Economic Theory of Financial Markets

Leonhard Vogt Fabian Uffer

August 14, 2009

Abstract
These are our notes from a lecture by Dr. Mario Wüthrich in spring 2009.

Contents

1 Utility Theory 5
1.1 Expected Utility and Risk Aversion 5
1.2 Indifference Price 7
1.3 Risk Exchange Economy 12
2 Mean-Variance Analysis 16
2.1 The Markovitz Model 16
2.2 Preliminaries 19
2.3 Optimization 19
2.4 Mean-Variance Analysis without risk free assets 20
2.5 Mean-Variance Analysis with risk free assets 28
2.6 Capital Asset Pricing Model 33
3 Arbitrage Pricing Theory (APT) 36
3.1 Exact APT, no ideosyncratic risk 36
3.2 Ideosyncractic Risk 37
4 Multiperiod Models 41
4.1 Deterministic Cashflows and Arbitrage 41
4.2 Term Structures in Discrete Time 44
4.3 Duration 44
4.4 Stochastic Cashflow in Discrete Time 46
4.4.1 Market Consistent Valuation at Time Zero 46
4.4.2 Understanding Deflators 47
4.4.3 Pricing at Positive Time 48
4.4.4 Equivalent Martingale Measure 48
4.4.5 Market Price of Risk 51
4.4.6 Vasicek Model in Discrete Time 53

1 Utility Theory

1.1 Expected Utility and Risk Aversion

Let (Ω, \mathcal{F}, P) a probability space and $\mathcal{X} \subset\{X: \Omega \rightarrow \mathbb{R}\}$ possible choices of an economic agent, represented by random variables X.

Definition 1.1. A preference order on \mathcal{X} is a relation \succeq with the following properties:

1. (Completeness): For all $X, Y \in \mathcal{X}$ we have $X \succeq Y$ or $Y \succeq X$.
2. (Transitivity): For all $X, Y, Z \in \mathcal{X}$ we have $X \succeq Y, Y \succeq Z \Rightarrow X \succeq Z$.

Remark. If $X \succeq Y$ and $Y \succeq X$ we note $X \sim Y$. The economic agent is indifferent between X and Y.

Definition 1.2. A numerical representation for a preference order \succeq on \mathcal{X} is a function $U: \mathcal{X} \rightarrow \mathbb{R}$ such that $U(X) \geq U(Y)$ if and only if $X \succeq Y$.

Remark. A numerical representation is not unique.
Remark. Necessary and sufficient conditions on \succeq for the existence of a numerical representation can be found in Theorem 2.6 of [FS04].

Let $I \subset \overline{\mathbb{R}}$ an interval such that $P(X \in I)=1$ for all $X \in \mathcal{X}$. For a given map $u: I \rightarrow \mathbb{R}$ a numerical representation U can be constructed by

$$
\begin{equation*}
U(X)=\mathrm{E}[u(X)]=\int_{I} u(x) \mu_{X}(\mathrm{~d} x) \tag{1}
\end{equation*}
$$

with $\mu_{X}(B)=P(X \in B)$, the distribution of X
Definition 1.3. A numerical representation of the form (1) is called von NeumannMorgenstern utility. If u is strictly increasing then u is called utility function.

Remark. In the two period model X represents the payout at time 1. The utility $U(X)=\mathrm{E}[u(X)]$ can be interpreted as the average happyness with the choice X at time 1 .

Lemma 1.4. Any positive linear transformation v of the utility function u generates the same preference order.

$$
v(x)=a+b u(x), \quad a, b \in \mathbb{R}, b>0
$$

Proof. Exercise.
Assumption 1.5. We will always assume $\mathcal{X} \subset L^{1}(\Omega, \mathcal{F}, P)$ i.e. $\mathrm{E}[X]<\infty$ for all $X \in \mathcal{X}$.

Definition 1.6. Assume the financial agent has utility function u. The financial agent is called risk averse if $u(\mathrm{E}[X]) \geq \mathrm{E}[u(X)]$, risk neutral if $u(\mathrm{E}[X])=$ $\mathrm{E}[u(X)]$ and risk seeking if $u(\mathrm{E}[X]) \leq \mathrm{E}[u(X)]$.

Lemma 1.7. If a financial agent has strictly concave utility function u, then he is risk averse.

Proof. Jensens inequality.
Remark. If X is not deterministic and u is strictly concave then $\mathrm{E}[u(X)]<$ $u(\mathrm{E}[x])$.

Assumption 1.8.

- Assume u is three times differentiable on $I, u \in \mathcal{C}^{3}$
- Assume risk averse utility functions are strictly concave. $u^{\prime}(x)>0$, $u^{\prime \prime}(x)<0$.

Example.

- Exponential utility

$$
u(x)=-\frac{1}{\alpha} e^{-\alpha x}
$$

with $I=\mathbb{R}$ and $\alpha>0$
(Actuaries choice)

- Power utility

$$
u(x)= \begin{cases}\frac{1}{1-\alpha}\left(x^{1-\alpha}-1\right) & \text { for } \alpha \neq 1 \\ \log (x) & \text { for } \alpha=1\end{cases}
$$

with $I=\mathbb{R}_{+}$and $\alpha>0$
(Economists choice)
Definition 1.9. The absolute risk aversion is given by

$$
\rho_{\mathrm{ARA}}(x)=-\frac{u^{\prime \prime}(x)}{u^{\prime}(x)}
$$

The relative risk aversion is given by

$$
\rho_{\mathrm{RRA}}(x)=-x \frac{u^{\prime \prime}(x)}{u^{\prime}(x)}
$$

Remark. Risk averse financial agents have $\rho_{\mathrm{ARA}}(x)>0$ and $\rho_{\mathrm{RRA}}(x)>0$.

Example.

- The exponential utility satisfies $\rho_{\mathrm{ARA}}(x) \equiv \alpha$.
- The power utility satisfies $\rho_{\mathrm{RRA}}(x) \equiv \alpha$.

1.2 Indifference Price

Assume a financial agent with utility function u and initial wealth $w \in \mathbb{R}$.
Definition 1.10. Let $X \in \mathcal{X}$. The certainty eqivalent for (X, u, w) is given by the number $x \in \mathbb{R}$ satisfying

$$
u(w+x)=\mathrm{E}[u(w+X)]
$$

or equivalently, using preference order notation

$$
w+x \sim w+X
$$

Remark. The certainty equivalent x is a function of X, u and $w . \quad x=$ $x(X, u, w)$.

Lemma 1.11. If u is risk averse then $\mathrm{E}[X] \geq x$.

Proof.

$$
\begin{aligned}
u(w+x) & =\mathrm{E}[u(w+X)] \\
& \leq u(\mathrm{E}[w+X)] \\
& =u(w+\mathrm{E}[X])
\end{aligned}
$$

and since u is increasing

$$
\begin{aligned}
w+x & \leq w+\mathrm{E}[X] \\
x & \leq \mathrm{E}[X]
\end{aligned}
$$

Definition 1.12. A financial agent 1 with utility function u_{1} is called more risk averse than agent 2 with utility function u_{2} if

$$
u_{1}^{-1}\left(\mathrm{E}\left[u_{1}(X)\right]\right) \leq u_{2}^{-1}\left(\mathrm{E}\left[u_{2}(X)\right]\right)
$$

for all $X \in \mathcal{X}$.

For the following we will identify the set \mathcal{X} of random variables with the set \mathcal{X}^{\prime} of their probability distributions: $\mathcal{X}^{\prime}=\left\{\mu_{X}(B)=P(X \in B): X \in \mathcal{X}\right\} \subset \mathcal{M}_{1}(I)$

Assumption 1.13. $\mathcal{X} \subset \mathcal{M}_{1}(I)$ is convex and contains all point measures δ_{y} for $y \in I$.

For instance if $y \in I, z \in I$ then $\frac{1}{2} \delta_{y}+\frac{1}{2} \delta_{z} \in \mathcal{X}$.
Proposition 1.14. The following statements are equivalent:

1. Agent 1 is more risk averse than agent 2 .
2. $\rho_{\text {ARA }}^{(1)}(y) \geq \rho_{\text {ARA }}^{(2)}(y)$ for all $y \in I$.
3. There is a strictly increasing concave function v such that $u_{1}(y)=v\left(u_{2}(y)\right)$ for all $y \in I$.

Proof.
Statement (2) implies statement (3):
Let $z=u_{2}^{-1}$ and define $v=u_{1} \circ u_{2}^{-1}$ we will show that v satisfies the conditions from statement (3).

Clearly $v\left(u_{2}(y)\right)=u_{1}\left(u_{2}^{-1}\left(u_{2}(y)\right)\right)=u_{1}(y)$.
Since u_{2} is strictly increasing, so is u_{2}^{-1}, and since u_{1} is also strictly increasing, so is their composition v.

In order to proof concavity we look at the second derivative of v.

$$
\begin{array}{rlr}
v^{\prime} & =\left(u_{1} \circ z\right)^{\prime}=\left(u_{1}^{\prime} \circ z\right) \cdot z^{\prime}=\frac{u_{1}^{\prime}(z)}{u_{2}^{\prime}(z)}>0 \\
v^{\prime \prime} & =\frac{u_{1}^{\prime \prime}(z) u_{2}^{\prime}(z)-u_{1}^{\prime}(z) u_{2}^{\prime \prime}(z)}{\left(u_{2}^{\prime}(z)\right)^{2}} z^{\prime} & \text { note: } z^{\prime}=\frac{1}{u_{2}^{\prime}} \\
& =\frac{u_{1}^{\prime}(z)}{\left(u_{2}^{\prime}(z)\right)^{2}}\left(\frac{u_{1}^{\prime \prime}(z)}{u_{1}^{\prime}(z)}-\frac{u_{2}^{\prime \prime}(z)}{u_{2}^{\prime}(z)}\right) \\
& =\underbrace{\frac{u_{1}^{\prime}(z)}{\left(u_{2}^{\prime}(z)\right)^{2}}}_{\geq 0} \underbrace{\left(-\rho_{\text {ARA }}^{(1)}+\rho_{\text {ARA }}^{(2)}\right)}_{\leq 0} \leq 0 &
\end{array}
$$

by assumption of statement (2), thus proving concavity of v.

Statement (3) implies statement (2):

The function v given by statement (3) is assumed concave thus $v^{\prime \prime}<0$. The identity

$$
v^{\prime \prime}=\underbrace{\frac{u_{1}^{\prime}(z)}{\left(u_{2}^{\prime}(z)\right)^{2}}}_{\geq 0}\left(-\rho_{\mathrm{ARA}}^{(1)}+\rho_{\mathrm{ARA}}^{(2)}\right)
$$

proven above holds. Thus we have $\rho_{\text {ARA }}^{(1)} \geq \rho_{\text {ARA }}^{(2)}$.
An equivalent formulation of statement (1):

Agent 1 is more risk averse than agent 2

$$
\begin{array}{lcrl}
\Leftrightarrow & u_{1}^{-1}\left(\mathrm{E}\left[u_{1}(X)\right]\right) \leq u_{2}^{-1}\left(\mathrm{E}\left[u_{2}(X)\right]\right) & & \text { for all } X \in \mathcal{X} \\
\Leftrightarrow & \mathrm{E}\left[u_{1}(X)\right] \leq u_{1}\left(u_{2}^{-1}\left(\mathrm{E}\left[u_{2}(X)\right]\right)\right) & & \text { for all } X \in \mathcal{X} \\
\Leftrightarrow & \mathrm{E}\left[u_{1}(X)\right] \leq v\left(\mathrm{E}\left[u_{2}(X)\right]\right) & & \text { for all } X \in \mathcal{X}
\end{array}
$$

Statement (3) implies statement (1):

Applying Jensens inequality on the convex function $(-v)$:

$$
\mathrm{E}\left[-v\left(u_{2}(X)\right)\right] \geq-v\left(\mathrm{E}\left[u_{2}(X)\right]\right)
$$

the equivalent formulation of (1) is proven.

$$
\mathrm{E}\left[u_{1}(X)\right]=\mathrm{E}\left[v\left(u_{2}(X)\right)\right] \leq v\left(\mathrm{E}\left[u_{2}(X)\right]\right) .
$$

Satement (1) implies statement (2):

We will proceed by a proof by contradiction. Assume (2) is false. There exists $y \in I$ such that $\rho_{\text {ARA }}^{(1)}(y)<\rho_{\text {ARA }}^{(2)}(y)$. Since these functions are continuous there exists an open neighbourhood $\theta \subset I$ of y such that $\rho_{\mathrm{ARA}}^{(1)}(t)<\rho_{\mathrm{ARA}}^{(2)}(t)$ for all $t \in \theta$.

Then v is strictly convex on θ.

Choose a distribution $\mu \in \mathcal{X}$ with support θ which is not concentrated in a single point. Let $Y \sim \mu$. By Jensens inequality

$$
\mathrm{E}\left[u_{1}(Y)\right]=\mathrm{E}\left[v\left(u_{2}(Y)\right)\right]>v\left(\mathrm{E}\left[u_{2}(Y)\right]\right)
$$

contradicting (1).
Corollary 1.15. If $\rho_{\text {ARA }}^{(1)} \geq \rho_{\text {ARA }}^{(2)}$ then the certainity equivalents of the agents satisfy $x\left(X, u_{1}, w\right) \leq x\left(X, u_{2}, w\right)$.
"The more risk averse an agent is, the less he will pay for risk X."

Proof. In the corollary we assume statement (2) of the proposition.
Let $x_{1}=x\left(X, u_{1}, w\right), x_{2}=x\left(X, u_{2}, w\right)$.
Using statement (1) we have

$$
\begin{aligned}
u_{1}^{-1}\left(\mathrm{E}\left[u_{1}(X+w)\right]\right) & \leq u_{2}^{-1}\left(\mathrm{E}\left[u_{2}(X+w)\right]\right) \\
x_{1}+w & \leq x_{2}+w
\end{aligned}
$$

Definition 1.16. Assume a financial agent with utility u and wealth $w>0$. The indifference price for risk $X \in \mathcal{X}$ is the solution $\Pi=\Pi(X, u, w)$ of the equation

$$
\begin{equation*}
u(w)=\mathrm{E}[u(w+\Pi-X)] \tag{2}
\end{equation*}
$$

Remark. The certainty equivalent of $\Pi-X$ is zero.
Definition 1.17. The risk premium Π_{r} is given by $\Pi_{r}=\Pi-\mathrm{E}[X]$.
Lemma 1.18. If u is risk averse then $\Pi_{r}>0$.

Proof. The claim follows directly from Jensens inequality:

$$
u(w)=\mathrm{E}[u(w+\Pi-X)]<u(\mathrm{E}[w+\Pi-X])=u\left(w+\Pi_{r}\right)
$$

since u is strictly increasing this implies $0<\Pi_{r}$.

Theorem 1.19. If u is risk averse (i.e. concave) then the following statements are equivalent:

1. Π_{r} does not depend on w.
2. There are $A, B, \alpha \in \mathbb{R}, A>0, \alpha>0$ such that $u(x)=-A e^{-\alpha x}+B$.

Remark. This theorem illustrates the weakness of exponential utility from the economists point of view: Intuitively the premium Π ought to decrease with increasing wealth w.

Proof. Assume statement (2). The definition of Π states

$$
\begin{aligned}
u(w) & =\mathrm{E}[u(w+\Pi-X)] \\
-A e^{-\alpha w}+B & =\mathrm{E}\left[-A e^{-\alpha(w+\Pi-X)}+B\right] \\
& =\mathrm{E}\left[-A e^{-\alpha w} e^{-\alpha(\Pi-X)}+B\right] \\
& =-A e^{-\alpha w} e^{-\alpha \Pi} \mathrm{E}\left[e^{-\alpha(-X)}\right]+B \\
1 & =e^{-\alpha \Pi} \mathrm{E}\left[e^{-\alpha(-X)}\right] \\
e^{\alpha \Pi} & =\mathrm{E}\left[e^{\alpha X}\right] \\
\Pi & =\frac{1}{\alpha} \log \left(\mathrm{E}\left[e^{\alpha X}\right]\right) \\
\Pi_{\mathrm{r}} & =\frac{1}{\alpha} \log \left(\mathrm{E}\left[e^{\alpha X}\right]\right)-\mathrm{E}[X]
\end{aligned}
$$

Thus prooving that Π_{r} does not depend on w.

Assume now, that Π_{r} does not depend on w. Thus $\frac{\mathrm{d} \Pi}{\mathrm{d} w}=0$. If we derive equation (2) with respect to w we obtain

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} w} u(w) & =\frac{\mathrm{d}}{\mathrm{~d} w} \mathrm{E}[u(w+\Pi-X)] \\
u^{\prime}(w) & =\mathrm{E}[u^{\prime}(w+\Pi-X)(1+\underbrace{\frac{\mathrm{d} \Pi}{\mathrm{~d} w}}_{=0})] \tag{3}\\
& =\mathrm{E}\left[u^{\prime}(w+\Pi-X)\right]
\end{align*}
$$

This shows that Π is also the indifference price for the utility function $v=-u^{\prime}$.

$$
\begin{aligned}
w & =v^{-1}(\mathrm{E}[v(w+\Pi-X)]) \\
w & =u^{-1}(\mathrm{E}[u(w+\Pi-X)])
\end{aligned}
$$

Thus u and v have the same risk aversion or more precicely: u is more risk averse than v and v is more risk averse than u. By proposition 1.14

$$
\begin{aligned}
\rho_{\mathrm{ARA}}^{(u)}(x) & =\rho_{\mathrm{ARA}}^{(v)}(x) & \text { for all } x \in I \\
-\frac{u^{\prime \prime}(x)}{u^{\prime}(x)} & =-\frac{v^{\prime \prime}(x)}{v^{\prime}(x)}=-\frac{u^{\prime \prime \prime}(x)}{u^{\prime \prime}(x)} &
\end{aligned}
$$

Now we observe the derivation of $\rho_{\text {ARA }}^{(u)}$:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \rho_{\mathrm{ARA}}^{(u)}(x) & =-\frac{u^{\prime \prime \prime}(x) u^{\prime}(x)-\left(u^{\prime \prime}(x)\right)^{2}}{\left(u^{\prime}(x)\right)^{2}} \\
& =-\left(\frac{u^{\prime \prime \prime}(x)}{u^{\prime}(x)}-\left(\frac{u^{\prime \prime}(x)}{u^{\prime}(x)}\right)^{2}\right) \\
& =-\frac{u^{\prime \prime}(x)}{u^{\prime}(x)} \underbrace{\left.\frac{u^{\prime \prime \prime}(x)}{u^{\prime \prime}(x)}-\frac{u^{\prime \prime}(x)}{u^{\prime}(x)}\right)}_{=0} \\
& =0
\end{aligned}
$$

Thus $\rho_{\text {ARA }}^{(u)}$ needs to be constant. Let α denote its value.

$$
\begin{array}{rlr}
\rho_{\mathrm{ARA}}^{(u)}(x) & =\alpha & \text { for all } x \in I \\
-\frac{u^{\prime \prime}(x)}{u^{\prime}(x)} & =\alpha & \\
u^{\prime \prime}(x)-\alpha u^{\prime}(x) & =0 &
\end{array}
$$

The solution to this differential equation has the exponential form claimed.
Theorem 1.20. Assume u is risk-averse. The following statements are equivalent:

1. The Risk Premium Π_{r} is decreasing in w.
2. $\rho_{\mathrm{ARA}}(x)$ is decreasing in x.

Example. The power utility satisfies statement (2):

$$
\rho_{\mathrm{ARA}}(x)=\alpha x^{-1} \quad \text { with } \quad \alpha>0
$$

Proof. As in equation (3) we have

$$
u^{\prime}(w)=\mathrm{E}\left[u^{\prime}(w+\Pi-X)\right]\left(1+\Pi^{\prime}(w)\right)
$$

therefore we have the following sequence of equivalences:

$$
\begin{aligned}
\Pi^{\prime}(w) \leq 0 & \Leftrightarrow u^{\prime}(w) \leq \mathrm{E}\left[u^{\prime}(w+\Pi-X)\right] \\
& \Leftrightarrow v(w) \geq \mathrm{E}[v(w+\Pi-X)] \\
& \Leftrightarrow \Pi(X, w, v) \geq \Pi(X, w, u) \\
& \Leftrightarrow \operatorname{Agent} v \text { is more risk averse than agent } u . \\
& \Leftrightarrow-\frac{u^{\prime \prime \prime}(x)}{u^{\prime \prime}(x)}=-\frac{v^{\prime \prime}(x)}{v^{\prime}(x)} \geq \frac{u^{\prime \prime}(x)}{u^{\prime}(x)} \\
& \Leftrightarrow \rho_{\text {ARA }}^{(v)}(x) \geq \rho_{\text {ARA }}^{(u)}(x)
\end{aligned}
$$

From proposition 1.14 we have

$$
\begin{aligned}
& \quad \frac{\mathrm{d}}{\mathrm{~d} x} \rho_{\mathrm{ARA}}(x)=\rho_{\mathrm{ARA}}(x)\left(\frac{u^{\prime \prime \prime}(x)}{u^{\prime \prime}(x)}-\frac{u^{\prime \prime}(x)}{u^{\prime}(x)}\right) \leq 0 \\
& \Leftrightarrow \\
& \Leftrightarrow \frac{u^{\prime \prime \prime}(x)}{u^{\prime \prime}(x)} \leq \frac{u^{\prime \prime}(x)}{u^{\prime}(x)} \\
& \Leftrightarrow \Pi^{\prime}(w) \leq 0
\end{aligned}
$$

1.3 Risk Exchange Economy

Assumption 1.21. Assume a finite probability space $|\Omega|<\infty$ and let \mathcal{X} be the set of all \mathcal{F}-adapted positive random variables on (Ω, \mathcal{F}, P).

