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New Lecture & Literature

> New lecture at ETH Zurich

e Data Analytics for Non-Life Insurance Pricing

Wiithrich and Buser (AXA Winterthur) starting Spring 2018.

> Lecture notes on SSRN preprint server' (first draft)

e Data Analytics for Non-Life Insurance Pricing

Manuscript ID 2870308.

1https://www.ssrn.com/en/



e Section 1: Supervised and Unsupervised Learning



Regression Structure

Basic Assumption:
There are structural differences which can be explained by a regression function

w:X — R, x — p(x).

e X is called feature space, covariate space;
e x € X is called feature, covariate, explanatory variable, independent variable;

e (-) is called regression function or classifier function.

Example of feature:

x = (x1,...,xq9) = (age, gender, type of car, NOGA code, income, ...)



Supervised Learning
Assumption: We have n independent (noisy) observations (data)

D={(Yi,x1),...,(Y, zn)},

satisfying for all 2 = 1,...,n the model assumption

EY:] = p ().

> Supervised Learning (regression problem):

Determine the (unknown) regression function
e X = R, x — pu(x)

from the given data D = {(Y1,x1),..., (Y., xn)}.



Unsupervised Learning

Assumption: We have n (possibly noisy) features

F=A{xy,...,x,} C X.

> Unsupervised Learning (pattern recognition):

Find patterns and differences in these features F = {x, ...



e Section 2: Unsupervised Learning



Telematics Car Driving Data

> Unsupervised Learning (pattern recognition):

Find patterns and differences in these (noisy) features F = {x1,...,x,}.




K-Means Algorithm

Select (desired) number K of categories and construct a “good” classifier

C:X - K={1,...,K}, x — C(x).

e Choose a distance function d(-,-) > 0on X x X.

o I{-means algorithm determines iteratively K centers z(1), ..., 2(5) € X such that

K n
1ni .

k=1 1=1

with classifier C(x;) = argmin d(xz;, 2®)) € K.
ke

e Algorithm converges but result may be non-optimal (depending on starting point).
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e Section 3: Supervised Learning
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Choice of Loss Function

> Supervised Learning (regression problem):

Infer the (unknown) regression function
n:X — R, x — u(x)

from the given data D = {(Y1,x1),..., (Y., xn)}.

> This inference is done w.r.t. a given loss function L. For simplicity, set

n

Lo(u()) = Y (Yi—p(z))”

1=1

> In general, one should/may use (scaled) deviance statistics as loss function.
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Regression Problem

Aim: Find regression function i : X — R that “minimizes” in-sample loss

2
Lp(p(-) = Z(Yi—ﬂ(wi)) :
i=1
e The saturated model minimizes in-sample loss, but it is over-parametrized!

e What if we do not have any idea about a “low-parametrized” ()7

e What if the feature space X is very high-dimensional?

> Machine learning methods help to find u(-).

> Crucial: Trade-off between small in-sample loss and over-parametrization.
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Supervised Machine Learning

Supervised Machine Learning Categorization:

> deep learning

« e.g. deep artificial neural networks

+ deep: use many hidden layers (more like black-box)
« often very powerful, but difficult to calibrate

KA X
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> shallow learning

* e.g. regression & classification trees, boosting machines, shallow neural networks

+ shallow: analysis remains at the surface (more transparent)
* also powerful and easy to use

« useful to improve parametric statistical models
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Classification and Regression Trees (CART)

Classification and regression trees (CART) provide regression functions that

® are non-parametric,
e learn an underlying structural form of u(-) from the data D, and

e which can deal with high dimensional feature spaces X'.

CART go back to the seminal work of Breiman, Friedman, Olshen and Stone (1984).
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Regression Tree Algorithm (1/2)

Idea: Group observations (Y;, ;) that are similar into the same basket, i.e.

grouping is done such that the observations in the same basket are “more similar”.

> Binary split regression tree algorithm builds at every step 2 baskets:
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Regression Tree Algorithm (2/2)

Main Questions:

e measure of dissimilarity = loss function Lp
e choice of potential splits, in particular, for high dimensional X

e stopping rule for algorithm (statistics)
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Regression Tree Estimator (1/2)

Successive application of binary splits provides partition X7, ..., Xk of X.

estimated proportion of female drivers
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Define the regression tree estimator (of complexity K) in & € X by

K
() = ) ik Lizex,),
k=1

with 715 being the sample mean on AX}.



Regression Tree Estimator (2/2)

Define the regression tree estimator (of complexity K) in & € X by
K
ix) = ) fk Ligex,y
k=1

e Regression tree estimator is non-parametric (similarity and loss function driven).
e Regression tree estimator works for high dimensional feature spaces X.

e To be discussed:

choice of feature space X’ and potential splits affect results (and dependencies);
stability of the results under slight changes in observations (different noise);
choice of sensible stopping rule (tree pruning);

stability under different choices of loss functions;

more advanced methods than regression trees;

weak learning, stage-wise adaptive regression, boosting machine.
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e Section 4: Examples of Supervised Learning
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Individual Claims Reserving (1/2)

WN PO

Individual claims development (regression tree for one-step ahead t — ¢ + 1)
based on feature components c1, diag, cc, law, j, individual claims history.
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Individual Claims Reserving (2/2)

for time lag ¢ + 1: Y1 Y2 Y3 Y4 | Y5 | Y6

numbers of leaves 8 11 18 12 4 4
components used for split questions

claim closed cl cl cl cl cl cl

lawyer involved law | law | law

claims code cc cc cc cc cc

claims diagnosis diag | diag | diag | diag diag

reporting delay ] j j

previous payments YO Y1 Y2 Y3 Y4 | Y5

previous payments Y1 Y2

Relevant feature information and Markov condition.
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Boosting the Lee-Carter Model

tree improved Lee—-Carter fit; females

age

lterated weak learning applied to residuals is known as a Boosting Machine.
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Conclusions should be here ...

. and your remarks!
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