Modern NLP in claims management

Leandro von Werra, Data Scientist @ Swiss Mobiliar

Acturial Data Science Après-Midi

November 4, 2020
Contents of this talk: three eras

2013
Identity/Counts + Classical ML

2017
Semantics + Deep Learning

Contexts + Transfer Learning
Contents of this talk: three eras
Contents of this talk: three eras

Identity/Counts + Classical ML

Semantics + Deep Learning

Contexts + Transfer Learning

Modern NLP in claims management 04.11.2020
Claims at Swiss Mobiliar: Expectation

What always comes - we help you quickly and uncomplicated. mobiliar.ch
«Liebe Mobiliar,
ein Marder hat bei meinem VW Golf einige Stromkabel durchgebissen und ich musste meinen Wagen in die Werkstatt bringen 😞»
Part 1:

Identity/Counts

+ Classical ML
Claims at Swiss Mobiliar: Reality

«Liebe Mobiliar, ein Marder hat bei meinem VW Golf einige Stromkabel durchgebissen und ich musste meinen Wagen in die Werkstatt bringen 😞»

Schadenfall?
Teilfall?
Auslöser?

→ Classification task!
Text representation: Identity & count encodings

How can we feed textual data to a numerical model?
One-hot encodings:

- The quick brown fox jumps over the lazy dog.

Size of the vectors = number of words in the vocabulary of the corpus

How can we encode a whole sentence/document?
Count encodings:

\[[1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0] + [0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0] + [0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0] + \ldots = [2 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1] \]
Encodings: Pros and Cons

Pros
- Simple to construct (vocab + count)
- Feature for ML models (SVM, Naïve Bayes, Neural Networks etc.)
- Easy decoding

Cons
- Large feature space ($O(10^6)$)
- Loss of sequential information ($\rightarrow n$-grams, RNNs)
In production: n-grams + Naïve Bayes
In production: n-grams + Naïve Bayes
Part 2:

Semantics + Deep Learning
Semantic word embeddings: word2vec

https://towardsdatascience.com/understanding-word2vec-embedding-in-practice-3e9b8985953
Vector geometry with word embeddings
Similarity search for trends

How many claims for Smartphones do we receive?

Keyword: Smartphone
Synonyms: Cellphone, iPhone, Huawei, Mobile, Samsung Galaxy etc.
Similarity search for trends
Word embeddings: Pros and Cons

Pros
• Partly encode meaning
• Dense input features
• Jumpstart model training
• Similarity measure between words/sentences

Cons
• Bias issues
• Don't solve sequential problem
• Static representation (Apple (company) and apple (fruit))
Recurrent Neural Networks

Retain sequential information with RNNs:

Require a lot of training data and are hard to scale!

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
Part 3:

Context + Transfer Learning
Transformers: Attention is all you need

Feedforward Networks + Attention
→ No recurrence necessary

[Diagram of Neural Network with Self-Attention and Feedforward Networks]

http://jalammar.github.io/illustrated-transformer/
Transformers: Family
Transfer Learning

Step 1: Pretraining

Use the output of the masked word’s position to predict the masked word

Possible classes:
- All English words
- Improvisation
- Aardvark
- Zyzzyva

Randomly mask 15% of tokens

Input

[CLS] Let's stick to improvisation in this skit

[CLS] Let's stick to improvisation in this skit

http://jalammar.github.io/illustrated-bert/
Transfer Learning

Step 2: Fine-tuning

http://jalammar.github.io/illustrated-bert/
Transformers are extremely versatile:

Multilingual: There are models pretrained on 100 languages!

Many tasks:
- Text generation
- Text classification
- Token classification (e.g. NER)
- Question Answering
- Summarization
- Translation
Question Answering with claim texts
Transformers: Scale

https://venturebeat.com/2020/02/10/microsoft-trains-worlds-largest-transformer-language-model/
Transformers: Scale
Transformers: Pros and Cons

Pros
- Contextual embeddings
- Few labels required with transfer learning
- State-of-the-art performance

Cons
- Massive models
- Interpretability/bias
- Finite context
Thank you for your attention!

Mail: leandro.vonwerra1@mobi.ch
Twitter: @lvwerra