Assumption 1.22. Assume we have N financial agents and each holds a position which causes a payoff $Y_{i} \in \mathcal{X}$ at time 1. $(i \in\{1, \ldots, N\})$

The market capitalization at time 1 is given by $Z=\sum Y_{i}$.
Assumption 1.23. Assume there is a financial pricing kernel $\varphi \in \mathcal{X}$ with $\mathrm{E}[\varphi]=1$ such that the price of $X \in \mathcal{X}$ at time 0 is given by $\Pi(X)=\mathrm{E}[\varphi X]$

Remark. In economic literature φ is called the state price density, in financial literature φ is called financial pricing kernel and in actuarial literature φ is called state-price deflator.

Each agent is characterized by a utility function u_{i}, and he can be achieved by trading any $X_{i} \in \mathcal{X}$.

Agent i chooses his portfolio according to

$$
\max _{X_{i} \in \mathcal{X}} \mathrm{E}\left[u_{i}\left(X_{i}\right)\right]
$$

with constraint

$$
\Pi\left(X_{i}\right)=\Pi\left(Y_{i}\right)
$$

Proposition 1.24. (First Order Conditions) The optimal asset allocation for agent i is given by $u_{i}^{\prime}\left(X_{i}\right)=\lambda_{i} \varphi$ for some $\lambda_{i}>0$.

Proof. The Lagrangian for this optimization problem is

$$
L=\mathrm{E}\left[u_{i}\left(X_{i}\right)\right]-\lambda_{i}\left(\Pi\left(X_{i}\right)-\Pi\left(Y_{i}\right)\right) .
$$

Perturb X_{i} by some εX with $X \in \mathcal{X}$ and $\varepsilon>0$:

$$
L(\varepsilon)=\mathrm{E}\left[u_{i}\left(X_{i}+\varepsilon X\right)\right]-\lambda_{i}(\underbrace{\Pi\left(X_{i}+\varepsilon X\right)}_{\left.\mathrm{E} \varphi\left(X_{i}+\varepsilon X\right)\right]}-\Pi\left(Y_{i}\right)) .
$$

In order for X_{i} to be optimal we have (for all $X \in \mathcal{X}$):

$$
\begin{aligned}
&\left.\frac{\mathrm{d} L(\varepsilon)}{\mathrm{d} \varepsilon}\right|_{\varepsilon=0}=\left.\left[\mathrm{E}\left[u_{i}^{\prime}\left(X_{i}+\varepsilon X\right) X\right]-\lambda_{i} \mathrm{E}[\varphi X]\right]\right|_{\varepsilon=0} \\
& \Rightarrow \mathrm{E}\left[u_{i}^{\prime}\left(X_{i}\right) X\right]-\lambda_{i} \mathrm{E}[\varphi X]=0 \quad \forall X \in \mathcal{X}
\end{aligned}
$$

Thus $u_{i}^{\prime}=\lambda_{i} \varphi$ almost surely.

$$
\mathrm{E}[\underbrace{u_{i}^{\prime}\left(X_{i}\right)}_{>0}]=\lambda_{i} \underbrace{\mathrm{E}[\varphi]}_{=1}=\lambda_{i}>0
$$

Remark.

$$
\begin{aligned}
\mathrm{E}\left[u_{i}^{\prime}\left(X_{i}\right)\right] & =\lambda_{i} \mathrm{E}[\varphi]=\lambda_{i} \\
\varphi & =\frac{u_{i}^{\prime}\left(X_{i}\right)}{\mathrm{E}\left[u_{i}^{\prime}\left(X_{i}\right)\right]}
\end{aligned}
$$

Corollary 1.25. All optimal asset allocations X_{i} are commonotonic.

Proof. All agents are risk averse. $u_{i}^{\prime \prime}<0$. Therefore u_{i}^{\prime} is strictly decreasing.

$$
X_{i}=\left(u_{i}^{\prime}\right)^{-1}\left(\lambda_{i} \varphi\right)
$$

For ω_{1}, ω_{2} in Ω :

$$
X_{i}\left(\omega_{1}\right)<X_{i}\left(\omega_{2}\right) \Leftrightarrow \varphi\left(\omega_{1}\right)<\varphi\left(\omega_{2}\right) \Leftrightarrow X_{j}\left(\omega_{1}\right)<X_{j}\left(\omega_{2}\right)
$$

Thus X_{i} are commonotonic.

Assumption 1.26. (Economic Principle)

We have a risk-exchange economy, i.e.

$$
\sum_{i=1}^{N} Y_{i}=\sum_{i=1}^{N} X_{i}
$$

Remark. The value

$$
Z=\sum_{i=1}^{N} Y_{i}
$$

is called the market capitalization.
Theorem 1.27. All optimal asset allocations are commonotonic to Z.

Proof. X_{i} are commonotonic, thus $Z=\sum_{i} X_{i}=f(\varphi)$.
Example. Exponential utilities, $\alpha_{i}>0$.

$$
u_{i}(x)=-\frac{1}{\alpha_{i}} e^{-\alpha_{i} x}
$$

Note: we have a heterogeneous behaviour, since we may choose $\alpha_{i} \neq \alpha_{k}$ for $i \neq k$.

$$
\begin{aligned}
u_{i}^{\prime}(x) & =e^{-\alpha_{i} x} \\
X_{i} & =-\frac{1}{\alpha_{i}} \log \left(\lambda_{i} \varphi\right)
\end{aligned}
$$

By Proposition 1.24 we have

$$
\begin{aligned}
X_{i} & =-\frac{1}{\alpha_{1}} \log \lambda_{1}-\frac{1}{\alpha_{1}} \log \varphi \\
Z & =-\sum_{i=1}^{N} \frac{1}{\alpha_{i}} \log \lambda_{i}-\log \varphi \sum_{i=1}^{N} \frac{1}{\alpha_{1}}
\end{aligned}
$$

Define the market (or collective or aggregate) risk aversion as

$$
\alpha=\left(\sum_{i=1}^{N} \frac{1}{\alpha_{1}}\right)^{-1}
$$

and let

$$
K=-\alpha \sum \frac{1}{\alpha_{i}} \log \lambda_{i}
$$

then

$$
\begin{aligned}
Z & =\frac{1}{\alpha} K-\frac{1}{\alpha} \log \varphi \\
\varphi & =e^{K-\alpha Z}
\end{aligned}
$$

In fact, φ is chosen endogeneously. We normalize

$$
\begin{aligned}
1 & =\mathrm{E}[\varphi] \\
1 & =e^{K} \mathrm{E}\left[e^{-\alpha Z}\right] \\
K & =-\log \mathrm{E}\left[e^{-\alpha Z}\right] \\
\varphi & =\frac{e^{-\alpha Z}}{\mathrm{E}\left[e^{-\alpha Z}\right]} \\
\Pi(X) & =\mathrm{E}[\varphi X]=\frac{\mathrm{E}\left[e^{-\alpha Z} X\right]}{\mathrm{E}\left[e^{-\alpha Z}\right]}
\end{aligned}
$$

Escher Price for X, see [Büh80]

$$
\begin{gathered}
X_{i}=-\frac{1}{\alpha_{i}} \log \lambda_{i}-\frac{1}{\alpha_{i}} \log \frac{e^{\alpha Z}}{\mathrm{E}\left[e^{-\alpha Z}\right]}=\frac{\alpha}{\alpha_{i}} Z-\frac{1}{\alpha_{i}} \log \frac{\lambda_{i}}{\mathrm{E}\left[e^{-\alpha Z}\right]} \\
\Pi\left(Y_{i}\right)=\Pi\left(X_{i}\right)=\mathrm{E}\left[\varphi X_{i}\right]=\frac{\alpha}{\alpha_{i}} \mathrm{E}[\varphi Z]-\frac{1}{\alpha_{i}} \log \frac{\lambda_{i}}{\mathrm{E}\left[e^{-\alpha Z}\right]} \\
\Rightarrow-\frac{1}{\alpha_{i}} \log \frac{\lambda_{i}}{\mathrm{E}\left[e^{-\alpha Z}\right]}=\Pi\left(Y_{i}\right)-\frac{\alpha}{\alpha_{i}} \Pi(Z) \\
X_{i}=\frac{\alpha}{\alpha_{i}}(Z-\Pi(Z))+\Pi\left(Y_{i}\right)
\end{gathered}
$$

Remark. Other utility functions (such as power utility) do not allow for a closed form solution if financial agents are heterogeneous.

2 Mean-Variance Analysis

Remark. Boldface letters \boldsymbol{x} name vectors in \mathbb{R}^{n} :

$$
\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}
$$

Boldface letters $\widetilde{\boldsymbol{x}}$ with a tilde name vectors in \mathbb{R}^{n+1} :

$$
\widetilde{\boldsymbol{x}}=\left(x_{0}, x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n+1}
$$

2.1 The Markovitz Model

Assume $n+1$ financial assets with prices at time 0 given by $s_{i}^{(0)}$ and prices at time 1 given by the random variables $S_{i}^{(1)} .(i=0, \ldots, n)$

Assume a financial agent holds a portfolio $\widetilde{\boldsymbol{a}}$. His wealth at time 0 is given by

$$
w_{0}=\sum_{i=0}^{n} a_{i} s_{i}^{(0)} \quad(\text { deterministic })
$$

and his wealth at time 1 by

$$
W_{1}=\sum_{i=0}^{n} a_{i} S_{i}^{(1)} \quad \text { (random) }
$$

Definition 2.1. The return of asset i is given by

$$
R_{i}=\frac{S_{i}^{(1)}}{s_{i}^{(0)}}-1
$$

We denote the proportion of asset i in the initial capital by

$$
x_{i}=\frac{a_{i} s_{i}}{w_{0}} .
$$

The wealth at time 1 can then be written as

$$
W_{1}=\sum_{i=0}^{n} a_{i} S^{(1)}=w_{0}+w_{0} \sum_{i=0}^{n} x_{i} R_{i} .
$$

Note that

$$
\sum_{i=0}^{n} x_{i}=1
$$

The goal for a financial agent is to choose an investment strategy $\widetilde{\boldsymbol{x}}$ such that the expected wealth $\mathrm{E}\left[W_{1}\right]$ is large and its variance $\operatorname{Var}\left[W_{1}\right]$ is small.

Assume that the financial agent is risk averse with utility function u. His asset allocation problem can then be formulated as

$$
\begin{aligned}
& \operatorname{maximize} \\
& \text { subject to } \\
& \qquad \begin{array}{c}
\widetilde{\boldsymbol{a}} \in \mathbb{R}^{n+1} \\
\\
\\
\sum_{i=0}^{n} a_{i} s_{i}^{(0)}=w_{0} \\
\mathrm{E}\left[W_{1}\right]=w_{1}
\end{array}
\end{aligned}
$$

with a given expected wealth $w_{1} \in \mathbb{R}$.
Define the expected return by

$$
r=\frac{w_{1}}{w_{0}}-1
$$

The above problem can then be rewritten as

$$
\operatorname{maximize} \mathrm{E}\left[u\left(w_{0}\left(1+\widetilde{\boldsymbol{x}}^{\top} \widetilde{\boldsymbol{R}}\right)\right)\right]
$$

subject to

$$
\begin{aligned}
& \widetilde{\boldsymbol{x}} \in \mathbb{R}^{n+1} \\
& \widetilde{\boldsymbol{x}}^{\top} \widetilde{\boldsymbol{e}}=1 \\
& \widetilde{\boldsymbol{x}}^{\top} \mathrm{E}[\widetilde{\boldsymbol{R}}]=r
\end{aligned}
$$

using matrix multiplication notation and the vector $\widetilde{\boldsymbol{e}}=(1, \ldots, 1)$.
Assumption 2.2. (Model Assumptions)
Asset 0 is a risk free asset: $R_{0}=\mu_{0}>0$ is deterministic.
The returns of the other (risky) assets follow a multivariate normal distribution with expected returns $\boldsymbol{\mu}$ and a positive definite covariance matrix Σ.

$$
\boldsymbol{R}=\left(R_{1}, \ldots, R_{n}\right) \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma)
$$

The utility function is given by

$$
u(x)=-\frac{1}{\alpha} e^{-\alpha x}
$$

with a given constant $\alpha>0$.
Lemma 2.3. Under these model assumptions the random variable $e^{-\alpha W_{1}}$ has a log-normal distribution with parameters $-\alpha w_{0}\left(1+\widetilde{\boldsymbol{x}}^{\top} \widetilde{\boldsymbol{\mu}}\right)$ and $\alpha^{2} w_{0}^{2} \boldsymbol{x}^{\top} \Sigma \boldsymbol{x}$.

Proof.

$$
\boldsymbol{R} \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma) \Rightarrow \boldsymbol{x}^{\top} \boldsymbol{R} \sim \mathcal{N}\left(\boldsymbol{x}^{\top} \boldsymbol{\mu}, \boldsymbol{x}^{\top} \Sigma \boldsymbol{x}\right)
$$

(not proven here)

$$
\begin{aligned}
-\alpha W_{1} & =-\alpha w_{0}\left(1+\widetilde{\boldsymbol{x}}^{\top} \widetilde{\boldsymbol{R}}\right) \\
& =-\alpha w_{0}\left(1+x_{0} \mu_{0}+\boldsymbol{x}^{\top} \boldsymbol{R}\right) \\
\mathrm{E}\left[-\alpha W_{1}\right] & =-\alpha w_{0}(1+\widetilde{\boldsymbol{x}} \widetilde{\boldsymbol{\mu}}) \\
\operatorname{Var}\left[-\alpha W_{1}\right] & =\alpha^{2} w_{0}^{2} \boldsymbol{x}^{\top} \Sigma \boldsymbol{x}
\end{aligned}
$$

Corollary 2.4.

$$
\begin{aligned}
\mathrm{E}\left[u\left(W_{1}\right)\right] & =-\frac{1}{\alpha} \mathrm{E}\left[e^{-\alpha W_{1}}\right] \\
& =-\frac{1}{\alpha} \exp \left(-\alpha w_{0}\left(1+\widetilde{\boldsymbol{x}}^{\top} \widetilde{\boldsymbol{\mu}}\right)+\frac{1}{2} \alpha^{2} w_{0}^{2} \boldsymbol{x}^{\top} \Sigma \boldsymbol{x}\right)
\end{aligned}
$$

Proof. The first identity follows directly from the definition of u.
The expected value of a lognormal distributed random variable with parameters m and s^{2} is given by $\exp \left(m+\frac{1}{2} s^{2}\right)$. As in the Lemma set $m=-\alpha w_{0}\left(1+\widetilde{\boldsymbol{x}}^{\top} \widetilde{\boldsymbol{\mu}}\right)$ and $s=\alpha^{2} w_{0}^{2} \boldsymbol{x}^{\top} \Sigma \boldsymbol{x}$.

The problem can be rewritten to

$$
\begin{array}{ll}
\operatorname{maximize} & -\frac{1}{\alpha} \exp \left(-\alpha w_{0}\left(1+\widetilde{\boldsymbol{x}}_{r}^{\top} \widetilde{\boldsymbol{\mu}}\right)+\frac{1}{2} \alpha^{2} w_{0}^{2} \boldsymbol{x}_{r}^{\top} \Sigma \boldsymbol{x}\right) \\
\text { subject to } \\
& \widetilde{\boldsymbol{x}}_{r} \in \mathbb{R}^{n+1} \\
& \widetilde{\boldsymbol{x}}_{r}^{\top} \widetilde{\boldsymbol{e}}=1 \\
& \widetilde{\boldsymbol{x}}_{r}^{\top} \mathrm{E}[\widetilde{\boldsymbol{R}}]=r
\end{array}
$$

or equivalently, eliminating constant terms and factors from the target function

$$
\begin{aligned}
& \operatorname{minimize} \\
& \text { subject to } \\
& \\
& \\
& \\
& \boldsymbol{x}_{r}^{\top} \Sigma \boldsymbol{x} \\
& \\
& \\
& \widetilde{\boldsymbol{x}}_{r}^{\top} \widetilde{\boldsymbol{e}}=1 \\
& \\
& \\
& \widetilde{\boldsymbol{x}}_{r}^{\top} \mathrm{E}[\widetilde{\boldsymbol{R}}]=r
\end{aligned}
$$

Definition 2.5. The above problem is called the Markowitz Problem.

It can be spelled out as "Achieve a given return r with minimal variance".

2.2 Preliminaries

Definition 2.6. A matrix A is called positive definite if $\boldsymbol{x}^{\top} A \boldsymbol{x}>\boldsymbol{0}$ for any non-zero vector $\boldsymbol{x} \neq \mathbf{0}$.

