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1 Utility Theory

1.1 Expected Utility and Risk Aversion

Let (Ω,F , P ) a probability space and X ⊂ {X : Ω→ R} possible choices of an
economic agent, represented by random variables X.

Definition 1.1. A preference order on X is a relation � with the following
properties:

1. (Completeness): For all X,Y ∈ X we have X � Y or Y � X.

2. (Transitivity): For all X,Y, Z ∈ X we have X � Y, Y � Z ⇒ X � Z.

Remark. If X � Y and Y � X we note X ∼ Y . The economic agent is
indifferent between X and Y .

Definition 1.2. A numerical representation for a preference order � on X is a
function U : X → R such that U(X) ≥ U(Y ) if and only if X � Y .

Remark. A numerical representation is not unique.

Remark. Necessary and sufficient conditions on � for the existence of a nu-
merical representation can be found in Theorem 2.6 of [FS04].

Let I ⊂ R̄ an interval such that P (X ∈ I) = 1 for all X ∈ X . For a given map
u : I → R a numerical representation U can be constructed by

U(X) = E[u(X)] =
∫
I

u(x)µX(dx) (1)

with µX(B) = P (X ∈ B), the distribution of X

Definition 1.3. A numerical representation of the form (1) is called von Neumann–
Morgenstern utility. If u is strictly increasing then u is called utility function.

Remark. In the two period model X represents the payout at time 1. The
utility U(X) = E[u(X)] can be interpreted as the average happyness with the
choice X at time 1.

Lemma 1.4. Any positive linear transformation v of the utility function u
generates the same preference order.

v(x) = a+ bu(x), a, b ∈ R, b > 0

Proof. Exercise.

Assumption 1.5. We will always assume X ⊂ L1(Ω,F , P ) i.e. E[X] <∞ for
all X ∈ X .
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Definition 1.6. Assume the financial agent has utility function u. The financial
agent is called risk averse if u(E[X]) ≥ E[u(X)], risk neutral if u(E[X]) =
E[u(X)] and risk seeking if u(E[X]) ≤ E[u(X)].

Lemma 1.7. If a financial agent has strictly concave utility function u, then
he is risk averse.

Proof. Jensens inequality.

Remark. If X is not deterministic and u is strictly concave then E[u(X)] <
u(E[x]).

Assumption 1.8.

• Assume u is three times differentiable on I, u ∈ C3

• Assume risk averse utility functions are strictly concave. u′(x) > 0,
u′′(x) < 0.

Example.

• Exponential utility

u(x) = − 1
α
e−αx

with I = R and α > 0
(Actuaries choice)

• Power utility

u(x) =
{

1
1−α (x1−α − 1) for α 6= 1
log(x) for α = 1

with I = R+ and α > 0
(Economists choice)

Definition 1.9. The absolute risk aversion is given by

ρARA(x) = −u
′′(x)
u′(x)

The relative risk aversion is given by

ρRRA(x) = −xu
′′(x)
u′(x)

Remark. Risk averse financial agents have ρARA(x) > 0 and ρRRA(x) > 0.

Example.

• The exponential utility satisfies ρARA(x) ≡ α.

• The power utility satisfies ρRRA(x) ≡ α.
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1.2 Indifference Price

Assume a financial agent with utility function u and initial wealth w ∈ R.

Definition 1.10. Let X ∈ X . The certainty eqivalent for (X,u,w) is given by
the number x ∈ R satisfying

u(w + x) = E[u(w +X)]

or equivalently, using preference order notation

w + x ∼ w +X

Remark. The certainty equivalent x is a function of X, u and w. x =
x(X,u,w).

Lemma 1.11. If u is risk averse then E[X] ≥ x.

Proof.

u(w + x) = E[u(w +X)]
≤ u(E[w +X)]
= u(w + E[X])

and since u is increasing

w + x ≤ w + E[X]
x ≤ E[X]

Definition 1.12. A financial agent 1 with utility function u1 is called more
risk averse than agent 2 with utility function u2 if

u−1
1 (E[u1(X)]) ≤ u−1

2 (E[u2(X)])

for all X ∈ X .

For the following we will identify the set X of random variables with the set X ′ of
their probability distributions: X ′ = {µX(B) = P (X ∈ B) : X ∈ X} ⊂M1(I)

Assumption 1.13. X ⊂ M1(I) is convex and contains all point measures δy
for y ∈ I.

For instance if y ∈ I, z ∈ I then 1
2δy + 1

2δz ∈ X .

