Machine Learning & Data Analytics

Mario V. Wüthrich
RiskLab, ETH Zurich

Schweizerische Aktuarvereinigung SAV
Zurich, April 4, 2017
New Lecture & Literature

▷ New lecture at ETH Zurich

- Data Analytics for Non-Life Insurance Pricing
 Wüthrich and Buser (AXA Winterthur) starting Spring 2018.

▷ Lecture notes on SSRN preprint server¹ (first draft)

- Data Analytics for Non-Life Insurance Pricing
 Manuscript ID 2870308.

Section 1: Supervised and Unsupervised Learning
Regression Structure

Basic Assumption:
There are structural differences which can be explained by a regression function

$$\mu : \mathcal{X} \to \mathbb{R}, \quad x \mapsto \mu(x).$$

- \mathcal{X} is called feature space, covariate space;
- $x \in \mathcal{X}$ is called feature, covariate, explanatory variable, independent variable;
- $\mu(\cdot)$ is called regression function or classifier function.

Example of feature:

$$x = (x_1, \ldots, x_d) = \text{age, gender, type of car, NOGA code, income, \ldots}$$
Supervised Learning

Assumption: We have \(n \) independent (noisy) observations (data)

\[
D = \{(Y_1, x_1), \ldots, (Y_n, x_n)\},
\]
satisfying for all \(i = 1, \ldots, n \) the model assumption

\[
\mathbb{E}[Y_i] = \mu(x_i).
\]

▷ **Supervised Learning** (regression problem):

Determine the (unknown) regression function

\[
\mu : \mathcal{X} \rightarrow \mathbb{R}, \quad x \mapsto \mu(x)
\]

from the given data \(D = \{(Y_1, x_1), \ldots, (Y_n, x_n)\} \).
Unsupervised Learning

Assumption: We have n (possibly noisy) features

$$\mathcal{F} = \{x_1, \ldots, x_n\} \subset \mathcal{X}.$$

▷ **Unsupervised Learning** (pattern recognition):

Find patterns and differences in these features $\mathcal{F} = \{x_1, \ldots, x_n\}$.
• Section 2: Unsupervised Learning
Telematics Car Driving Data

- **Unsupervised Learning** (pattern recognition):

Find patterns and differences in these (noisy) features $\mathcal{F} = \{x_1, \ldots, x_n\}$.

![Heatmaps of different drivers](image)
K-Means Algorithm

Select (desired) number K of categories and construct a “good” classifier

$$C : \mathcal{X} \rightarrow \mathcal{K} = \{1, \ldots, K\}, \quad x \mapsto C(x).$$

- Choose a distance function $d(\cdot, \cdot) \geq 0$ on $\mathcal{X} \times \mathcal{X}$.

- K-means algorithm determines iteratively K centers $z^{(1)}, \ldots, z^{(K)} \in \mathcal{X}$ such that

$$\sum_{k=1}^{K} \left(\sum_{i=1}^{n} \mathbb{1}_{\{C(x_i) = k\}} d(x_i, z^{(k)}) \right) \equiv \min,$$

with classifier $C(x_i) = \arg\min_{k \in \mathcal{K}} d(x_i, z^{(k)}) \in \mathcal{K}$.

- Algorithm converges but result may be non-optimal (depending on starting point).
Result of K-Means Algorithm for $K = 4$
Section 3: Supervised Learning
Choice of Loss Function

▷ **Supervised Learning** (regression problem):

Infer the (unknown) regression function

\[\mu : \mathcal{X} \to \mathbb{R}, \quad \mathbf{x} \mapsto \mu(\mathbf{x}) \]

from the given data \(\mathcal{D} = \{(Y_1, x_1), \ldots, (Y_n, x_n)\} \).

▷ This inference is done w.r.t. a given loss function \(\mathcal{L} \). For simplicity, set

\[\mathcal{L}_{\mathcal{D}}(\mu(\cdot)) = \sum_{i=1}^{n} (Y_i - \mu(x_i))^2. \]

▷ In general, one should/may use (scaled) deviance statistics as loss function.
Regression Problem

Aim: Find regression function $\mu : \mathcal{X} \rightarrow \mathbb{R}$ that “minimizes” in-sample loss

$$\mathcal{L}_D(\mu(\cdot)) = \sum_{i=1}^{n} (Y_i - \mu(x_i))^2.$$

- The saturated model minimizes in-sample loss, but it is over-parametrized!
- What if we do not have any idea about a “low-parametrized” $\mu(\cdot)$?
- What if the feature space \mathcal{X} is very high-dimensional?