Proposition 2.7. A posivie definite matrix has a positive definite inverse.
Proposition 2.8. If \boldsymbol{X} is a random vector with covariance matrix V then

$$
\operatorname{Cov}[A \boldsymbol{X}+\boldsymbol{b}, C \boldsymbol{X}+\boldsymbol{d}]=A V C^{\top}
$$

Definition 2.9. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ a sufficiently smooth function. The gradient of f at \boldsymbol{x} is given by

$$
\nabla f(\boldsymbol{x})=\frac{\partial f}{\partial \boldsymbol{x}}=\left(\frac{\partial f(\boldsymbol{x})}{\partial x_{1}}, \ldots \frac{\partial f(\boldsymbol{x})}{\partial x_{n}}\right) .
$$

Definition 2.10. The Hessian of a sufficiently smooth f is given by the matrix

$$
\mathrm{H} f=\frac{\partial^{2} f}{(\partial \boldsymbol{x})^{2}}=\left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right)_{i, j=1 \ldots n}
$$

Example. Let $A \in \mathbb{R}^{n \times n}$ and $f(\boldsymbol{x})=\boldsymbol{x}^{\top} A \boldsymbol{x}$. Then

$$
\begin{aligned}
& \nabla f(\boldsymbol{x})=\left(A+A^{\top}\right) \boldsymbol{x} \\
& \mathrm{H} f(\boldsymbol{x})=\left(A+A^{\top}\right)
\end{aligned}
$$

2.3 Optimization

Unconstraint Unconstraint local maxima of a sufficiently smooth function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are found by solving the following system:

$$
\begin{aligned}
\nabla f(\boldsymbol{x}) & =\mathbf{0} \\
\boldsymbol{z}^{\top} \mathrm{H} f(\boldsymbol{x}) \boldsymbol{z} & <0 \quad \forall \boldsymbol{z} \neq \mathbf{0}
\end{aligned}
$$

Equality constraint Maxima with equality constraints

$$
\begin{aligned}
& \operatorname{maximize} f(\boldsymbol{x}) \\
& \text { subject to } \\
& \qquad g(\boldsymbol{x})=a
\end{aligned}
$$

solve the Lagrange problem

$$
\begin{aligned}
& \frac{\partial L}{\partial \boldsymbol{x}}=\mathbf{0} \\
& \frac{\partial L}{\partial \lambda}=0
\end{aligned}
$$

where the Lagrange function L is defined as

$$
L(\boldsymbol{x}, \lambda)=f(\boldsymbol{x})-\lambda(g(\boldsymbol{x})-a)
$$

The new variable λ is called the Lagrange-factor.
The problem can be written as

$$
\begin{array}{r}
\nabla f(\boldsymbol{x})-\lambda \nabla g(\boldsymbol{x})=\mathbf{0} \\
-(g(\boldsymbol{x})-a)=\mathbf{0}
\end{array}
$$

In order to have sufficient conditions for a constraint maximum, a second order condition needs to be added.

Inequality Constraint The solution of the following problem

> maximize $f(\boldsymbol{x})$
> subject to

$$
g(\boldsymbol{x}) \geq a
$$

satisfies these necessary conditions (Kuhn-Tucker-Problem):

$$
\begin{aligned}
\frac{\partial L}{\partial \boldsymbol{x}} & =\mathbf{0} \\
\frac{\partial L}{\partial \lambda} & =0 \\
\frac{\partial L}{\partial b} & =\lambda \\
(b-a) \lambda & =0, \quad b \geq a
\end{aligned}
$$

where

$$
L(\boldsymbol{x}, \lambda, b)=f(\boldsymbol{x})-\lambda(g(\boldsymbol{x})-b)
$$

2.4 Mean-Variance Analysis without risk free assets

Assumption 2.11. (Model assumptions) There are n assets with returns $\boldsymbol{R}=$ $\left(R_{1}, \ldots, R_{n}\right)$.

1. Let $\boldsymbol{\mu}=\mathrm{E}[\boldsymbol{R}] . \mu$ has at least one coordinate that differs from the others.
2. Let $V=\operatorname{Cov}[\boldsymbol{R}] . V$ is positive definite.

Definition 2.12. $R_{p}(\boldsymbol{x})=\boldsymbol{x}^{\top} \boldsymbol{R}$ is the portfolio return.
Remark. The expected return is equal to $\mathrm{E}\left[R_{p}(\boldsymbol{x})\right]=\boldsymbol{x}^{\top} \boldsymbol{\mu}$. The variance of $R_{p}(\boldsymbol{x})$ is given by $\boldsymbol{x}^{\top} V \boldsymbol{x}$.

Definition 2.13. A vector \boldsymbol{x} is called an investment strategy if $\boldsymbol{x}^{\top} \boldsymbol{e}=1$. (Recall that $\boldsymbol{e}=(1, \ldots, 1)$.)

Definition 2.14. An investment strategy \boldsymbol{z} is called efficient if there is no investment strategy \boldsymbol{x} with

$$
\mathrm{E}\left[R_{p}(\boldsymbol{x})\right] \geq \mathrm{E}\left[R_{p}(\boldsymbol{z})\right] \quad \text { and } \quad \operatorname{Var}\left[R_{p}(\boldsymbol{x})\right]<\operatorname{Var}\left[R_{p}(\boldsymbol{z})\right]
$$

Our goal is to find efficient investment strategies. For a given portfolio return r_{p} we will study the two problems

$$
\begin{gather*}
\boldsymbol{x}_{r_{p}}=\underset{\boldsymbol{x}^{2} \in \mathbb{R}^{n}}{\arg \min } \boldsymbol{x}^{\top} V \boldsymbol{x} \tag{4}\\
\boldsymbol{x}^{\top} \boldsymbol{e}=1 \\
\boldsymbol{x}^{\top} \boldsymbol{\mu}=r_{p} \\
\boldsymbol{x}_{r_{p}}^{+}=\underset{\operatorname{x} \in \mathbb{R}^{n}}{\arg \min } \boldsymbol{x}^{\top} V \boldsymbol{x} \tag{5}\\
\boldsymbol{x}^{\top} \boldsymbol{e}=1 \\
\boldsymbol{x}^{\top} \boldsymbol{\mu} \geq r_{p}
\end{gather*}
$$

Note that in (4) we want to achieve exactly the given return, while in (5) we want to achieve at least the given return.

In order to simplify further calculations we will consider the equivalent problems

$$
\begin{gather*}
\boldsymbol{x}_{r_{p}}=\underset{\boldsymbol{x} \in \mathbb{R}^{n}}{\arg \max }-\frac{1}{2} \boldsymbol{x}^{\top} V \boldsymbol{x} \tag{6}\\
\boldsymbol{x}^{\top} \boldsymbol{e}=1 \\
\boldsymbol{x}^{\top} \boldsymbol{\mu}=r_{p} \\
\boldsymbol{x}_{r_{p}}^{+}=\underset{\operatorname{x} \in \mathbb{R}^{n}}{\arg \max }-\frac{1}{2} \boldsymbol{x}^{\top} V \boldsymbol{x} \\
\boldsymbol{x}^{\top} \boldsymbol{e}=1 \tag{7}\\
\boldsymbol{x}^{\top} \boldsymbol{\mu} \geq r_{p}
\end{gather*}
$$

Problem (7) has the Lagrange function

$$
L\left(\boldsymbol{x}, \lambda_{1}, \lambda_{2}, r\right)=-\frac{1}{2} \boldsymbol{x}^{\top} V \boldsymbol{x}-\lambda_{1}\left(\boldsymbol{x}^{\top} \boldsymbol{e}-1\right)-\lambda_{2}\left(\boldsymbol{x}^{\top} \boldsymbol{\mu}-r\right)
$$

which leads to the following necessary conditions (Kuhn-Tucker approach):

$$
\begin{align*}
\frac{\partial L}{\partial \boldsymbol{x}} & =-V \boldsymbol{x}-\lambda_{1} \boldsymbol{e}-\lambda_{2} \boldsymbol{\mu}=0 \tag{8a}\\
\frac{\partial L}{\partial \lambda_{1}} & =-\left(\boldsymbol{x}^{\top} \boldsymbol{e}-1\right)=0 \tag{8b}\\
\frac{\partial L}{\partial \lambda_{2}} & =-\left(\boldsymbol{x}^{\top} \boldsymbol{\mu}-r\right)=0 \tag{8c}\\
\frac{\partial L}{\partial r} & =\lambda_{2} \leq 0 \tag{8d}\\
\left(r-r_{p}\right) \lambda_{2} & =0 \quad r \geq r_{p} \tag{8e}
\end{align*}
$$

First Step Solve the Lagrange problem with fixed r consisting of (8a)-(8c).
Condition (8a) implies

$$
\begin{align*}
\boldsymbol{x} & =-V^{-1}\left(\lambda_{1} e+\lambda_{2} \boldsymbol{\mu}\right) \\
& =-V^{-1}\left(\begin{array}{ll}
\boldsymbol{e} & \boldsymbol{\mu}
\end{array}\right)\binom{\lambda_{1}}{\lambda_{2}} \tag{9}
\end{align*}
$$

Note that V^{-1} exists since we assumed V to be positive definite. Now find λ_{1} and λ_{2} using (8 b) and (8c). Define the 2×2 matrix A by

$$
A=\binom{e^{\top}}{\boldsymbol{\mu}^{\top}} V^{-1}\left(\begin{array}{ll}
e & \boldsymbol{\mu} \tag{10}
\end{array}\right)
$$

The conditions (8b) and (8c) imply that

$$
\binom{\boldsymbol{e}^{\top}}{\boldsymbol{\mu}^{\top}} \boldsymbol{x}=\binom{\boldsymbol{e}^{\top} \boldsymbol{x}}{\boldsymbol{\mu}^{\top} \boldsymbol{x}}=\binom{1}{r}
$$

Using (9) we obtain

$$
\begin{align*}
\binom{1}{r} & =\binom{\boldsymbol{e}^{\top}}{\boldsymbol{\mu}^{\top}} V^{-1}\left(\begin{array}{ll}
\boldsymbol{e} & \boldsymbol{\mu}
\end{array}\right)\binom{-\lambda_{1}}{-\lambda_{2}} \tag{11}\\
& =A\binom{-\lambda_{1}}{-\lambda_{2}}
\end{align*}
$$

Proposition 2.15. The matrix A from (10) is positive definite.

Proof. Let $z=\left(z_{1}, z_{2}\right) \in \mathbb{R}^{2}, z \neq(0,0)$. Define

$$
\boldsymbol{y}=\left(\begin{array}{ll}
\boldsymbol{e} & \boldsymbol{\mu}
\end{array}\right)\binom{z_{1}}{z_{2}}
$$

Using the definition of A we obtain

$$
\left(\begin{array}{ll}
z_{1} & z_{2}
\end{array}\right) A\binom{z_{1}}{z_{2}}=\underbrace{\left(\begin{array}{ll}
z_{1} & z_{2}
\end{array}\right)\binom{\boldsymbol{e}^{\top}}{\boldsymbol{\mu}^{\top}}}_{\boldsymbol{y}^{\top}} V^{-1} \underbrace{\left(\begin{array}{ll}
\boldsymbol{e} & \boldsymbol{\mu}
\end{array}\right)\binom{z_{1}}{z_{2}}}_{\boldsymbol{y}}=\boldsymbol{y}^{\top} V^{-1} \boldsymbol{y}
$$

We assumed that not all components of $\boldsymbol{\mu}$ are equal, therefore $\boldsymbol{\mu}$ and \boldsymbol{e} are not collinear. Thus if $z \neq(0,0)$ then $\boldsymbol{y} \neq \mathbf{0}$. Since V is positive definite, so is V^{-1}, and therefore $\boldsymbol{y}^{\top} V^{-1} \boldsymbol{y}>0$. Therefore

$$
\left(\begin{array}{ll}
z_{1} & z_{2}
\end{array}\right) A\binom{z_{1}}{z_{2}}>0
$$

Since z is chosen arbitrarily this proves that A is positive definite.

Equation (11) can be solved and we find λ_{1} and λ_{2},

$$
\begin{equation*}
\binom{-\lambda_{1}}{-\lambda_{2}}=A^{-1}\binom{1}{r} \tag{12}
\end{equation*}
$$

and by equation (9) the solution $\boldsymbol{x}_{\boldsymbol{r}}$ for the Lagrange problem is found.

$$
\boldsymbol{x}_{r}=V^{-1}\left(\begin{array}{ll}
e & \boldsymbol{\mu}
\end{array}\right) A^{-1}\binom{1}{r}
$$

Mean-Variance Diagram By solving the Lagrange Problem we have chosen the equality constraint: $\mathrm{E}\left[R_{p}\left(\boldsymbol{x}_{r}\right)\right]=\mathrm{E}\left[\boldsymbol{x}^{\top} \boldsymbol{R}\right]=\boldsymbol{x}^{\top} \boldsymbol{\mu}=r$.

The Variance is given by

$$
\begin{aligned}
\operatorname{Var}\left[R_{p}\left(\boldsymbol{x}_{r}\right)\right] & =\boldsymbol{x}_{r}^{\top} V \boldsymbol{x} \\
& =\overbrace{\left(\begin{array}{ll}
1 & r
\end{array}\right) A^{-1} \underbrace{\binom{\boldsymbol{e}^{\top}}{\boldsymbol{\mu}^{\top}} V^{-1} V}_{A} \overbrace{V^{-1}\left(\begin{array}{ll}
\boldsymbol{e} & \boldsymbol{\mu}
\end{array}\right) A^{-1}\binom{1}{r}}^{\boldsymbol{x}^{\top}}}^{\boldsymbol{x}} \\
& =\left(\begin{array}{ll}
1 & r) A^{-1}
\end{array}\right.
\end{aligned}
$$

Let $a=\boldsymbol{e}^{\top} V^{-1} \boldsymbol{e}, b=\boldsymbol{e}^{\top} V^{-1} \boldsymbol{\mu}$, and $c=\boldsymbol{\mu}^{\top} V^{-1} \boldsymbol{\mu}$. Then

$$
A=\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right), \quad A^{-1}=\frac{1}{a c-b^{2}}\left(\begin{array}{cc}
c & -b \\
-b & a
\end{array}\right)
$$

and

$$
\begin{aligned}
\operatorname{Var}\left[R_{p}\left(\boldsymbol{x}_{r}\right)\right] & =\left(\begin{array}{ll}
1 & r
\end{array}\right) A^{-1}\binom{1}{r} \\
& =\frac{c-2 r b+r^{2} a}{a c-b^{2}}
\end{aligned}
$$

Figure 1: $\operatorname{Var}\left[R_{p}\left(\boldsymbol{x}_{r}\right)\right]$ as a function of r
If we chose $r=\frac{b}{a}$ then the portfolio \boldsymbol{x}_{r} has minimal variance $\frac{1}{a}$.

Second Step Solve the Kuhn-Tucker problem (8a)-(8e).

We need to optimize the solution \boldsymbol{x}_{r} in r such that $r \geq r_{p}$. Study three cases, for each case we must verify that the additional conditions (8d) and (8e) are fulfilled. (12) implies that $\lambda_{2}=\frac{b-r a}{a c-b^{2}}$. Note that $a c-b^{2}>0$ since A is positive definite. The condition (8e) implies one of two possibilities: $r=r_{p}$ or $\lambda_{2}=0$.

1. $r_{p}<\frac{b}{a}$: The choice $r=r_{p}<\frac{b}{a}$ implies $\lambda_{2}=\frac{b-r_{p} a}{a c-b^{2}}>0$ which contradicts (8d).

Therefore we have $0=\lambda_{2}=\frac{b-r a}{a c-b^{2}}$, thus $b-r a=0$ and $r=\frac{b}{a}$. (Fig. 2)
2. $r_{p}=\frac{b}{a}$: Both choices $\left(r=r_{p}\right.$ and $\left.\lambda_{2}=0\right)$ imply that $r=\frac{b}{a}$.
3. $r_{p}>\frac{b}{a}$: (8e) demands $r \geq r_{p}$. If we chose $r>r_{p}>\frac{b}{a}$ we have $\lambda_{2}=$ $\frac{b-r a}{a c-b^{2}}<0$ and thus $\left(r-r_{p}\right) \lambda_{2}<0$ which contradicts (8e). Therefore we have $r=r_{p}$. (Fig. 3)

Figure 2: Solution for $r_{p}<\frac{b}{a}$

Figure 3: Solution for $r_{p}>\frac{b}{a}$

Definition 2.16. The solution \boldsymbol{x}_{r} for the Lagrange problem (6) is called minimum variance portfolio.

Definition 2.17. The solution $\boldsymbol{x}_{r_{p}}^{+}$for the Kuhn-Tucker problem (7) is called efficient investment strategy.
Definition 2.18. Let $r_{\mathrm{gmv}}=\frac{b}{a}$. The global minimum variance portfolio $\boldsymbol{x}_{\mathrm{gmv}}$ is given by $\boldsymbol{x}_{\mathrm{gmv}}=\boldsymbol{x}_{r_{\mathrm{gmv}}}$. Note that

$$
\boldsymbol{x}_{\mathrm{gmv}}=\frac{1}{\boldsymbol{e}^{\top} V^{-1} \boldsymbol{e}} V^{-1} \boldsymbol{e}
$$

In this past section we have already proven the following theorem and its first corollary.

Theorem 2.19. Under the model assumptions 2.11 the solution to (7) is

$$
\begin{aligned}
\boldsymbol{x}_{r_{p}}^{+} & =\left\{\begin{array}{ll}
V^{-1}\left(\begin{array}{ll}
\boldsymbol{e} & \boldsymbol{\mu}) A^{-1}\binom{1}{r_{p}} \\
\text { if } r_{p} \geq r_{\mathrm{gmv}} \\
\boldsymbol{x}_{\mathrm{gmv}} & \text { otherwise }
\end{array}\right. \\
& =V^{-1}\left(\begin{array}{ll}
\boldsymbol{e} & \boldsymbol{\mu}
\end{array}\right) A^{-1}\binom{1}{\max \left(r_{p}, r_{\mathrm{gmv}}\right)}
\end{array} . .\right.
\end{aligned}
$$

Corollary 2.20 .

$$
\boldsymbol{x}_{r}=V^{-1}\left(\begin{array}{ll}
e & \boldsymbol{\mu}
\end{array}\right) A^{-1}\binom{1}{r}
$$

Example (Exercise). Let $n=3, \mu=(0.08,0.04,0.045)$ and

$$
V=\left(\begin{array}{lll}
0.0025 & 0.0005 & 0.0010 \\
0.0005 & 0.0004 & 0.0006 \\
0.0010 & 0.0006 & 0.0010
\end{array}\right)
$$

Find $r_{\text {gmv }}=0.0395$.