Proposition 1.14. The following statements are equivalent:

1. Agent 1 is more risk averse than agent 2.
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2. ρ(1)
ARA(y) ≥ ρ(2)

ARA(y) for all y ∈ I.

3. There is a strictly increasing concave function v such that u1(y) = v(u2(y))
for all y ∈ I.

Proof.

Statement (2) implies statement (3):

Let z = u−1
2 and define v = u1 ◦u−1

2 we will show that v satisfies the conditions
from statement (3).

Clearly v(u2(y)) = u1(u−1
2 (u2(y))) = u1(y).

Since u2 is strictly increasing, so is u−1
2 , and since u1 is also strictly increasing,

so is their composition v.

In order to proof concavity we look at the second derivative of v.

v′ = (u1 ◦ z)′ = (u′1 ◦ z) · z′ =
u′1(z)
u′2(z)

> 0

v′′ =
u′′1(z)u′2(z)− u′1(z)u′′2(z)

(u′2(z))2
z′ note: z′ =

1
u′2

=
u′1(z)

(u′2(z))2

(
u′′1(z)
u′1(z)

− u′′2(z)
u′2(z)

)
=

u′1(z)
(u′2(z))2︸ ︷︷ ︸
≥0

(
−ρ(1)

ARA + ρ
(2)
ARA

)
︸ ︷︷ ︸

≤0

≤ 0

by assumption of statement (2), thus proving concavity of v.

Statement (3) implies statement (2):

The function v given by statement (3) is assumed concave thus v′′ < 0. The
identity

v′′ =
u′1(z)

(u′2(z))2︸ ︷︷ ︸
≥0

(
−ρ(1)

ARA + ρ
(2)
ARA

)

proven above holds. Thus we have ρ(1)
ARA ≥ ρ

(2)
ARA.

An equivalent formulation of statement (1):
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Agent 1 is more risk averse than agent 2

⇔ u−1
1 (E[u1(X)]) ≤ u−1

2 (E[u2(X)]) for all X ∈ X
⇔ E[u1(X)] ≤ u1(u−1

2 (E[u2(X)])) for all X ∈ X
⇔ E[u1(X)] ≤ v(E[u2(X)]) for all X ∈ X

Statement (3) implies statement (1):

Applying Jensens inequality on the convex function (−v):

E[−v(u2(X))] ≥ −v(E[u2(X)])

the equivalent formulation of (1) is proven.

E[u1(X)] = E[v(u2(X))] ≤ v(E[u2(X)]).

Satement (1) implies statement (2):

We will proceed by a proof by contradiction. Assume (2) is false. There exists
y ∈ I such that ρ(1)

ARA(y) < ρ
(2)
ARA(y). Since these functions are continuous there

exists an open neighbourhood θ ⊂ I of y such that ρ(1)
ARA(t) < ρ

(2)
ARA(t) for all

t ∈ θ.

Then v is strictly convex on θ.

Choose a distribution µ ∈ X with support θ which is not concentrated in a
single point. Let Y ∼ µ. By Jensens inequality

E[u1(Y )] = E[v(u2(Y ))] > v(E[u2(Y )])

contradicting (1).

Corollary 1.15. If ρ(1)
ARA ≥ ρ

(2)
ARA then the certainity equivalents of the agents

satisfy x(X,u1, w) ≤ x(X,u2, w).

“The more risk averse an agent is, the less he will pay for risk X.”

Proof. In the corollary we assume statement (2) of the proposition.

Let x1 = x(X,u1, w), x2 = x(X,u2, w).

Using statement (1) we have

u−1
1 (E[u1(X + w)]) ≤ u−1

2 (E[u2(X + w)])
x1 + w ≤ x2 + w
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Definition 1.16. Assume a financial agent with utility u and wealth w > 0.
The indifference price for risk X ∈ X is the solution Π = Π(X,u,w) of the
equation

u(w) = E[u(w + Π−X)] . (2)

Remark. The certainty equivalent of Π−X is zero.

Definition 1.17. The risk premium Πr is given by Πr = Π− E[X].

Lemma 1.18. If u is risk averse then Πr > 0.

Proof. The claim follows directly from Jensens inequality:

u(w) = E[u(w + Π−X)] < u(E[w + Π−X]) = u(w + Πr)

since u is strictly increasing this implies 0 < Πr.

Theorem 1.19. If u is risk averse (i.e. concave) then the following statements
are equivalent:

1. Πr does not depend on w.