▷ Machine learning methods help to find $\mu(\cdot)$.

▷ **Crucial:** Trade-off between small in-sample loss and over-parametrization.
Supervised Machine Learning

Supervised Machine Learning Categorization:

- **deep learning**
 - e.g. deep artificial neural networks
 - deep: use many hidden layers (more like black-box)
 - often very powerful, but difficult to calibrate

- **shallow learning**
 - e.g. regression & classification trees, boosting machines, shallow neural networks
 - shallow: analysis remains at the surface (more transparent)
 - also powerful and easy to use
 - useful to improve parametric statistical models
Classification and regression trees (CART) provide regression functions that

- are non-parametric,

- learn an underlying structural form of $\mu(\cdot)$ from the data D, and

- which can deal with high dimensional feature spaces \mathcal{X}.

CART go back to the seminal work of Breiman, Friedman, Olshen and Stone (1984).
Regression Tree Algorithm (1/2)

Idea: Group observations \((Y_i, x_i)\) that are similar into the same basket, i.e. grouping is done such that the observations in the same basket are “more similar”.

▷ Binary split regression tree algorithm builds at every step 2 baskets:
Regression Tree Algorithm (2/2)

Main Questions:

- measure of dissimilarity \Rightarrow loss function L_D
- choice of potential splits, in particular, for high dimensional \mathcal{X}
- stopping rule for algorithm (statistics)
Regression Tree Estimator (1/2)

Successive application of binary splits provides partition $\mathcal{X}_1, \ldots, \mathcal{X}_K$ of \mathcal{X}.

Define the regression tree estimator (of complexity K) in $x \in \mathcal{X}$ by

$$\hat{\mu}(x) = \sum_{k=1}^{K} \hat{\mu}_k \ 1\{x \in \mathcal{X}_k\},$$

with $\hat{\mu}_k$ being the sample mean on \mathcal{X}_k.

17
Regression Tree Estimator (2/2)

Define the regression tree estimator (of complexity K) in $x \in \mathcal{X}$ by

$$\hat{\mu}(x) = \sum_{k=1}^{K} \hat{\mu}_k \mathbb{1}_{\{x \in \mathcal{X}_k\}}.$$

- Regression tree estimator is non-parametric (similarity and loss function driven).
- Regression tree estimator works for high dimensional feature spaces \mathcal{X}.
- To be discussed:
 - choice of feature space \mathcal{X} and potential splits affect results (and dependencies);
 - stability of the results under slight changes in observations (different noise);
 - choice of sensible stopping rule (tree pruning);
 - stability under different choices of loss functions;
 - more advanced methods than regression trees;
 - weak learning, stage-wise adaptive regression, boosting machine.
• Section 4: *Examples of Supervised Learning*
Individual claims development (regression tree for one-step ahead $t \rightarrow t + 1$) based on feature components cl, diag, cc, law, j, individual claims history.
for time lag $t + 1$:

<table>
<thead>
<tr>
<th>numbers of leaves</th>
<th>Y1</th>
<th>Y2</th>
<th>Y3</th>
<th>Y4</th>
<th>Y5</th>
<th>Y6</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>11</td>
<td>18</td>
<td>12</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>components used for split questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>claim closed</td>
</tr>
<tr>
<td>lawyer involved</td>
</tr>
<tr>
<td>claims code</td>
</tr>
<tr>
<td>claims diagnosis</td>
</tr>
<tr>
<td>reporting delay</td>
</tr>
<tr>
<td>previous payments</td>
</tr>
<tr>
<td>previous payments</td>
</tr>
<tr>
<td>cl</td>
</tr>
<tr>
<td>cc</td>
</tr>
<tr>
<td>cc</td>
</tr>
<tr>
<td>cc</td>
</tr>
<tr>
<td>cc</td>
</tr>
<tr>
<td>diag</td>
</tr>
<tr>
<td>diag</td>
</tr>
<tr>
<td>diag</td>
</tr>
<tr>
<td>diag</td>
</tr>
<tr>
<td>Y0</td>
</tr>
<tr>
<td>Y1</td>
</tr>
<tr>
<td>Y2</td>
</tr>
<tr>
<td>Y3</td>
</tr>
<tr>
<td>Y4</td>
</tr>
<tr>
<td>Y5</td>
</tr>
</tbody>
</table>

Relevant feature information and Markov condition.
Boosting the Lee-Carter Model

Iterated weak learning applied to residuals is known as a **Boosting Machine**.
Conclusions should be here …

... and your remarks!