Corollary 2.21. Every minimum variance portfolio is a linear combination of the two minimum variance portfolios $\boldsymbol{x}_{\mathrm{gmv}}$ and $\boldsymbol{x}^{(0)}$ where

$$
\boldsymbol{x}^{(0)}=\frac{1}{\boldsymbol{e}^{\top} V^{-1} \boldsymbol{\mu}} V^{-1} \boldsymbol{\mu}
$$

Every linear combination of $\boldsymbol{x}_{\mathrm{gmv}}$ and $\boldsymbol{x}^{(0)}$ is a minimum variance portfolio.

Proof. Recall that

$$
\boldsymbol{x}_{r}=V^{-1}\left(\begin{array}{ll}
e & \boldsymbol{\mu}
\end{array}\right)\binom{-\lambda_{1}}{-\lambda_{2}} .
$$

Let $r^{(0)}=\frac{c}{b}$. If we choose $r=r^{(0)}$ then (12) implies that $\lambda_{1}=0, \lambda_{2}=\frac{-1}{e^{\top} V^{-1} \mu}$.

$$
\begin{aligned}
\boldsymbol{x}_{r^{(0)}} & =V^{-1}\left(\begin{array}{ll}
\boldsymbol{e} & \boldsymbol{\mu}
\end{array}\right)\binom{0}{\frac{1}{\boldsymbol{e}^{\top} V^{-1} \boldsymbol{\mu}}} \\
& =V^{-1} \boldsymbol{\mu} \frac{1}{\boldsymbol{e}^{\top} V^{-1} \boldsymbol{\mu}} \\
& =\boldsymbol{x}^{(0)},
\end{aligned}
$$

which shows that $\boldsymbol{x}^{(0)}$ is indeed a minimum variance portfolio.
Since A is positive definite, its columns are linearly independent and therefore $\frac{b}{a} \neq \frac{c}{b}$, thus $r_{\mathrm{gmv}} \neq r^{(0)}$ and $\boldsymbol{x}_{\mathrm{gmv}} \neq \boldsymbol{x}^{(0)}$.

We will now prove the first statement from the corollary, that every minimum variance portfolio is a linear combination of $\boldsymbol{x}_{\mathrm{gmv}}$ and $\boldsymbol{x}^{(0)}$. Choose any return $r>0$ and its corresponding minimum variance potfolio \boldsymbol{x}_{r}. Since $r_{\mathrm{gmv}} \neq r^{(0)}$ there exists $\alpha \in \mathbb{R}$ such that $r=\alpha r^{(0)}+(1-\alpha) r_{\mathrm{gmv}}$.

The minimum variance portfolio with return r is

$$
\begin{aligned}
\boldsymbol{x}_{r} & =V^{-1}\left(\begin{array}{ll}
\boldsymbol{e} & \boldsymbol{\mu}
\end{array}\right) A^{-1}\binom{1}{r} \\
& =V^{-1}\left(\begin{array}{ll}
\boldsymbol{e} & \boldsymbol{\mu}
\end{array}\right) A^{-1}\binom{\alpha+(1-\alpha)}{\alpha r^{(0)}+(1-\alpha) r_{\mathrm{gmv}}} \\
& =\alpha \boldsymbol{x}^{(0)}+(1-\alpha) \boldsymbol{x}_{\mathrm{gmv}}
\end{aligned}
$$

which is indeed a linear combination of $\boldsymbol{x}^{(0)}$ and $\boldsymbol{x}_{\mathrm{gmv}}$.
In order to prove the second statement chose $\alpha \in \mathbb{R}$ and let $\boldsymbol{x}=\alpha \boldsymbol{x}^{(0)}+(1-$ $\alpha) \boldsymbol{x}_{\text {gmv }}$. We need to prove that this is indeed a minimum variance portfolio.

Let $r=\alpha r^{(0)}+(1-\alpha) r_{\mathrm{gmv}}$ and observe (like above) that $\boldsymbol{x}=\boldsymbol{x}_{r}$ which proves that \boldsymbol{x} is a minimum variance portfolio.

Definition 2.22. Two investment strategies \boldsymbol{x} and \boldsymbol{y} are orthogonal if $\operatorname{Cov}\left[R_{p}(\boldsymbol{x}), R_{p}(\boldsymbol{y})\right]=$ 0 .

Note that $\operatorname{Cov}\left[R_{p}(\boldsymbol{x}), R_{p}(\boldsymbol{y})\right]=\boldsymbol{x}^{\top} V \boldsymbol{y}$.

Proposition 2.23. For every minimum variance portfolio \boldsymbol{x}_{r} there exists an unique orthogonal minimum variance portfolio $\boldsymbol{x}_{r}^{\perp}$. Moreover $\boldsymbol{x}_{r}^{\perp}=\boldsymbol{x}_{r \perp}$ where

$$
r^{\perp}=\frac{c-b r}{b-a r} .
$$

Proof. Let $\lambda_{1}^{\perp}, \lambda_{2}^{\perp}$ be the solution to the Lagrange problem with expected return r^{\perp}.

$$
\begin{aligned}
\boldsymbol{x}_{r} & =-\lambda_{1} V^{-1} \boldsymbol{e}-\lambda_{2} V^{-1} \boldsymbol{\mu} \\
\boldsymbol{x}_{r^{\perp}} & =-\lambda_{1}^{\perp} V^{-1} \boldsymbol{e}-\lambda_{2}^{\perp} V^{-1} \boldsymbol{\mu}
\end{aligned}
$$

The covariance of the returns of these portfolios is

$$
\begin{aligned}
\operatorname{Cov}\left[R_{p}\left(\boldsymbol{x}_{r^{\perp}}\right), R_{p}\left(\boldsymbol{x}_{r}\right)\right] & =\boldsymbol{x}_{r^{\perp}} V \boldsymbol{x}_{r} \\
& =\left(-\lambda_{1}^{\perp} V^{-1} \boldsymbol{e}-\lambda_{2}^{\perp} V^{-1} \boldsymbol{\mu}\right)^{\top} V\left(-\lambda_{1} V^{-1} \boldsymbol{e}-\lambda_{2} V^{-1} \boldsymbol{\mu}\right) \\
& =\left(\begin{array}{ll}
\left.-\lambda_{1}^{\perp} \boldsymbol{e}-\lambda_{2}^{\perp} \boldsymbol{\mu}\right)^{\top} V^{-1}\left(-\lambda_{1} \boldsymbol{e}-\lambda_{2} \boldsymbol{\mu}\right)
\end{array}\right. \\
& =\left(\begin{array}{ll}
\lambda_{1}^{\perp} & \lambda_{2}^{\perp}
\end{array}\right) A\binom{\lambda_{1}}{\lambda_{2}} \\
& =\underbrace{\left(\begin{array}{ll}
\lambda_{1}^{\perp} & \lambda_{2}^{\perp}
\end{array}\right)}_{\left(\begin{array}{ll}
1 & r^{\perp}
\end{array}\right) A^{-1}} \underbrace{A^{-1}\binom{1}{r}}_{\binom{\lambda_{1}}{\lambda_{2}}} \\
& =\left(\begin{array}{ll}
1 & r^{\perp}
\end{array}\right) A^{-1}\binom{1}{r} \\
& =\frac{1}{a c-b^{2}}\left(\begin{array}{ll}
1 & r^{\perp}
\end{array}\right)\binom{c-r b}{a r-b} \\
& =\frac{c-r b-r^{\perp} b+a r r^{\perp}}{a c-b^{2}}
\end{aligned}
$$

Until now we have used nothing about r^{\perp}. The above shows that

$$
\operatorname{Cov}\left[R_{p}\left(\boldsymbol{x}_{r^{\perp}}\right), R_{p}\left(\boldsymbol{x}_{r}\right)\right]=0 \quad \text { if and only if } \quad r^{\perp}=\frac{c-r b}{b-a r}
$$

which proves the existence and uniqueness of the orthogonal minimum variance portfolio.

Theorem 2.24. Assume \boldsymbol{x}_{r} is a minimum variance portfolio for $r \neq \frac{b}{a}$ and $\boldsymbol{x}_{r^{\perp}}$ the corresponding orthogonal minimum variance portfolio.

Choose an arbitrary investment strategy $\boldsymbol{x} \in \mathbb{R}^{n}$ with expected investment return $r_{\boldsymbol{x}}=\boldsymbol{x}^{\top} \boldsymbol{\mu}$ and variance $\sigma_{\boldsymbol{x}}^{2}=\boldsymbol{x}^{\top} V \boldsymbol{x}$. Then

$$
r_{\boldsymbol{x}}-r^{\perp}=\beta_{\boldsymbol{x}, r}\left(r-r^{\perp}\right)
$$

where

$$
\beta_{\boldsymbol{x}, r}=\frac{\operatorname{Cov}\left[R_{p}(\boldsymbol{x}), R_{p}\left(\boldsymbol{x}_{r}\right)\right]}{\operatorname{Var}\left[R_{p}\left(\boldsymbol{x}_{r}\right)\right]}
$$

Proof. Let $\boldsymbol{e}_{j}=(0, \ldots, 0,1,0, \ldots, 0)$ the vector with a single 1 in the $j^{\text {th }}$ position.

$$
\begin{aligned}
\operatorname{Cov}\left[R_{j}, R_{p}\left(\boldsymbol{x}_{r}\right)\right] & =\boldsymbol{e}_{j}^{\top} V \boldsymbol{x}_{r} \\
& =\boldsymbol{e}_{j}^{\top} V\left(-\lambda_{1} V^{-1} \boldsymbol{e}-\lambda_{2} V^{-1} \boldsymbol{\mu}\right) \\
& =\boldsymbol{e}_{j}^{\top}\left(-\lambda_{1} \boldsymbol{e}-\lambda_{2} \boldsymbol{\mu}\right) \\
& =-\lambda_{1}-\lambda_{2} \mu_{j} \\
& =\left(\begin{array}{ll}
1 & \mu_{j}
\end{array}\right)\binom{-\lambda_{1}}{-\lambda_{2}} \\
& =\left(\begin{array}{ll}
1 & \mu_{j}
\end{array}\right) A^{-1}\binom{1}{r}
\end{aligned}
$$

By definition of orthogonality we have

$$
\begin{aligned}
& 0=\operatorname{Cov}\left[R_{p}\left(\boldsymbol{x}_{r^{\perp}}\right), R_{p}\left(\boldsymbol{x}_{r}\right)\right]=\boldsymbol{x}_{r^{\perp}}^{\top} V \boldsymbol{x}_{r}=\left(\begin{array}{ll}
1 & r^{\perp}
\end{array}\right) A^{-1}\binom{1}{r} \\
& \begin{aligned}
\operatorname{Cov}\left[R_{j}, R_{p}\left(\boldsymbol{x}_{r}\right)\right] & =\operatorname{Cov}\left[R_{j}, R_{p}\left(\boldsymbol{x}_{r}\right)\right]-\underbrace{\operatorname{Cov}\left[R_{p}\left(\boldsymbol{x}_{r^{\perp}}\right), R_{p}\left(\boldsymbol{x}_{r}\right)\right]}_{=0} \\
& =\left(\begin{array}{ll}
0 & \left.\mu_{j}-r^{\perp}\right) A^{-1}\binom{1}{r} \\
& =\frac{\left(\mu_{j}-r^{\perp}\right)(-b+a r)}{a c-b^{2}}
\end{array}\right.
\end{aligned} .
\end{aligned}
$$

Using the fact, that $R_{p}(\boldsymbol{x})=\sum_{j} x_{j} R_{j}$ and linearity of covariance in its first argument as well as $\sum_{j} x_{j}=1$, we obtain

$$
\begin{equation*}
\operatorname{Cov}\left[R_{p}(\boldsymbol{x}), R_{p}\left(\boldsymbol{x}_{r}\right)\right]=\sum_{j} x_{j} \operatorname{Cov}\left[R_{j}, R_{p}\left(\boldsymbol{x}_{r}\right)\right]=\frac{\left(\boldsymbol{x}^{\top} \boldsymbol{\mu}-r^{\perp}\right)(-b+a r)}{a c-b^{2}} \tag{13}
\end{equation*}
$$

If we set $\boldsymbol{x}=\boldsymbol{x}_{\boldsymbol{r}}$ in the above equation, we obtain
$\operatorname{Var}\left[R_{p}\left(\boldsymbol{x}_{r}\right)\right]=\operatorname{Cov}\left[R_{p}\left(\boldsymbol{x}_{r}\right), R_{p}\left(\boldsymbol{x}_{r}\right)\right]=\frac{\left(\boldsymbol{x}_{r}^{\top} \boldsymbol{\mu}-r^{\perp}\right)(-b+a r)}{a c-b^{2}}=\frac{\left(r-r^{\perp}\right)(-b+a r)}{a c-b^{2}}$
Equations (13) and (14) imply that

$$
\frac{\operatorname{Cov}\left[R_{p}(\boldsymbol{x}), R_{p}\left(\boldsymbol{x}_{r}\right)\right]}{\boldsymbol{x}^{\top} \boldsymbol{\mu}-r^{\perp}}=\frac{\operatorname{Var}\left[R_{p}\left(\boldsymbol{x}_{r}\right)\right]}{r-r^{\perp}}
$$

which proves the theorem.

2.5 Mean-Variance Analysis with risk free assets

Assumption 2.25. Assume we have exactly one risk free asset with deterministic return $R_{0}=\mu_{0}$ and n risky assets with returns \boldsymbol{R} such that

1. $\mu_{j}=\mathrm{E}\left[R_{j}\right] \neq \mu_{0}$ for at least one j.
2. $V=\operatorname{Var}[\boldsymbol{R}]$ is positive definite.

We reformulate problem (7) in order to take into account the risk free asset.

$$
\begin{gathered}
\widetilde{\boldsymbol{x}}_{r_{p}}^{+}=\underset{\widetilde{\boldsymbol{x}} \in \mathbb{R}^{n}}{\arg \max }-\frac{1}{2} \boldsymbol{x}^{\top} V \boldsymbol{x} \\
\widetilde{\boldsymbol{x}}^{\top} \widetilde{\boldsymbol{e}}=1 \\
\widetilde{\boldsymbol{x}}^{\top} \widetilde{\boldsymbol{\mu}} \geq r_{p}
\end{gathered}
$$

The portfolio return can be reformulated in terms of excess return $\widetilde{\boldsymbol{R}}^{e}$:

$$
R_{p}(\widetilde{\boldsymbol{x}})=\widetilde{\boldsymbol{x}}^{\top} \widetilde{\boldsymbol{R}}=\sum_{i=0}^{n} x_{i} R_{i}=\sum_{i=0}^{n} x_{i} \underbrace{\left(R_{i}-\mu_{0}\right)}_{R_{i}^{e}}+\sum_{i=0}^{n} x_{i} \mu_{0}=\widetilde{\boldsymbol{x}}^{\top} \widetilde{\boldsymbol{R}}^{e}+\mu_{0}
$$

The problems (6) and (7) become now

$$
\begin{align*}
& \boldsymbol{x}_{r_{p}}= \underset{\underset{\boldsymbol{x} \in \mathbb{R}^{n}}{\arg \max }-\frac{1}{2} \boldsymbol{x}^{\top} V \boldsymbol{x}}{ } \tag{15}\\
& \boldsymbol{x}^{\top} \boldsymbol{\mu}^{e}=r_{p}^{e} \\
& x_{r_{p}, 0}= 1-\boldsymbol{e}^{\top} \boldsymbol{x}_{r_{p}} \\
& \boldsymbol{x}_{r_{p}}^{+}= \underset{\underset{\boldsymbol{x}}{ }+\mathbb{R}^{n}}{\arg \max }-\frac{1}{2} \boldsymbol{x}^{\top} V \boldsymbol{x} \\
& \boldsymbol{x}^{\top} \boldsymbol{\mu}^{e} \geq r_{p}^{e} \tag{16}\\
& x_{r_{p}, 0}^{+}= 1-\boldsymbol{e}^{\top} \boldsymbol{x}_{r_{p}}^{+}
\end{align*}
$$

where

$$
r_{p}^{e}=r_{p}-\mu_{0} \quad \text { and } \quad \boldsymbol{\mu}^{e}=\mathrm{E}\left[\boldsymbol{R}^{e}\right]=\boldsymbol{\mu}-\mu_{0} \boldsymbol{e}
$$

The Kuhn-Tucker conditions for (16) are

$$
\begin{align*}
L\left(\boldsymbol{x}, \lambda, r^{e}\right) & =-\frac{1}{2} \boldsymbol{x}^{\top} V \boldsymbol{x}-\lambda\left(\boldsymbol{x}^{\top} \boldsymbol{\mu}^{e}-r^{e}\right) \\
\frac{\partial L}{\partial \boldsymbol{x}} & =-V \boldsymbol{x}-\lambda \boldsymbol{\mu}^{e}=0 \tag{17a}\\
\frac{\partial L}{\partial \lambda} & =-\left(\boldsymbol{x}^{\top} \boldsymbol{\mu}^{e}-r^{e}\right)=0 \tag{17b}\\
\frac{\partial L}{\partial r^{e}} & =\lambda \leq 0 \tag{17c}\\
\left(r^{e}-r_{p}^{e}\right) \lambda & =0 \quad r^{e} \geq r_{p}^{e} \tag{17d}
\end{align*}
$$

Equations (17a) and (17b) imply

$$
\begin{aligned}
\boldsymbol{x} & =-\lambda V^{-1} \boldsymbol{\mu}^{e} \\
\boldsymbol{x}^{\top} \boldsymbol{\mu}^{e} & =-\lambda \boldsymbol{\mu}^{e \top} V^{-1} \boldsymbol{\mu}^{e}=r^{e} \\
-\lambda & =\frac{r_{e}}{\boldsymbol{\mu}^{e \top} V^{-1} \boldsymbol{\mu}^{e}}
\end{aligned}
$$

So we can write the solution to the Lagrange problem (15)

$$
\boldsymbol{x}_{r^{e}}=\frac{r_{e}}{\boldsymbol{\mu}^{e^{\top}} V^{-1} \boldsymbol{\mu}^{e}} V^{-1} \boldsymbol{\mu}^{e}
$$

Mean-Variance Diagram

$$
\operatorname{Var}\left[R_{p}\left(\boldsymbol{x}_{r^{e}}\right)\right]=\boldsymbol{x}_{r^{e}}^{\top} V \boldsymbol{x}_{r^{e}}=\frac{\left(r^{e}\right)^{2}}{\left(\boldsymbol{\mu}^{e \top} V^{-1} \boldsymbol{\mu}^{e}\right)^{2}} \boldsymbol{\mu}^{e \top} V^{-1} V V^{-1} \boldsymbol{\mu}^{e}=\frac{\left(r^{e}\right)^{2}}{\boldsymbol{\mu}^{e \top} V^{-1} \boldsymbol{\mu}^{e}}
$$

Figure 4: $\sqrt{\operatorname{Var}\left[R_{p}\left(\boldsymbol{x}_{r}\right)\right]}$ as a function of r

Theorem 2.26. Under assumptions 2.25 the solution to problem (16) is

$$
\boldsymbol{x}_{r_{p}}^{+}=\frac{\max \left(0, r_{p}^{e}\right)}{\boldsymbol{\mu}^{e \top} V^{-1} \boldsymbol{\mu}^{e}} V^{-1} \boldsymbol{\mu}^{e} .
$$

Corollary 2.27. The solution to problem (15) is

$$
\boldsymbol{x}_{r^{e}}^{+}=\frac{r^{e}}{\boldsymbol{\mu}^{e \top} V^{-1} \boldsymbol{\mu}^{e}} V^{-1} \boldsymbol{\mu}^{e} .
$$

Proof. Theorem and Corollary are consequences from Kuhn-Tucker conditions (17a) - (17d).

