk Drivers
• Indicator Retrieval

• **Data Analysis**
• Application of LRD (Examples)
• Potential Collaborations on Data Analysis
• Q & A
Model Calibration

• *Reality check* for model output with loss data
• Calibrate the “raw” model to reproduce the loss data for one country
• The calibrated model output is then verified for other countries by changing only *known* parameters
 - from risk driver indicator retrieval
• Results are continuously tracked
LRD Prediction for Country A and B verified

- **oil blue**: country A data fit
- **red**: country A, LRD
- **grey**: country B data fit
- **green**: country B, LRD

Calibration:
- **brown**: country C data fit
- **blue**: country C, LRD
Agenda

• The Casualty Context
• An Existing Exposure Approach
• Towards Liability Risk Drivers
• Modelling Liability Risk Drivers
• Indicator Retrieval
• Data Analysis
• Application of LRD (Examples)
• Potential Collaborations on Data Analysis
• Q & A
Application of LRD

<table>
<thead>
<tr>
<th>1. Portfolio Risk Analysis</th>
<th>Decomposition of an insurance portfolio into key risk drivers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Tariff Indicator for Emerging Markets</td>
<td>Calculation of expected loss and identification of major risk drivers in different high growth countries</td>
</tr>
<tr>
<td>3. Scenario Analysis</td>
<td>Portfolio impact analysis based on legal and societal developments</td>
</tr>
<tr>
<td>4. Casualty Cat Modeling</td>
<td>Calculate impact of various casualty cat scenarios on client portfolio (work in progress)</td>
</tr>
</tbody>
</table>
Agenda

• The Casualty Context
• An Existing Exposure Approach
• Towards Liability Risk Drivers
• Modelling Liability Risk Drivers
• Indicator Retrieval
• Data Analysis
• Application of LRD (Examples)
• **Potential Collaborations on Data Analysis**
• Q & A
Data Analysis Collaboration

- What are the liability risk drivers in your portfolio?
- We are always motivated to investigate the risk drivers in collaboration with clients willing to share their data.
- We can offer a wide range of data analysis services (based on your data, enriched with SR data) according to your needs and interests:
 - Loss frequency vs. company size
 - Loss severity vs. company size
 - Loss severity vs. purchased limit
 - Granularity and number of losses permitting: Differentiation by industry
 - ...

...
Q & A

Thank you
©2014 Swiss Re. All rights reserved. You are not permitted to create any modifications or derivative works of this presentation or to use it for commercial or other public purposes without the prior written permission of Swiss Re.

The information and opinions contained in the presentation are provided as at the date of the presentation and are subject to change without notice. Although the information used was taken from reliable sources, Swiss Re does not accept any responsibility for the accuracy or comprehensiveness of the details given. All liability for the accuracy and completeness thereof or for any damage or loss resulting from the use of the information contained in this presentation is expressly excluded. Under no circumstances shall Swiss Re or its Group companies be liable for any financial or consequential loss relating to this presentation.