Definition 2.28. A minimum variance portfolio $\boldsymbol{x}_{\mathrm{tan}}$ is called tangent portfolio if $\boldsymbol{x}^{\top} \boldsymbol{e}=1$.
(i.e. if $\widetilde{\boldsymbol{x}}_{\mathrm{tan}}$ invests only in risky assets.)

Proposition 2.29. There exists an unique tangential portfolio. Its excess return is

$$
\begin{equation*}
r_{\mathrm{tan}}^{e}=\frac{\boldsymbol{\mu}^{e \top} V^{-1} \boldsymbol{\mu}^{e}}{\boldsymbol{\mu}^{e \top} V^{-1} \boldsymbol{e}} \tag{18}
\end{equation*}
$$

Proof. A minimum variance portfolio with given excess return r^{e} has the form

$$
\boldsymbol{x}_{r^{e}}=\frac{r^{e}}{\boldsymbol{\mu}^{e \top} V^{-1} \boldsymbol{\mu}^{e}} V^{-1} \boldsymbol{\mu}^{e}
$$

Thus

$$
\boldsymbol{x}_{r^{e}}^{\top} \boldsymbol{e}=\frac{r^{e}}{\boldsymbol{\mu}^{e \top} V^{-1} \boldsymbol{\mu}^{e}} \boldsymbol{\mu}^{e \top} V^{-1} \boldsymbol{e}
$$

The equation $\boldsymbol{x}_{r^{e}}^{\top} \boldsymbol{e}=1$ has the unique solution $r^{e}=r_{\text {tan }}^{e}$.
Remark. Practitionners would expect that $r_{\mathrm{gmv}}>\mu_{0}$ since the latter return is achieved without any risk. Proposition 2.29 gives us the equivalence $r_{\mathrm{gmv}}>$ $\mu_{0} \Leftrightarrow r_{\text {tan }}^{e}>0$.

Indeed: Since the numerator in (18) is positive, r^{e} has the same sign as

$$
\boldsymbol{\mu}^{e \top} V^{-1} \boldsymbol{e}=\left(\boldsymbol{\mu}-\mu_{0} \boldsymbol{e}\right)^{\top} V^{-1} \boldsymbol{e}=b-\mu_{0} a=a\left(r_{\mathrm{gmv}}-\mu_{0}\right)
$$

When estimating model parameters $\widetilde{\boldsymbol{\mu}}$ and V, make sure that this condition is fulfilled.

Theorem 2.30. Assume $\boldsymbol{x}_{r^{e}}$ is a minimum variance portfolio for $r^{e} \neq 0$, let $\widetilde{\boldsymbol{x}}$ an arbitrary portfolio with expected return $r_{\boldsymbol{x}}=\widetilde{\boldsymbol{x}}^{\top} \widetilde{\boldsymbol{\mu}}=\mu_{0}+\boldsymbol{x}^{\top} \boldsymbol{\mu}^{e}$. Then for $r=\mu_{0}+r^{e}$ the following holds:

$$
r_{\boldsymbol{x}}-\mu_{0}=\beta_{\boldsymbol{x}, r}\left(r-\mu_{0}\right) \text { where } \beta_{\boldsymbol{x}, r}=\frac{\operatorname{Cov}\left[\boldsymbol{x}^{\top} \boldsymbol{R}, \boldsymbol{x}_{r^{e}}^{\top} \boldsymbol{R}\right]}{\operatorname{Var}\left[\boldsymbol{x}_{r^{e}}^{\top} \boldsymbol{R}\right]}
$$

Proof.

$$
\begin{aligned}
\operatorname{Cov}\left[R_{i}, \boldsymbol{x}_{r^{e}} \boldsymbol{R}\right] & =\boldsymbol{e}_{i}^{\top} V \boldsymbol{x}_{r^{e}} \\
& =\boldsymbol{e}_{i}^{\top} V\left(\frac{r^{e}}{\boldsymbol{\mu}^{\top} V^{-1} \boldsymbol{\mu}^{e}} V^{-1} \boldsymbol{\mu}^{e}\right) \\
& =\frac{r^{e}}{\boldsymbol{\mu}^{\top} V^{-1} \boldsymbol{\mu}^{e}} \boldsymbol{e}_{i}^{\top} \boldsymbol{\mu}^{e} \\
& =\frac{\operatorname{Var}\left[\boldsymbol{x}_{r^{e}}^{\top} \boldsymbol{R}\right]}{r^{e}} \mu_{i}^{e}
\end{aligned}
$$

Taking a linear combination with coefficients x_{i} of the above we obtain

$$
\operatorname{Cov}\left[\boldsymbol{x}^{\top} \boldsymbol{R}, \boldsymbol{x}_{r^{e}}^{\top} \boldsymbol{R}\right]=\frac{\operatorname{Var}\left[\boldsymbol{x}_{r^{e}}^{\top} \boldsymbol{R}\right]}{r^{e}} \boldsymbol{x}^{\top} \boldsymbol{\mu}^{e}
$$

Remark. The coefficient $\beta_{\boldsymbol{x}, r}$ can be written as

$$
\beta_{\boldsymbol{x}, r}=\operatorname{Cor}\left[\boldsymbol{x}^{\top} \boldsymbol{R}, \boldsymbol{x}_{r^{e}}^{\top} \boldsymbol{R}\right] \sqrt{\frac{\operatorname{Var}\left[\boldsymbol{x}^{\top} \boldsymbol{R}\right]}{\operatorname{Var}\left[\boldsymbol{x}_{r^{e}}^{\top} \boldsymbol{R}\right]}}
$$

Remark. The portfolio $\boldsymbol{x}_{r^{e}}$ plays the role of a market portfolio. If the correlation is small then it is used for diversification. Due to the demand of such portfolios they are expensive, i.e. their excess return r^{e} is small.

Remark (Practical Remarks).

1. There are often additional constraints to the optimization problem (6) such as e.g. a maximum of 30% of assets in foreign currency

$$
\sum_{i \in\{\text { foreign }\}} x_{i} \leq 0.3
$$

or a no-short-selling constriaint

$$
x_{i} \geq 0
$$

2. The mean return vector $\boldsymbol{\mu}$ has to be estimated. An estimation based on historical data is often too naïve.
The covariance matrix V can often be estimated with more confidence. Theorem 2.30 can then be used to estimate $\boldsymbol{\mu}$.
3. Asset and Liability management (ALM). Need to replicate a liability portfolio $\widetilde{\boldsymbol{y}}$ e.g. payouts of a life insurance using a deterministic life table or predicted payouts based on claim triangles in non-life insurance.
This leads to the following problem. Note that not the variance of the return is minimized but the variance of the difference to the return of the given liabilites.

$$
\begin{gathered}
\boldsymbol{x}_{r_{p}}^{+}=\underset{\underset{\boldsymbol{\boldsymbol { x }}}{ } \in \mathbb{R}^{n+1} \quad \underset{\boldsymbol{x}}{\arg \max } \quad-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{y})^{\top} V(\boldsymbol{x}-\boldsymbol{y})}{ } \quad \widetilde{\boldsymbol{x}}^{\top} \widetilde{\boldsymbol{e}}=1 \\
\widetilde{\boldsymbol{x}}^{\top} \widetilde{\boldsymbol{\mu}}^{\arg } \geq \widetilde{\boldsymbol{y}}^{\top} \widetilde{\boldsymbol{\mu}}+r_{+}
\end{gathered}
$$

where r_{+}is an additional profit.
As before we solve this problem using Kuhn-Tucker.

$$
\begin{align*}
L\left(\widetilde{\boldsymbol{x}}, \lambda_{1}, \lambda_{2}, r\right)=-\frac{1}{2} \boldsymbol{x}^{\top} V \boldsymbol{x} & +\boldsymbol{x}^{\top} V \boldsymbol{y}-\lambda_{1}\left(\widetilde{\boldsymbol{x}}^{\top} \widetilde{\boldsymbol{e}}-1\right)-\lambda_{2}\left(\widetilde{\boldsymbol{x}}^{\top} \widetilde{\boldsymbol{\mu}}-\left(\widetilde{\boldsymbol{y}}^{\top} \widetilde{\boldsymbol{\mu}}+r\right)\right) \\
\frac{\partial L}{\partial \boldsymbol{x}} & =-V(\boldsymbol{x}-\boldsymbol{y})-\lambda_{1} \boldsymbol{e}-\lambda_{2} \boldsymbol{\mu}=0 \tag{19a}\\
\frac{\partial L}{x_{0}} & =-\lambda_{1}-\lambda_{2} \mu_{0}=0 \tag{19b}\\
\frac{\partial L}{\partial \lambda_{1}} & =-\left(\widetilde{\boldsymbol{x}}^{\top} \widetilde{\boldsymbol{e}}-1\right)=0 \tag{19c}\\
\frac{\partial L}{\partial \lambda_{2}} & =-\left(\widetilde{\boldsymbol{x}}^{\top} \widetilde{\boldsymbol{\mu}}-\left(\widetilde{\boldsymbol{y}}^{\top} \widetilde{\boldsymbol{\mu}}+r\right)\right)=0 \tag{19d}\\
\frac{\partial L}{\partial r} & =\lambda_{2} \leq 0 \tag{19e}\\
\left(r-r_{+}\right) \lambda_{2} & =0 \quad r \geq r_{+} \tag{19f}
\end{align*}
$$

Equations (19a) and (19b) imply

$$
\boldsymbol{x}=\boldsymbol{y}-\lambda_{2} V^{-1} \boldsymbol{\mu}^{e}
$$

From (19d) we get

$$
\widetilde{\boldsymbol{y}}^{\top} \widetilde{\boldsymbol{\mu}}+r=\widetilde{\boldsymbol{x}}^{\top} \widetilde{\boldsymbol{\mu}}=\mu_{0}+\boldsymbol{x}^{\top} \boldsymbol{\mu}^{e}=\mu_{0}+\boldsymbol{y}^{\top} \boldsymbol{\mu}^{e}-\lambda_{2} \boldsymbol{\mu}^{e \top} V^{-1} \boldsymbol{\mu}^{e}
$$

therefore

$$
-\lambda_{2}=\frac{r}{\boldsymbol{\mu}^{e \top} V^{-1} \boldsymbol{\mu}^{e}}
$$

Finally, using (19e) and (19f), we have

$$
\boldsymbol{x}=\boldsymbol{y}+\frac{\max \left(0, r_{+}\right)}{\boldsymbol{\mu}^{e \top} V^{-1} \boldsymbol{\mu}^{e}} V^{-1} \boldsymbol{\mu}^{e}
$$

(The risk free part x_{0} is given by (19c).)
If no additional profit is demanded, one chooses $\widetilde{\boldsymbol{x}}=\widetilde{\boldsymbol{y}}$.
If $\widetilde{\boldsymbol{y}}=\widetilde{\mathbf{0}}$ we have the solution from theorem 2.26.

2.6 Capital Asset Pricing Model

Motivation: Where do the μ_{i} come from? So far they where given exegenousely, but a market equilibrium should allow for a endogenous determination of μ_{i}. The model should tell us what the right prices are.

Assume $r_{\mathrm{gmv}} \neq \mu_{0}$. Then proposition 2.29
implies the existence of the unique tangential portfolio

$$
\begin{aligned}
\boldsymbol{x}_{\mathrm{tan}} & =\frac{r_{\mathrm{tan}}^{e}}{\boldsymbol{\mu}^{e \top} V^{-1} \boldsymbol{\mu}^{e}} V^{-1} \boldsymbol{\mu}^{e} \\
\text { where } r_{\mathrm{tan}}^{e} & =\frac{\boldsymbol{\mu}^{e \top} V^{-1} \boldsymbol{\mu}^{e}}{\boldsymbol{\mu}^{e \top} V^{-1} \boldsymbol{e}} \\
\text { and } \boldsymbol{x}_{\mathrm{tan}}^{\top} \boldsymbol{e} & =1
\end{aligned}
$$

Note that $r_{\text {tan }}^{e}>0$.
Henceforth every minimum variance portfolio $\widetilde{\boldsymbol{x}}_{r^{e}}$ is a linear combination of the tangential portfolio $\widetilde{\boldsymbol{x}}_{\mathrm{tan}}$ and the risk free portfolio $\widetilde{\boldsymbol{e}}_{0}=(1,0, \ldots, 0)$.

$$
\widetilde{\boldsymbol{x}}_{r^{e}}=\left(1-\frac{r^{e}}{r_{\tan }^{e}}\right) \widetilde{\boldsymbol{e}}_{0}+\frac{r^{e}}{r_{\tan }^{e}} \widetilde{\boldsymbol{x}}_{\mathrm{tan}}
$$

Assumption 2.31. (Market Model)

Supply Assume $n+1$ financial assets satisfying assumptions 2.25. The total value of asset j at time 0 is given by M_{j}.

Demand We have N financial agents all holding a minimum variance portfolio $\widetilde{\boldsymbol{x}}^{(i)} \in \mathbb{R}^{n+1}$ and having initial wealth w_{i}.

Assumption 2.32. (Economic Principle) We have a risk exchange economy with market clearance condition; i.e. supply equals demand.

Definition 2.33. The market portfolio $\widetilde{\boldsymbol{x}}^{\mathrm{M}}$ is given by

$$
x_{j}^{\mathrm{M}}=\frac{M_{j}}{M} \quad \text { where } \quad M=\sum_{j=0}^{n} M_{j}
$$

Each agent holds a minimum variance portfolio.

$$
w_{i}\left(\left(1-\frac{r_{i}^{e}}{r_{\tan }^{e}}\right), \frac{r_{i}^{e}}{r_{\tan }^{e}} \boldsymbol{x}_{\tan }\right)
$$

The total value of risky assets at time 0 is

$$
\sum_{i=1}^{N} w_{i} \frac{r_{i}^{e}}{r_{\tan }^{e}} \boldsymbol{x}_{\mathrm{tan}}
$$

The market clearing condition implies

1. $\boldsymbol{x}_{\mathrm{tan}}=\boldsymbol{x}^{\mathrm{M}}$
2. $\sum_{i=1}^{N} w_{i} \frac{r_{i}^{e}}{r_{\tan }^{e}}=\sum_{j=1}^{n} M_{j}$

Theorem 2.34. (Capital Asset Pricing Model CAPM) Under assumptions 2.31 and 2.32 we have

$$
\mu_{j}=\mu_{0}+\beta_{j}\left(r^{\mathrm{M}}-\mu_{0}\right)
$$

where

$$
r^{\mathrm{M}}=\mathrm{E}\left[R_{p}\left(\widetilde{\boldsymbol{x}^{\mathrm{M}}}\right)\right] \quad \text { and } \quad \beta_{j}=\frac{\operatorname{Cov}\left[R_{j}, R_{p}\left(\boldsymbol{x}^{\mathrm{M}}\right)\right]}{\operatorname{Var}\left[R_{p}\left(\boldsymbol{x}^{\mathrm{M}}\right)\right]}
$$

Proof. Because of the market clearing condition we can replace the tangent portfolio $\widetilde{\boldsymbol{x}}_{\text {tan }}$ with the market portfolio $\widetilde{\boldsymbol{x}}^{\mathrm{M}}$.

Then the theorem follows straightforward from theorem 2.30.
Remark. (CAPM)

1. The theorem above does not really tell wether the prices are exogenous or endogenous, but rather gives a balance condition for prices μ_{j}.
2. Assume the market is large or single assets small, such that a single asset does not really influence the market return r^{M}.
In practice the following is done:
(a) Determine β_{j}. (Covariance matrix)
(b) Determine r^{M}. (Expected market return) "growth of the economy".
(c) Calculate prices assuming independence of the market on single asset prices.
3. CAPM has many unrealistic assumptions:

- closed market
- market clearing condition
- all agents are mean variance optimizers
- all agents estimate the same parameter values

4. The parameters β_{j} measure the systemic risk.

3 Arbitrage Pricing Theory (APT)

Remark. In Chapter 1-3 we have two point models two time-points t_{0} : invest, t_{1} : observe return. The idea with CAPM is to generalize that and use distributions rather than expected values:

$$
R_{j}=\mu_{0}+\underbrace{\beta_{j}\left(R_{m}-\mu_{0}\right)}_{\text {systematic risk }}+\underbrace{\varepsilon_{j}}_{\text {idiosyncratic component for asset } j}
$$

where $\mathrm{E}\left[\varepsilon_{j}\right]=0$. Thus we have:

$$
\mathrm{E}\left[R_{j}\right]=\mu_{0}+\beta_{j}\left(r_{\mu}-\mu_{0}\right)
$$

3.1 Exact APT, no ideosyncratic risk

Assumption 3.1 (Model). μ_{0} : risk free return,
R_{1}, \ldots, R_{n} : risky assets fullfilling:

- $R_{i}=\mu_{i}+\sum_{k=1}^{K} b_{i k} F_{k} \quad \forall i=1, \ldots, n, b_{i k} \in \mathbb{R}$
- $\mathrm{E}\left[F_{k}\right]=0$
- $\operatorname{Cov}[\boldsymbol{F}]=\Phi$, positive definite $\in \mathbb{R}^{K \times K}$
- $n>K$

Interpretation: Returns R_{i} are described by K underlying risk factors F_{1}, \ldots, F_{k}. In Matrix form we can write that as $\boldsymbol{R}=\boldsymbol{\mu}+B \boldsymbol{F}$ with $B \in \mathbb{R}^{n \times k}$. Since $k<n$:

$$
\begin{equation*}
\exists \boldsymbol{x} \in \mathbb{R}^{n} \backslash\{0\} \text { orthogonal to all columns of } \mathrm{B} \tag{20}
\end{equation*}
$$

Expected return for such a portfolio \boldsymbol{x} is:

$$
\begin{aligned}
\mathrm{E}\left[R_{p}(\widetilde{\boldsymbol{x}})\right] & =\widetilde{\boldsymbol{x}}^{\top} \widetilde{\boldsymbol{\mu}}=\mu_{0}+\boldsymbol{x}^{\top}\left(\boldsymbol{\mu}-\mu_{0} \boldsymbol{e}\right)=\mu_{0}+\boldsymbol{x}^{\top} \boldsymbol{\mu}^{e} \\
\operatorname{Var}\left[R_{p}(\widetilde{\boldsymbol{x}})\right] & =\boldsymbol{x}^{\top} \operatorname{Var}[\boldsymbol{R}] \boldsymbol{x}=\boldsymbol{x}^{\top} \operatorname{Var}[(B \boldsymbol{F})] \boldsymbol{x}=\underbrace{\boldsymbol{x}^{\top} B}_{=0} \operatorname{Var}[(\boldsymbol{F})] \underbrace{B^{\top} \boldsymbol{x}}_{=0}=0
\end{aligned}
$$

Definition 3.2 (Economic Priciple). $\widetilde{\boldsymbol{x}} \in \mathbb{R}^{n+1}$ is an arbitrage portfolio if
(i) $\boldsymbol{x}^{\top} \boldsymbol{e}=-x_{0} \quad$ net invest 0
(ii) $\mathrm{E}\left[R_{p}(\widetilde{\boldsymbol{x}})\right]>0$
(iii) $\operatorname{Var}\left[R_{p}(\widetilde{\boldsymbol{x}})\right]=0$

From (ii) and (iii) follows that $R_{p}(\widetilde{\boldsymbol{x}})>0$ a.s..

Theorem 3.3. Under the assumption of "no arbitrage" (i.e. $\nexists x, x$ arbitrage portfolio) we obtain $\exists \lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ risk premium such that

$$
\mu_{i}=\mu_{0}+\sum_{k=1}^{K} b_{i k} \lambda_{k} \quad \forall i=1, \ldots, n
$$

Proof. Choose $\widetilde{\boldsymbol{x}}$ as in (20) and assume $\mathrm{E}\left[R_{p}(\widetilde{\boldsymbol{x}})\right] \neq \mu_{0}$. Without loss of generality we can assume $r:=\mathrm{E}\left[R_{p}(\widetilde{\boldsymbol{x}})\right]>\mu_{0}$. Invest 1 unit into $\widetilde{\boldsymbol{x}}$ and -1 unit into the risk free asset. Thus we have a net investment of 0 with return $r-\mu_{0}>0$, which is a contradiction to the no arbitrage assumption. Thus

$$
\begin{aligned}
\mathrm{E}\left[R_{p}(\widetilde{\boldsymbol{x}})\right] & =\mu_{0} \\
\mu_{0}+\boldsymbol{x}^{\top}\left(\boldsymbol{\mu}-\mu_{0} \boldsymbol{e}\right) & =\mu_{0} \\
\Rightarrow \boldsymbol{x}^{\top}\left(\boldsymbol{\mu}-\mu_{0} \widetilde{\boldsymbol{e}}\right) & =0
\end{aligned}
$$

This holds true fo all portfolios \boldsymbol{x} which satisfies (20). $\boldsymbol{\mu}-\mu_{0} \boldsymbol{e}$ is in the span of the columns of B. Thus

$$
\begin{equation*}
\exists \boldsymbol{\lambda}: \boldsymbol{\mu}-\mu_{0} \boldsymbol{e}=B \boldsymbol{\lambda} \tag{21}
\end{equation*}
$$

Remark (1). The price of risk λ can explicitly be determined by solving the system (21).

Remark (2). If $k=1$:

$$
\mu_{i}=\mu_{0}+b_{i} \lambda \quad(\lambda \text { is a scalar })
$$

Compare this to CAPM:

$$
\mu_{i}=\mu_{0}+\beta_{i} r_{\mu}^{e}
$$

The pricing formula coincides.
Remark (3). The two Models should not be identified since we have two completetely different economic principles.

3.2 Ideosyncractic Risk

Assumption 3.4 (Model Assumption).

- μ_{0} : risk free return
- R_{1}, R_{2}, \ldots infinite sequence of risky returns.
- $\boldsymbol{R}^{N}=\left(R_{1}, \ldots, R_{N}\right)=\boldsymbol{\mu}^{N}+B^{N} \boldsymbol{F}+\varepsilon^{N}$, with:
$-\boldsymbol{F}=\left(F_{1}, \ldots, F_{K}\right)$ market risk factors.
$-B^{N}$ are the first N rows of an $\infty \times K$ - Matrix.
$-\varepsilon^{N}=\left(\varepsilon_{1}, \ldots, \varepsilon_{N}\right)$ with $\mathrm{E}\left[\varepsilon_{i}\right]=0, \operatorname{Cov}[\varepsilon]=\Omega^{N}$ positive definite all eigenvalues bounded uniformly (in N) by $\boldsymbol{\lambda}$
$-\operatorname{Cov}\left[\varepsilon_{i}, F_{k}\right]=0$
$-\operatorname{Cov}[\boldsymbol{F}]$ pos definite
$-\mathrm{E}\left[F_{k}\right]=0$

Remark. Hopefully the main behaviour can be explained by a finite number K of market risk factors such that the remaining (ideosyncratic parts) ε_{i} are sufficiently small.

Definition 3.5. An asymptotic arbitrage opportunity is a sequence of portfolios $\boldsymbol{w}^{N} \in \mathbb{R}^{N}$ such that
(i) $\boldsymbol{w}^{N} \boldsymbol{e}^{N}=0 \quad$ net investment zero
(ii) $\lim \sup _{N \rightarrow \infty} \mathrm{E}\left[\left(\boldsymbol{w}^{N}\right)^{\top} R^{N}\right] \geq \delta>0$
(iii) $\lim _{N \rightarrow \infty} \operatorname{Var}\left[\left(\boldsymbol{w}^{N}\right)^{\top} R^{N}\right]=0$

Theorem 3.6. Under previous model assumptuions and under exclusion of asymptotic arbitrage opportunities. There exists $\tilde{\lambda}^{N}=\left(\lambda_{0}^{N}, \ldots, \lambda_{K}^{N}\right)$ of risk factors such that for $N>K$:

$$
\mu_{i}=\lambda_{0}^{N}+\sum_{k=1}^{K} b_{i k} \lambda_{k}^{N}+v_{i}^{N}, \quad \forall i=1, \ldots, N
$$

sucht that the error terms v_{i}^{N} satisfy

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N}\left(v_{i}^{N}\right)^{2}=0 \tag{22}
\end{equation*}
$$

Idea of the proof is choose in a smart way the sequence $\left(\widetilde{\boldsymbol{\lambda}}^{N}\right)_{N \geq K}$ and show that (22) is satisfied.

Excursion

Figure 5: Linear regression
a) Linear regression problem. Assume $K=1 . \mu_{i}=\lambda_{0}^{N}+b_{i 1} \lambda_{1}+v_{i}^{N}$.
b) Multivariate linear regression

$$
\boldsymbol{v}^{N}=\boldsymbol{\mu}^{N}-\left(\lambda_{0}^{N} \boldsymbol{e}^{N}+B^{N} \boldsymbol{\lambda}^{N}\right)
$$

Choose $\tilde{\boldsymbol{\lambda}}^{N}$ such that $\|v\|_{2}$ is minimal. Optimal least squares methods (OLS). Solve:

$$
\begin{align*}
& \text { (1) } \sum_{i=1}^{N} v_{i}^{N}=0 \tag{23}\\
& \text { (2) } \sum_{i=1}^{N} v_{i}^{N} b_{i k}=0 \quad \forall k=1, \ldots, K \tag{24}
\end{align*}
$$

Choose this $\tilde{\boldsymbol{\lambda}}^{N}$ and show that (22) is fullfield. Define $\boldsymbol{w}^{N}=\frac{1}{\sqrt{N}} \frac{1}{\left\|\boldsymbol{v}^{N}\right\|_{2}} \boldsymbol{v}^{N}$ then (23) implies:

$$
\begin{aligned}
& (1)\left(\boldsymbol{w}^{N}\right)^{\top} e^{N}=0 \\
& (2)\left(\boldsymbol{w}^{N}\right)^{\top} \boldsymbol{R}^{N}=\frac{1}{\sqrt{N}} \frac{1}{\left\|\boldsymbol{v}^{N}\right\|_{2}}\left(\boldsymbol{v}^{N}\right)^{\top}\left(\boldsymbol{\mu}^{N}+B^{N} \boldsymbol{F}+\varepsilon^{N}\right) \\
& \quad=\frac{1}{\sqrt{N}} \frac{1}{\left\|\boldsymbol{v}^{N}\right\|_{2}}[\left(\boldsymbol{v}^{N}\right)^{\top} \mu^{N}+\underbrace{\left(\boldsymbol{v}^{N}\right)^{\top} B^{N} \boldsymbol{F}}_{=0}+(\boldsymbol{v})^{N^{\top}} \varepsilon^{N}]
\end{aligned}
$$

Calculating the expected value:

$$
\begin{aligned}
\mathrm{E}\left[\left(\boldsymbol{w}^{N}\right)^{\top} \boldsymbol{R}^{N}\right] & =\frac{1}{\sqrt{N}} \frac{1}{\left\|\boldsymbol{v}^{N}\right\|_{2}}[\left(\boldsymbol{v}^{N}\right)^{\top} \mu^{N}+\underbrace{\mathrm{E}\left[\left(\boldsymbol{v}^{N}\right)^{\top} \varepsilon^{N}\right]}_{=0}] \\
& =\frac{1}{\sqrt{N}} \frac{1}{\left\|\boldsymbol{v}^{N}\right\|_{2}}\left(\boldsymbol{v}^{N}\right)^{\top}\left[\boldsymbol{v}^{N}+\lambda_{0}^{N} e^{N}+B^{N} \lambda^{N}\right] \\
& =\frac{1}{\sqrt{N}} \frac{1}{\left\|\boldsymbol{v}^{N}\right\|_{2}}\left(\boldsymbol{v}^{N}\right)^{\top} \boldsymbol{v}^{N}+\underbrace{\lambda_{0}^{N}\left(\boldsymbol{v}^{N}\right)^{\top} e^{N}}_{=0 \text { with }(23)(1)}+\underbrace{\left(\boldsymbol{v}^{N}\right)^{\top} B^{N} \lambda^{N}}_{=0 \text { with }(23)(2)} \\
& =\frac{1}{\sqrt{N}}
\end{aligned}
$$

and the variance:

$$
\begin{aligned}
\operatorname{Var}\left[\left(\boldsymbol{w}^{N}\right)^{\top} \boldsymbol{R}^{N}\right] & =\frac{1}{N} \frac{1}{\left\|\boldsymbol{v}^{N}\right\|_{2}^{2}} \operatorname{Var}\left[\left(\boldsymbol{w}^{N}\right)^{\top} \varepsilon^{N}\right] \\
& =\frac{1}{N} \frac{1}{\left\|\boldsymbol{v}^{N}\right\|_{2}^{2}}\left(\boldsymbol{w}^{N}\right)^{\top} \underbrace{\operatorname{Cov}\left[\varepsilon^{N}\right]}_{\Omega^{N}} v^{N} \\
& \leq \\
& \text { eigenvalues unif. bounded } \frac{1}{N} \frac{1}{\left\|\boldsymbol{v}^{N}\right\|_{2}^{2}} \bar{\lambda}\left\|\boldsymbol{v}^{N}\right\|_{2}^{2}=\frac{\bar{\lambda}}{N} \rightarrow 0
\end{aligned}
$$

the $\bar{\lambda}$ is uniformly bounded.

Proof. Assume (22) does not hold true for our choice $\widetilde{\boldsymbol{\lambda}}^{N}$ and v^{N}. Then (i) and (ii) are fullfield and there exists $\delta>0$ with

$$
\limsup \mathrm{E}\left[\left(\boldsymbol{w}^{N}\right)^{\top} \boldsymbol{R}^{N}\right] \geq \delta
$$

which contradicts the no arbitrage assumption.

4 Multiperiod Models

We consider a discrete Time Model with finite time horizon, with $t \in\{0,1, \ldots, T\}$, $T<\infty$ and a cashflow $\boldsymbol{c}=\left(c_{1}, \ldots, c_{T}\right)$.

Figure 6: Cashflow with finite time horizon.
The aim is to find a price we are willing to pay at time 0 for this cashflow.

4.1 Deterministic Cashflows and Arbitrage

Definition 4.1. $v \in \mathbb{R}^{N}$

- $\boldsymbol{v} \geq 0$ iff $v_{i} \geq 0, \forall i=1, \ldots, N$, iff $\boldsymbol{v} \in \mathbb{R}_{+}^{N} \cup\{0\}$
- $\boldsymbol{v}>0$ iff $\boldsymbol{v} \geq 0$ and $\exists i: v_{i}>0$, iff $\boldsymbol{v} \in \mathbb{R}_{+}^{N}$
- $\boldsymbol{v} \gg 0$ iff $v_{i}>0 \forall i=1, \ldots, N$, iff $\boldsymbol{v} \in \mathbb{R}_{++}^{N}$

Definition 4.2 (Security Market). A security market is a pair $(\boldsymbol{\Pi}, C)$ with $\Pi \in \mathbb{R}^{N}$ and $C \in \mathbb{R}^{N \times T}$.

$$
\boldsymbol{\Pi}=\left[\begin{array}{c}
\Pi_{1} \\
\vdots \\
\Pi_{i} \\
\vdots \\
\Pi_{n}
\end{array}\right], \quad C=\left[\begin{array}{ccc}
c_{11} & \ldots & c_{1 T} \\
\vdots & & \vdots \\
c_{i 1} & \ldots & c_{i T} \\
\vdots & & \vdots \\
c_{N 1} & \ldots & c_{N T}
\end{array}\right]
$$

Each row in C represents a cashflow. We thus have N cashflows with corresponding prices $\boldsymbol{\Pi}$ at time zero.

Definition 4.3. A prortfolio strategy is a vector $\boldsymbol{\theta} \in \mathbb{R}^{N}$. The cashflow generated by such a portfolio strategy $\boldsymbol{\theta}$ is:

$$
C^{\top} \boldsymbol{\theta}=\left(\sum_{i=1}^{N} \theta_{i} c_{i 1}, \ldots, \sum_{i=1}^{N} \theta_{i} c_{i T}\right)^{\top} .
$$

The price of $C^{\top} \boldsymbol{\theta}$ at time 0 is $\boldsymbol{\Pi}^{\top} \boldsymbol{\theta}=\sum_{i}^{N} \theta_{i} \Pi_{i}$
Definition 4.4 (Arbitrage opportunity). $\boldsymbol{\theta} \in \mathbb{R}^{N}$ is an arbitrage opportunity if it satisties one of the two conditions:

1. $\boldsymbol{\Pi}^{\top} \boldsymbol{\theta}=0$ and $C^{\top} \boldsymbol{\theta}>0$ or
2. $\boldsymbol{\Pi}^{\top} \boldsymbol{\theta}<0$ and $C^{\top} \boldsymbol{\theta} \geq 0$

Definition 4.5 (Arbitrage-free). A security market $(\boldsymbol{\Pi}, C)$ is arbitrage-free if it contains no arbitrage opportunity $\boldsymbol{\theta}$.

Lemma 4.6. Let A be an $m \times n$ Matrix then exactly one of the follwoing statements holds

1. $\exists \boldsymbol{x} \in \mathbb{R}_{++}^{m}$ such that $A \boldsymbol{x}=0$
2. $\exists \boldsymbol{y} \in \mathbb{R}^{n}$ such that $y^{\top} A>0$

Proof. Stiemke Lemma. See elsewhere.

Remark. Another proof would be given by the seperating hyperplane theorem. Farkas?

Theorem 4.7. The security market $(\boldsymbol{\Pi}, C)$ is arbitrage free if and only if

$$
\exists \boldsymbol{d} \in \mathbb{R}_{++}^{T} \text { with } \boldsymbol{\Pi}=C \boldsymbol{d}
$$

Interpretation: \boldsymbol{d} is the vector of discount factors. A cashflow of 1 at time i has the price d_{i}.

Proof. Define

$$
A=\left[\begin{array}{cccc}
-\Pi_{1} & c_{11} & \ldots & c_{1 T} \\
\vdots & \vdots & & \vdots \\
-\Pi_{n} & c_{n 1} & \ldots & c_{n T}
\end{array}\right]
$$

Apply Stiemkes Lemma:

$$
\begin{aligned}
& \text { from i) } \exists \boldsymbol{x} \in \mathbb{R}_{++}^{T+1}: A \boldsymbol{x}=0 \\
& \qquad \Leftrightarrow \exists \boldsymbol{x} \in \mathbb{R}_{++}^{T+1}:-\Pi_{i} x_{0}=\sum_{t=1}^{T} x_{t} c_{i t}=0 \quad \forall i=1, \ldots, n \\
& \\
& \Leftrightarrow \exists \boldsymbol{x} \in \mathbb{R}_{++}^{T+1}: \Pi_{i}=\sum_{t=1}^{T} \frac{x_{t}}{x_{0}} c_{i t} \quad \forall i=1, \ldots, n
\end{aligned}
$$

define $d_{t}=\frac{x_{t}}{x_{0}}$

$$
\Leftrightarrow \exists \boldsymbol{d} \in \mathbb{R}_{++}^{T+1}: \Pi_{i}=\sum_{t=1}^{T} d_{t} c_{i t} \quad \forall i=1, \ldots, n
$$

It remains to prove that no-arbitrage assumption rules out being in case (ii) of Stiemkes Lemma. Assume $\exists \boldsymbol{y} \in \mathbb{R}^{N}$ such that $y^{\top} A>0$. There are now to cases:

1. either $\left(\boldsymbol{y}^{\top} A\right)_{1}>0$ and $\left(\boldsymbol{y}^{\top} A\right)_{k} \geq 0$ for $k=2, \ldots, T+1 \Leftrightarrow$ arbitrage definiton case (2).
2. or $\left(\boldsymbol{y}^{\top} A\right)_{1}=0$ and $\left(\boldsymbol{y}^{\top} A\right)_{k} \geq 0$ for $k=2, \ldots, T+1$ and $\exists l:\left(\boldsymbol{y}^{\top} A\right)_{l}>0$ \Leftrightarrow arbitrage definiton case (1).

We have shown that in Stemkes Lemma (i) \Leftrightarrow there exists a discount factor. (ii) \Leftrightarrow there exists an arbitrage opprotunity.

Remark. In the finite dimensional setup "No arbitrage" \Leftrightarrow "There are discount factors". Probabilities play no role.
Remark. In more general models: discrete time but infinite probability space or in continous time models we can usually show:

$$
\exists \text { martingale measuere } \Rightarrow \text { no arbitrage }
$$

For the case \Leftarrow it is important which definition of arbitrag implies the existence of a martingale measure. (See: [DS93]. Why are infinite probabilities space so much harder? For example in continous time one needs to exclude "doubling strategies", which plays infinitely many lotteries each doubling the investment until the first win.

Remark. We do not say anything about the uniquenss of \boldsymbol{d}.
Definition 4.8. The market $(\boldsymbol{\Pi}, C)$ is called complete if for any $\boldsymbol{y} \in \mathbb{R}^{T}$ there exists $\boldsymbol{\theta} \in \mathbb{R}^{N}$ such that $C^{\top} \boldsymbol{\theta}=\boldsymbol{y}$. (i.e. if we can replicate any cashflow \boldsymbol{y})
Proposition 4.9. The market is complete if an only if there exists an unique $\boldsymbol{d} \in \mathbb{R}_{++}^{T}$ such that $\boldsymbol{\Pi}=C \boldsymbol{d}$.

Proof. No proof given.
Remark. In that case C can be choosen as a regular $T \times T$-matrix.

4.2 Term Structures in Discrete Time

Assume $(\boldsymbol{\Pi}, C)$ is arbitrage free and complete. It follows that there exist unique discount factors \boldsymbol{d}.

Definition 4.10. A zero-coupon bond (ZCB) with maturity $t \in\{1, \ldots, T\}$ is given by $e_{t}=(0, \ldots, 0,1,0, \ldots, 0) \in \mathbb{R}^{T}$, where the 1 is at the t-th position.

Proposition 4.11. The price of $\mathrm{ZCB}(\mathrm{t})$ at time 0 is given by d_{t}.

Proof. Due to completeness $\exists \boldsymbol{\theta}_{t}: e_{t}=C^{\top} \boldsymbol{\theta}_{t}$ It follows that:

$$
\operatorname{Price}(\mathrm{ZCB}(t))=\Pi^{\top} \boldsymbol{\theta}_{t}=(C \boldsymbol{d})^{\top} \boldsymbol{\theta}_{t}=\boldsymbol{d}^{\top} C^{\top} \boldsymbol{\theta}_{t}=\boldsymbol{d}^{\top} \boldsymbol{e}_{t}=d_{t}
$$

Corollary 4.12. The price of any casfhlow $\boldsymbol{c} \in \mathbb{R}^{T}$ is given by

$$
\operatorname{Price}_{0}(\boldsymbol{c})=\sum_{t=1}^{T} c_{t} d_{t}
$$

Proof. Write $\boldsymbol{c}=\sum c_{t} e_{t}$ and use linearity.

All we need in this section is arbitrage-free and complete. We have not assumed any monotonicity properties on \boldsymbol{d}. You would guess $d_{t+1}<d_{t}$, but this is not assumed or implied here. We use the following terminology to normalize $d_{0}=1$.

Definition 4.13. Assume $\boldsymbol{d} \in \mathbb{R}_{++}^{T}$ is given as above. The spot rate at time 0 is $r_{0}=\frac{1}{d_{1}}-1$. The (one period) t-forward rate at time zero is $f(0, t)=\frac{d_{t}}{d_{t+1}}-1$.

Definition 4.14. Yield-to-maturity of $\mathrm{ZCB}(\mathrm{t})$:

$$
y(0, t)=\left({\frac{1}{d_{t}}}^{1 / t}\right)-1 \Leftrightarrow d_{t}=(1+y(0, t))^{-t}
$$

Term structure at time 0 is given by $(y(0,1), y(0,2), \ldots, y(0, T))$.

4.3 Duration

$\boldsymbol{c} \in \mathbb{R}^{T}:$ cashflow, $\boldsymbol{d} \in \mathbb{R}_{++}^{T}$ given.

$$
\operatorname{Price}_{0}(\boldsymbol{c})=\sum_{t=1}^{T} c_{t} d_{t}=\sum_{t=1}^{T} \frac{c_{t}}{(1+y(0, t))^{t}}
$$

In old models one assumes often $y(0, t)=r$

$$
\operatorname{Price}_{0}(\boldsymbol{c})=\sum_{t=1}^{T} \frac{c_{t}}{(1+r)^{t}}=: \Pi_{0}(\boldsymbol{c}, r)
$$

$$
\frac{d \Pi_{0}(\boldsymbol{c}, r)}{d r}=-\sum t \frac{c_{t}}{(1+r)^{t+1}}=-\frac{1}{1+r} \sum_{t=1}^{T} t \frac{c_{t}}{(1+r)^{t}}
$$

Relative change:

$$
\frac{\frac{d \Pi_{0}(\boldsymbol{c}, r)}{d r}}{\Pi_{0}(\boldsymbol{c}, r)}=-\frac{1}{1+r} \underbrace{\frac{\sum t \frac{c_{t}}{(1+r)^{t}}}{\sum \frac{c_{t}}{(1+r)^{t}}}}_{=: D(\boldsymbol{c}, r) \text { Maucaly Duration }}
$$

"Average time of the payouts c_{t} " or "Expected value of the payout time" $e_{D}=$ $\mathrm{E}\left[c_{t}\right]$ for a certain probability measure. We can do a Taylor expansion on:

$$
\Pi_{0}(\boldsymbol{c}, r+\Delta r)=\Pi_{0}(\boldsymbol{c}, r)-\Pi_{0}(\boldsymbol{c}, r) \frac{D(\boldsymbol{c}, r)}{1+r} \Delta r+o(\Delta r)
$$

Assume \boldsymbol{c} are liabilities and \boldsymbol{y} are cashflow of our assets. How should we choose \boldsymbol{y} ? For ALM buy \boldsymbol{y} such that

$$
\begin{aligned}
\Pi_{0}(\boldsymbol{y}, r) & =\Pi_{0}(\boldsymbol{c}, r) \\
D(\boldsymbol{c}, r) & =D(\boldsymbol{y}, r)
\end{aligned}
$$

Remark. Similar approximations are available for non-constant term structure curves and interest rate shocks. See (Shiu 1987, Fong-Vasicek 1984).

4.4 Stochastic Cashflow in Discrete Time

Assumption 4.15. Assume a final time horizon $T \in \mathbb{N},(\Omega, \mathcal{F}, P, \mathbb{F})$ a filtered probability space with filtration $\mathbb{F}=\left(\mathcal{F}_{t}\right)_{t=0, \ldots, T}$ where $\mathcal{F}_{t} \subset \mathcal{F}_{t+1} \subset \mathcal{F}, \mathcal{F}_{t}$ a σ-field.

Assume $\boldsymbol{X}=\left(X_{0}, \ldots, X_{T}\right)$ is a \mathbb{F}-adapted cashflow on (Ω, \mathcal{F}, P)

The goal will be to calculate the price process for any such cashflow \boldsymbol{X} under an appropriate valuation functional.

Assumption 4.16. (General Assumptions) Assume all components X_{t} of \boldsymbol{X} are square-integrable i.e. $\mathrm{E}\left[X_{t}^{2}\right]<\infty$ for all $t \in\{0, \ldots, T\}$.

Remark. $L_{T+1}^{2}(\Omega, \mathcal{F}, P)$ is a hilbert space:

- $\mathrm{E}\left[X_{t}^{2}\right]<\infty$ for all t, for all $\boldsymbol{X} \in L_{T+1}^{2}$
- $\langle\boldsymbol{X}, \boldsymbol{Y}\rangle=\mathrm{E}\left[\boldsymbol{X}^{\top} \boldsymbol{Y}\right]$ scalar product
- $\|\boldsymbol{X}\|=\sqrt{\langle\boldsymbol{X}, \boldsymbol{X}\rangle}$ norm

If $\|\boldsymbol{X}-\boldsymbol{Y}\|=0$ then $\boldsymbol{X}=\boldsymbol{Y} P$-almost surely. In that case we identify \boldsymbol{X} with \boldsymbol{Y}.

Definition 4.17. (Notation)

- $\boldsymbol{X} \geq 0$ if and only if $X_{k} \geq 0 P$-almost surely, for all k.
- $\boldsymbol{X}>0$ if and only if $\boldsymbol{X} \geq 0$ and there is a k such that $P\left(X_{k}>0\right)>0$.
- $\boldsymbol{X} \gg 0$ if and only if for all $k: X_{k}>0 P$-almost surely.

4.4.1 Market Consistent Valuation at Time Zero

Assumption 4.18. Assume a functional $Q_{0}: L_{T+1}^{2}(\Omega, \mathcal{F}, P) \rightarrow \mathbb{R}$ with the properties

1. (Positivity) $\boldsymbol{X}>0 \Rightarrow Q_{0}(\boldsymbol{X})>0$.
2. (Continuity) If $\left(\boldsymbol{X}^{(i)}\right)_{i=1,2, \ldots}$ is a convergent sequence in L_{T+1}^{2} :

$$
\boldsymbol{X}^{(i)} \xrightarrow[L^{2}]{i \rightarrow \infty} \boldsymbol{X} \quad \Longrightarrow \quad Q_{0}\left(\boldsymbol{X}^{(i)}\right) \xrightarrow{i \rightarrow \infty} Q_{0}(\boldsymbol{X}) .
$$

3. $($ Linearity $) Q_{0}(a \boldsymbol{X}+b \boldsymbol{Y})=a Q_{0}(\boldsymbol{X})+b Q_{0}(\boldsymbol{Y})$.

Definition 4.19. If Q_{0} satisfies the assumptions above we call it a pricing functional and we call $Q_{0}(\boldsymbol{X})$ the price of \boldsymbol{X} at time 0 .
Lemma 4.20. In the assumptions above positivity and linearity imply continuity.

Proof. See Wüthrich-Bühlmann-Furrer (2008) Springer
Theorem 4.21. (Riesz Representation Theorem) If Q_{0} is a pricing functional on $L_{T+1}^{2}(\Omega, \mathcal{F}, P)$ then there exists $\boldsymbol{\varphi} \in L_{T+1}^{2}(\Omega, \mathcal{F}, P)$ such that for all $\boldsymbol{X} \in$ $L_{T+1}^{2}(\Omega, \mathcal{F}, P): Q_{0}(\boldsymbol{X})=\langle\varphi, \boldsymbol{X}\rangle$.
Definition 4.22. The φ in the theorem above is called deflator.
In economic literature it is often called state price density and in financial mathematics pricing kernel.
Remark. - Positivity of Q_{0} implies $\varphi \gg 0$.

- On the subspace of all \mathbb{F}-adapted cashflows φ can be chosen \mathbb{F}-adapted.

Indeed: define $\tilde{\varphi}_{k}=\mathrm{E}\left[\varphi_{t} \mid \mathcal{F}_{t}\right] . \widetilde{\boldsymbol{\varphi}}$ is a deflator and it is \mathbb{F}-adapted.
If \boldsymbol{X} is \mathbb{F}-adapted then $\langle\boldsymbol{X}, \boldsymbol{\varphi}\rangle=\langle\boldsymbol{X}, \tilde{\boldsymbol{\varphi}}\rangle$.

- The \mathbb{F}-adapted deflator is unique.

Indeed: assume two deflators φ and φ^{*}

$$
\langle\varphi, \boldsymbol{X}\rangle=\left\langle\varphi^{*}, \boldsymbol{X}\right\rangle \text { for all } \boldsymbol{X}
$$

In particular for $\boldsymbol{X}=\varphi-\varphi^{*}$.

$$
0=\left\langle\varphi-\varphi^{*}, \varphi-\varphi^{*}\right\rangle=\left\|\varphi-\varphi^{*}\right\|^{2}
$$

And thus $\varphi=\varphi^{*}$

- In the following we will always use the \mathbb{F}-adapted deflator φ to represent Q_{0}.

4.4.2 Understanding Deflators

1. In theorem 4.7 we have seen security market pricing iff there exists $\boldsymbol{d} \in$ \mathbb{R}_{++}^{T} such that $\Pi=C \boldsymbol{d}$. (finite space model)
In theorem 4.21: Q_{0} pricing function iff there exists $\varphi \gg 0$.
2. Attention: In general $\boldsymbol{\varphi}$ and \boldsymbol{X} cannot be decoupled.

$$
\sum_{t=0}^{T} \mathrm{E}\left[\varphi_{t} X_{t}\right] \neq \sum_{t=0}^{T} \mathrm{E}\left[\varphi_{t}\right] \mathrm{E}\left[X_{t}\right]
$$

3. The price of a ZCB with maturity t is

$$
Q_{0}\left(\boldsymbol{e}_{t}\right)=\left\langle\boldsymbol{\varphi}, \boldsymbol{e}_{t}\right\rangle=\mathrm{E}\left[\varphi_{t}\right]=P(0, t)
$$

It is \mathcal{F}_{0}-measurable, i.e. known at time zero, (deterministic discounting) whereas φ_{t} is \mathcal{F}_{t} measurable and allows for stochastic discounting.

4.4.3 Pricing at Positive Time

Definition 4.23. For $\boldsymbol{X} \in L_{T+1}^{2}(\Omega, \mathcal{F}, P, \mathbb{F})$ we define its price at time t by

$$
Q_{t}(\boldsymbol{X})=\frac{1}{\varphi_{t}} \mathrm{E}\left[\sum_{s=0}^{T} \varphi_{s} X_{s} \mid \mathcal{F}_{t}\right]
$$

Observe that $Q_{t}((X))$ is \mathcal{F}_{t}-measurable.
Lemma 4.24. $\left(\varphi_{t} Q_{t}(\boldsymbol{X})\right)_{t}$ is an $(\Omega, \mathcal{F}, P, \mathbb{F})$-martingale.

Proof.

$$
\begin{aligned}
\mathrm{E}\left[\varphi_{t+1} Q_{t+1}(\boldsymbol{X}) \mid \mathcal{F}_{t}\right] & =\mathrm{E}\left[\left.\varphi_{t+1} \frac{1}{\varphi_{t+1}} \mathrm{E}\left[\sum_{s=0}^{T} \varphi_{s} X_{s} \mid \mathcal{F}_{t+1}\right] \right\rvert\, \mathcal{F}_{t}\right] \\
& =\mathrm{E}\left[\mathrm{E}\left[\sum_{s=0}^{T} \varphi_{s} X_{s} \mid \mathcal{F}_{t+1}\right] \mid \mathcal{F}_{t}\right] \\
& =\mathrm{E}\left[\sum_{s=0}^{T} \varphi_{s} X_{s} \mid \mathcal{F}_{t}\right] \\
& =\varphi_{t} Q_{t}(\boldsymbol{X})
\end{aligned}
$$

Theorem 4.25. The pricing system $\left(\varphi_{t} Q_{t}(\boldsymbol{X})\right)_{t}$ on $L^{2}(\Omega, \mathcal{F}, P, \mathbb{F})$ is arbitragefree for an appropriate definition of arbitrage.

Remark. A rigorous version of this theorem can be found in [DS98] and in M. Schweizers lecture on financial mathematics.

Example.

$$
P(s, t)=\frac{1}{\varphi_{s}} \mathrm{E}\left[\varphi_{t} \mid \mathcal{F}_{s}\right]=\mathrm{E}\left[\left.\frac{\varphi_{t}}{\varphi_{s}} \right\rvert\, \mathcal{F}_{s}\right] \quad(s \leq t)
$$

4.4.4 Equivalent Martingale Measure

In financial math one typically chooses an appropriate unit (called numéraire) such that formulae become simple. Here: bank-account numéraire.

Definition 4.26. The spot rate process $(R(t))_{t}$ is given by

$$
R(t)=-\log P(t, t+1)=-\log \left(\frac{1}{\varphi_{t+1}} \mathrm{E}\left[\varphi_{t+1} \mid \mathcal{F}_{t}\right]\right)
$$

Remark. The spot rate $R(t)$ is \mathcal{F}_{t}-measurable.
If the time step is one year then $R(t)$ corresponds to the one year risk free asset.

The spot rate process plays the role of the bank account: invest 1 at time zero, this then provides the value B_{t} at time t.

$$
B_{t}=\exp R(0) \cdot \exp R(1) \cdot \ldots \cdot R(t-1)=\exp \sum_{s=0}^{t-1} R(s)
$$

The goal of this section is to study the price process relative to the bank account numéraire $\frac{1}{B_{t}}$

We have seen that $\left(\varphi_{t} Q_{t}(\boldsymbol{X})\right)_{t}$ is an $(\Omega, \mathcal{F}, P, \mathbb{F})$-martingale, now what about $\left(B_{t}^{-1} Q_{t}(\boldsymbol{X})\right)_{t}$?

Note that φ_{t} is \mathcal{F}_{t}-measurable, observable at the end of period $[t-1, t]$, whereas B_{t} is \mathcal{F}_{t-1}-measurable, observable at $t-1$. This property is called previsible.

Definition 4.27. $\xi_{t}=\varphi_{t} B_{t}$ for $t=1, \ldots, T$ and $\xi_{0}=0$.
Lemma 4.28. $\boldsymbol{\xi} \gg 0$ and $\left(\xi_{t}\right)_{t}$ is an $(\Omega, \mathcal{F}, P, \mathbb{F})$-martingale and $\mathrm{E}\left[\xi_{T}\right]=1$.

Proof. Positivity: $\boldsymbol{\varphi}>0$ and $\boldsymbol{B} \gg 0$ therefore also $\boldsymbol{\xi} \gg 0$.

Martingale property: observe that

$$
\begin{aligned}
& \xi_{t}=\varphi_{t} B_{t}=\varphi_{t-1} B_{t-1} \frac{\varphi_{t}}{\varphi_{t-1}} \exp R(t-1) \\
& \begin{aligned}
\mathrm{E}\left[\xi_{t} \mid \mathcal{F}_{t-1}\right] & =\varphi_{t-1} B_{t-1} e^{R(t-1)} \frac{1}{\varphi_{t-1}} \mathrm{E}\left[\varphi_{t} \mid \mathcal{F}_{t-1}\right] \\
& =\varphi_{t-1} B_{t-1} e^{R(t-1)} P(t, t+1) \\
& =\varphi_{t-1} B_{t-1}
\end{aligned}
\end{aligned}
$$

Expected Value:

$$
\mathrm{E}\left[\xi_{T}\right]=\mathrm{E}\left[\xi_{1}\right]=B_{1} \mathrm{E}\left[\varphi_{1}\right]=1
$$

Note that ξ_{t} is a density process with respect to $P . \xi_{t}$ is a density.
Definition 4.29. The equivalent probability measure \mathbb{P}_{0} is given by the RadonNikodym derivate

$$
\frac{\mathrm{d} \mathbb{P}_{0}}{\mathrm{~d} P}=\xi_{T}=\varphi_{T} B_{T}
$$

In other words

$$
\mathbb{P}_{0}(A)=\int_{A} \xi_{T} \mathrm{~d} P \quad \text { for all } A \in \mathcal{F}
$$

Corollary 4.30.

$$
\mathrm{E}_{P}\left[\left.\frac{\mathrm{~d} \mathbb{P}_{0}}{\mathrm{~d} P} \right\rvert\, \mathcal{F}_{t}\right]=\mathrm{E}_{P}\left[\xi_{T} \mid \mathcal{F}_{t}\right]=\xi_{t}
$$

Lemma 4.31. For $s<t$ the following holds P-almost surely:

$$
\mathrm{E}_{\mathbb{P}_{0}}\left[Q_{t}(\boldsymbol{X}) \mid \mathcal{F}_{s}\right]=\frac{1}{\xi_{s}} \mathrm{E}_{P}\left[\xi_{t} Q_{t}(\boldsymbol{x}) \mid \mathcal{F}_{s}\right]
$$

Proof. For all $A \in \mathcal{F}_{s}$ the following holds:

$$
\begin{aligned}
\mathbb{P}_{0}(A) & =\mathrm{E}_{P}\left[\xi_{T} \mathbf{1}_{A}\right] \\
& =\mathrm{E}_{P}\left[\mathrm{E}_{P}\left[\xi_{T} \mathbf{1}_{A} \mid \mathcal{F}_{s}\right]\right] \\
& =\mathrm{E}_{P}\left[\mathbf{1}_{A} \mathrm{E}_{P}\left[\xi_{T} \mid \mathcal{F}_{s}\right]\right] \\
& =\mathrm{E}_{P}\left[\mathbf{1}_{A} \xi_{s}\right] \\
\mathrm{E}_{\mathbb{P}_{0}}\left[\mathbf{1}_{A} Q_{t}(\boldsymbol{X})\right]= & \mathrm{E}_{P}\left[\xi_{T} \mathbf{1}_{A} Q_{t}(\boldsymbol{X})\right] \\
& =\mathrm{E}_{P}\left[\mathrm{E}_{P}\left[\xi_{T} \mathbf{1}_{A} Q_{t}(\boldsymbol{X}) \mid \mathcal{F}_{s}\right]\right] \\
& =\mathrm{E}_{P}\left[\mathbf{1}_{A} \xi_{s} \frac{1}{\xi_{s}} \mathrm{E}_{P}\left[\xi_{T} Q_{t}(\boldsymbol{X}) \mid \mathcal{F}_{s}\right]\right]
\end{aligned}
$$

And therefore P-almost surely

$$
\frac{1}{\xi_{s}} \mathrm{E}_{P}\left[\xi_{t} Q_{t}(\boldsymbol{X}) \mid \mathcal{F}_{s}\right]=\mathrm{E}_{\mathbb{P}_{0}}\left[Q_{t}(\boldsymbol{X}) \mid \mathcal{F}_{s}\right]
$$

Corollary 4.32. The process $\left(B_{t}^{-1} Q_{t}(\boldsymbol{X})\right)_{t}$ is an $\left(\Omega, \mathcal{F}, \mathbb{P}_{0}, \mathbb{F}\right)$-maringale. (Note the changed probability measure.)

Proof. Applying lemma 4.31 with $s \leftarrow t, t \leftarrow t+1$

$$
\begin{aligned}
\mathrm{E}_{\mathbb{P}_{0}}\left[Q_{t+1}(\boldsymbol{X}) \mid \mathcal{F}_{t}\right] & =\frac{1}{\xi_{t}} \mathrm{E}_{P}\left[\xi_{t+1} Q_{t+1}(\boldsymbol{X})\right] \\
& =\mathrm{E}_{P}\left[\left.\frac{\varphi_{t+1}}{\varphi_{t}} e^{R(t)} Q_{t+1}(\boldsymbol{X}) \right\rvert\, \mathcal{F}_{t}\right] \\
& =e^{R(t)} \frac{1}{\varphi_{t}} \mathrm{E}_{P}\left[\varphi_{t+1} Q_{t+1}(\boldsymbol{X}) \mid \mathcal{F}_{t}\right]
\end{aligned}
$$

using the fact that $\varphi_{t} Q_{t}(\boldsymbol{X})$ is a P-martingale

$$
\begin{aligned}
& =e^{R(t)} \frac{1}{\varphi_{t}} \varphi_{t} Q_{t}(\boldsymbol{X}) \\
& =e^{R(t)} Q_{t}(\boldsymbol{X})
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
\mathrm{E}_{\mathbb{P}_{0}}\left[B_{t+1}^{-1} Q_{t+1}(\boldsymbol{X}) \mid \mathcal{F}_{t}\right] & =B_{t+1}^{-1} \mathrm{E}_{\mathbb{P}_{0}}\left[Q_{t+1}(\boldsymbol{X}) \mid \mathcal{F}_{t}\right] \\
& =B_{t+1}^{-1} e^{R(t)} Q_{t}(\boldsymbol{X}) \\
& =B_{t}^{-1} Q_{t}(\boldsymbol{X})
\end{aligned}
$$

In the real-world probability space $(\Omega, \mathcal{F}, P, \mathbb{F})$ the process $\left(\varphi_{t} Q_{t}(\boldsymbol{X})\right)_{t}$ is a maringale.

In the risk neutral measure or equivalent martingale measure $\left(\Omega, \mathcal{F}, \mathbb{P}_{0}, \mathbb{F}\right)$ the process $\left(B_{t}^{-1} Q_{t}(\boldsymbol{X})\right)_{t}$ is a martingale.
Remark. Usually pricing is simpler with the bank account numéraire B_{t}^{-1} and \mathbb{P}_{0}, whereas modelling insurance products is simpler with the deflator φ_{t} and P.
Corollary 4.33. Let $s<t$. Then

$$
P(s, t)=\frac{1}{\varphi_{s}} \mathrm{E}_{P}\left[\varphi_{t} \mid \mathcal{F}_{s}\right]=\mathrm{E}_{\mathbb{P}_{0}}\left[\exp \left(-\sum_{u=s}^{t-1} R(u)\right) \mid \mathcal{F}_{s}\right]
$$

Proof.

$$
\begin{aligned}
\mathrm{E}_{\mathbb{P}_{0}}\left[\exp \left(-\sum_{u=s}^{t-1} R(u)\right) \mid \mathcal{F}_{s}\right] & =\mathrm{E}_{\mathbb{P}_{0}}\left[\left.\frac{B_{s}}{B_{t}} \right\rvert\, \mathcal{F}_{s}\right] \\
& =B_{s} \mathrm{E}_{\mathbb{P}_{0}}\left[B_{t}^{-1} P(t, t) \mid \mathcal{F}_{s}\right]
\end{aligned}
$$

Using the fact that $\left(B_{\tau}^{-1} P(\tau, t)\right)_{\tau}$ is a \mathbb{P}_{0}-martingale

$$
\begin{aligned}
& =B_{s}\left(B_{s}^{-1} P(s, t)\right) \\
& =P(s, t)
\end{aligned}
$$

4.4.5 Market Price of Risk

The market price of risk will explain the difference between P and \mathbb{P}_{0}.
Assumption 4.34. Let $(\Omega, \mathcal{F}, P, \mathbb{F})$ a filtered probability space. Assume $\left(\varepsilon_{t}\right)_{t=0 \ldots T}$ is \mathbb{F}-adapted and $\varepsilon_{t} \mid \mathcal{F}_{t-1} \sim \mathcal{N}(0,1)$. Assume the short rate dynamics $R(t)$ is given by

$$
\begin{equation*}
R(0)=r_{0}>0, R(t)=f(t, R(t-1))+\varepsilon_{t} g(t, R(t-1)) \text { for } t=1 \ldots T \tag{25}
\end{equation*}
$$

where f and g are sufficiently nice functions.

Our goal will be to find appropriate deflator models and an appropriate equivalent measure $\mathbb{P}_{0} \sim P$.
Assumption 4.35. Assume we have a second \mathbb{F}-adapted process $\left(\delta_{t}\right)_{t=0 \ldots T}$ such that $\delta_{t} \mid \mathcal{F}_{t-1} \sim \mathcal{N}(0,1)$ and $\operatorname{Cov}[P] \delta_{t}, \varepsilon_{t}=\rho$.

Define the deflator

$$
\begin{equation*}
\varphi_{t}=\exp \left(-\sum_{s=1}^{t}\left(R(s-1)+\frac{1}{2} \lambda^{2}(s, R(s-1))\right)+\sum_{s=1}^{t} \lambda(s, R(s-1)) \delta_{s}\right) \tag{26}
\end{equation*}
$$

where λ is a sufficiently nice function.

Definition 4.36. The function λ is called market price of risk.
Remark. Observe that λ describes the difference between B_{t}^{-1} and φ_{t} in the sense that $B_{t}^{-1}=\varphi_{t}$ when $\lambda \equiv 0$.
λ describes the aggregate market risk aversion. It is often given exogeneously.
Proposition 4.37. The equations (25) and (26) give a meaningful model i.e.

- φ_{t} is \mathbb{F}-adapted.
- $\varphi_{t} \in L^{2}(\Omega, \mathcal{F}, P)$.
- $R(t)=-\log \left(\frac{1}{\varphi_{t}} \mathrm{E}_{P}\left[\varphi_{t+1} \mid \mathcal{F}_{t}\right]\right)$

Proof.

$$
\begin{aligned}
& -\log \frac{1}{\varphi_{t}} \mathrm{E}_{P}\left[\varphi_{t+1} \mid \mathcal{F}_{t}\right] \\
& =-\log \mathrm{E}_{P}\left[\left.\exp \left(-R(t)-\frac{1}{2} \lambda^{2}(t+1, R(t)]+\lambda(t+1, R(t)) \delta_{t+1}\right) \right\rvert\, \mathcal{F}_{t}\right) \\
& =-\log \left(\exp \left(-R(t)-\frac{1}{2} \lambda^{2}(t+1, R(t))\right) \mathrm{E}_{P}\left[\exp \left(\lambda(t+1, R(t)) \delta_{t+1}\right) \mid \mathcal{F}_{t}\right]\right)
\end{aligned}
$$

using expected value of a lognormal distributed random variable

$$
\begin{aligned}
& =-\log \left(\exp \left(-R(t)-\frac{1}{2} \lambda^{2}(t+1, R(t))\right) \exp \left(0+\frac{1}{2} \lambda^{2}(t+1, R(t))\right)\right) \\
& =R(t)
\end{aligned}
$$

The equivalent martingale measure under previous assumptions is obtained by the Girsanov transformation in discrete time.

$$
\frac{\mathrm{d} \mathbb{P}_{0}}{\mathrm{~d} P}=\varphi_{T} B_{T}=\exp \left(-\frac{1}{2} \sum_{s} \lambda^{2}(s, R(s-1))+\sum_{s} \lambda(s, R(s-1)) \delta_{s}\right)
$$

Lemma 4.38. $\varepsilon_{t}^{*}=\varepsilon_{t}-\lambda \rho$ has, given \mathcal{F}_{t-1} a standard normal distribution under \mathbb{P}_{0}.

Proof. We will proove the lemma by comparing the moment generating function of ε_{t}^{*} with the moment generating function of a standard normal distributed random variable. Choose $s \in \mathbb{R}$. The moment generating function of ε_{t}^{*} under \mathbb{P}_{0}, given \mathcal{F}_{t-1}, is

$$
\begin{aligned}
\left(m_{\mathbb{P}_{0}} \varepsilon_{t}^{*}\right)(s) & =\mathrm{E}_{\mathbb{P}_{0}}\left[\exp \varepsilon_{t}^{*} s \mid \mathcal{F}_{t-1}\right] \\
& =\exp (-s \lambda \rho) \mathrm{E}_{\mathbb{P}_{0}}\left[\exp \left(-s \varepsilon_{t}\right) \mid \mathcal{F}_{t-1}\right] \\
& =\exp (-s \lambda \rho) \mathrm{E}_{P}\left[\left.\exp \left(-\frac{1}{2} \lambda^{2}+\lambda \delta_{t}+s \varepsilon_{t}\right) \right\rvert\, \mathcal{F}_{t-1}\right]
\end{aligned}
$$

$\lambda=\lambda(t, R(t-1))$ is constant with respect to \mathcal{F}_{t-1}.

$$
=\exp \left(-s \lambda \rho-\frac{1}{2} \lambda^{2}\right) \mathrm{E}_{P}\left[\exp \left(\lambda \delta_{t}+s \varepsilon_{t}\right) \mid \mathcal{F}_{t-1}\right]
$$

using lognormal expectancy and $\lambda \delta_{t}+s \varepsilon_{t} \mid \mathcal{F}_{t-1} \sim \mathcal{N}\left(0, \lambda^{2}+2 \lambda s \rho+s^{2}\right)$

$$
\begin{aligned}
& =\exp \left(-s \lambda \rho-\frac{1}{2} \lambda^{2}\right) \exp \left(\frac{1}{2}\left(\lambda^{2}+2 \lambda s \rho+s^{2}\right)\right) \\
& =\exp \left(\frac{1}{2} s\right)
\end{aligned}
$$

which is indeed the moment generating function of a standard normal distributed random variable.

Remark.

$$
P(s, t)=\frac{1}{\varphi_{s}} \mathrm{E}_{P}\left[\varphi_{t} \mid \mathcal{F}_{s}\right]=\mathrm{E}_{\mathbb{P}_{0}}\left[-\sum_{u=s}^{t-1} R(u) \mid \mathcal{F}_{s}\right]
$$

indeed, from (25) we obtain

$$
R(t)=f(t, R(t-1))+\delta \lambda(t, R(t+1)) g(t, R(t-1))+\varepsilon_{t}^{*} g(t, R(t-1))
$$

for the short rate dynamics under \mathbb{P}_{0}.

4.4.6 Vasicek Model in Discrete Time

([Vasicek, 1997] in continuous time)
Assumption 4.39. Under real-world probability measure we assume

$$
R(t)=b+\beta R(t-1)+\sigma \varepsilon_{t}
$$

where $0<\beta<1$ and ε_{t} as in the previous section.
$R(t)$ is called an autoregressive process of order $1(\operatorname{AR}(1))$.
Remark. In discrete time $\varepsilon_{t} \mid \mathcal{F}_{t-1}$ can have any distribution as long as the necessary moments exist.

In discrete time we could take any process for $R(t)$, e.g.

- $\operatorname{ARMA}(p, q)$: Autoregressive moving average
- GARCH models
whereas in continuous time one has to be more restrictive in order to obtain solutions.

In order to apply the model to the previous section (?) we choose

$$
\begin{aligned}
\lambda(t, R(t-1)) & =\lambda \in \mathbb{R}(\text { fixed }) \\
\delta_{s} & =\varepsilon_{s}
\end{aligned}
$$

then

$$
\varphi_{t}=\exp \left(-\sum_{s=1}^{t} R(s-1)+\frac{1}{2} \lambda^{2} R(s-1)^{2}+\lambda R(s-1) \varepsilon_{s}\right)
$$

Under \mathbb{P}_{0} we have

$$
R(t)=b+(\beta+\lambda \sigma) R(t-1)+\sigma \varepsilon_{t}^{*}
$$

Lemma 4.40. Under the previous assumptions the distributions of $R(t)$ under the two probability measures are

$$
\begin{aligned}
& R(t) \left\lvert\, \mathcal{F}_{s} \stackrel{P}{\sim} \mathcal{N}\left(\left(1-\beta^{t-s}\right) \frac{b}{1-\beta}+\beta^{t-s} R(s), \frac{1-\beta^{2(t-s)}}{1-\beta^{2}} \sigma^{2}\right)\right. \\
& R(t) \left\lvert\, \mathcal{F}_{s} \stackrel{\mathbb{P}_{0}}{\sim} \mathcal{N}\left(\left(1-k^{t-s}\right) \frac{b}{1-k}+k^{t-s} R(s), \frac{1-k^{2(t-s)}}{1-k^{2}} \sigma^{2}\right)\right.
\end{aligned}
$$

with $k=\beta+\lambda \rho$.

Proof. (Sketch)

$$
\begin{aligned}
R(t) & =b+\beta R(t-1)+\sigma \varepsilon_{t} \\
& =b+\beta\left(b+\beta R(t-2)+\sigma \varepsilon_{t-1}\right)+\sigma \varepsilon_{t} \\
& =b\left(1+\beta+\beta^{2}+\ldots+\beta^{t-s-1}\right)+\beta^{t-s} R(s)+\sigma \sum_{u=s+1}^{t} \beta^{t-u} \varepsilon_{u} \quad=b \frac{1-\beta^{t-s}}{1-\beta}+\beta^{t-s} R(s)+S
\end{aligned}
$$

where S is a sum of normal random variables, thus

$$
S \sim \mathcal{N}\left(0, \sigma^{2} \sum_{u=s+1}^{t} \beta^{2(t-u)}\right)
$$

Theorem 4.41. (Vasicek Zero-COupon-Bond Prices)

$$
\begin{equation*}
P(s, t)=\exp (A(s, t)-R(s) B(s, t)) \quad(s<t) \tag{27}
\end{equation*}
$$

where

$$
\begin{aligned}
A(t-1, t) & =0 \\
B(t-1, t) & =1 \\
A(s, t) & =A(s+1, t)-b B(s+1, t)+\frac{1}{2} \sigma^{2} B(s+1, t)^{2} \quad \text { for } s<t-1 \\
B(s, t) & =\frac{1-k^{t-s}}{1-k}
\end{aligned}
$$

Remark. Choose $u<s$ then $P(s, t) \mid \mathcal{F}_{u}$ is lognormal distributed.
Whenever $P(s, t)$ has the form (27) we say, we have an affine term structure (ATS).

What are sufficient model assumptions for obtaining an ATS model? (for ATS in continuous time see [Fil09]

Proof. Under $\mathbb{P}_{0}: R(t)=b+k R(t-1)+\sigma \varepsilon_{t}^{*}$. We will proceed with a proof by induction. For $s=t-1$ we have

$$
\begin{aligned}
P(t-1, t) & =\mathrm{E}_{\mathbb{P}_{0}}\left[\exp (R(t-1)) \mid \mathcal{F}_{t-1}\right] \\
& =\exp (-R(t-1)) \\
& =\exp (0-1 \cdot R(t-1))
\end{aligned}
$$

For $s<t-1$ we assume the theorem for $s+1$.

$$
\begin{aligned}
P(s, t) & =\mathrm{E}_{\mathbb{P}_{0}}\left[\exp \left(-\sum_{u=s}^{t-1} R(u)\right) \mid \mathcal{F}_{s}\right] \\
& =\mathrm{E}_{\mathbb{P}_{0}}\left[\mathrm{E}_{\mathbb{P}_{0}}\left[\exp \left(-\sum_{u=s}^{t-1} R(u)\right) \mid F_{s+1}\right] \mid \mathcal{F}_{s}\right] \\
& =\mathrm{E}_{\mathbb{P}_{0}}\left[\exp (-R(s)) \mathrm{E}_{\mathbb{P}_{0}}\left[\exp \left(-\sum_{u=s+1}^{t-1} R(u)\right) \mid F_{s+1}\right] \mid \mathcal{F}_{s}\right] \\
& =\mathrm{E}_{\mathbb{P}_{0}}\left[\exp (-R(s)) P(s+1, t) \mid \mathcal{F}_{s}\right] \\
& =\mathrm{E}_{\mathbb{P}_{0}}\left[\exp (-R(s)+A(s+1, t)-R(s+1) B(s+1, t)) \mid \mathcal{F}_{s}\right] \\
& =\exp (-R(t)+A(s+1, t)-b B(s+1, t)-\underbrace{k B(s+1, t) R(s)}_{A(s, t)})+\mathrm{E}_{\mathbb{P}_{0}}\left[\exp \left(-\sigma B(s+1, t) \varepsilon_{s+1}^{*}\right) \mid \mathcal{F}_{s}\right] \\
& =\exp (-R(t)+\underbrace{A(s+1, t)-b B(s+1, t)}_{B(s, t)}-\underbrace{k B(s+1, t) R(s)})+\exp \left(\frac{1}{2} \sigma^{2} B^{2}(s+1, t)\right)
\end{aligned}
$$

References

[Büh80] Hans Bühlmann. An economic premium principle. Astin Bulletin, 11(1):52-60, June 1980.
[DS93] Freddy Delbaen and Walter Schachermayer. Non-arbitrage and the fundametnal theorem of asset pricing. Abstracts of the Meeting on Stochastic Processes and their Applications, pages 37-38, June 1993.
[DS98] Freddy Delbaen and Walter Schachermayer. The fundamental theorem of asset pricing for unbounded stochastic processes. Mathematische Annalen, 312:215-250, 1998.
[Fil09] Damir Filipovic. Term-Structure Models: A Graduata Course. Springer Finance. Springer, 2009.
[FS04] Hans Föllmer and Alexander Schied. Stochastic finance : an introduction in discrete time. de Gruyter, 2., rev. and extended ed. edition, 2004.