2. There are A,B, α ∈ R, A > 0, α > 0 such that u(x) = −Ae−αx +B.

Remark. This theorem illustrates the weakness of exponential utility from the
economists point of view: Intuitively the premium Π ought to decrease with
increasing wealth w.

Proof. Assume statement (2). The definition of Π states

u(w) = E[u(w + Π−X)]

−Ae−αw +B = E
[
−Ae−α(w+Π−X) +B

]
= E

[
−Ae−αwe−α(Π−X) +B

]
= −Ae−αwe−αΠ E

[
e−α(−X)

]
+B

1 = e−αΠ E
[
e−α(−X)

]
eαΠ = E

[
eαX

]
Π =

1
α

log(E
[
eαX

]
)

Πr =
1
α

log(E
[
eαX

]
)− E[X]

Thus prooving that Πr does not depend on w.
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Assume now, that Πr does not depend on w. Thus dΠ
dw = 0. If we derive equation

(2) with respect to w we obtain

d
dw

u(w) =
d

dw
E[u(w + Π−X)]

u′(w) = E
[
u′(w + Π−X)

(
1 +

dΠ
dw︸︷︷︸
=0

)]
(3)

= E[u′(w + Π−X)]

This shows that Π is also the indifference price for the utility function v = −u′.

w = v−1(E[v(w + Π−X)])

w = u−1(E[u(w + Π−X)])

Thus u and v have the same risk aversion or more precicely: u is more risk
averse than v and v is more risk averse than u. By proposition 1.14

ρ
(u)
ARA(x) = ρ

(v)
ARA(x) for all x ∈ I

−u
′′(x)
u′(x)

= −v
′′(x)
v′(x)

= −u
′′′(x)
u′′(x)

Now we observe the derivation of ρ(u)
ARA:

d
dx
ρ

(u)
ARA(x) = −u

′′′(x)u′(x)− (u′′(x))2

(u′(x))2

= −

(
u′′′(x)
u′(x)

−
(
u′′(x)
u′(x)

)2
)

= −u
′′(x)
u′(x)

(
u′′′(x)
u′′(x)

− u′′(x)
u′(x)

)
︸ ︷︷ ︸

=0

= 0

Thus ρ(u)
ARA needs to be constant. Let α denote its value.

ρ
(u)
ARA(x) = α for all x ∈ I

−u
′′(x)
u′(x)

= α

u′′(x)− αu′(x) = 0

The solution to this differential equation has the exponential form claimed.

Theorem 1.20. Assume u is risk-averse. The following statements are equiv-
alent:

1. The Risk Premium Πr is decreasing in w.
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2. ρARA(x) is decreasing in x.

Example. The power utility satisfies statement (2):

ρARA(x) = αx−1 with α > 0

Proof. As in equation (3) we have

u′(w) = E[u′(w + Π−X)] (1 + Π′(w))

therefore we have the following sequence of equivalences:

Π′(w) ≤ 0⇔ u′(w) ≤ E[u′(w + Π−X)]
⇔ v(w) ≥ E[v(w + Π−X)]
⇔ Π(X,w, v) ≥ Π(X,w, u)
⇔ Agent v is more risk averse than agent u.

⇔ −u
′′′(x)
u′′(x)

= −v
′′(x)
v′(x)

≥ u′′(x)
u′(x)

⇔ ρ
(v)
ARA(x) ≥ ρ(u)

ARA(x)

From proposition 1.14 we have

d
dx
ρARA(x) = ρARA(x)

(
u′′′(x)
u′′(x)

− u′′(x)
u′(x)

)
≤ 0

⇔ u′′′(x)
u′′(x)

≤ u′′(x)
u′(x)

⇔ Π′(w) ≤ 0

1.3 Risk Exchange Economy

Assumption 1.21. Assume a finite probability space |Ω| < ∞ and let X be
the set of all F–adapted positive random variables on (Ω,F , P ).

Assumption 1.22. Assume we have N financial agents and each holds a posi-
tion which causes a payoff Yi ∈ X at time 1. (i ∈ {1, . . . , N})

The market capitalization at time 1 is given by Z =
∑
Yi.

Assumption 1.23. Assume there is a financial pricing kernel ϕ ∈ X with
E[ϕ] = 1 such that the price of X ∈ X at time 0 is given by Π(X) = E[ϕX]

Remark. In economic literature ϕ is called the state price density, in financial
literature ϕ is called financial pricing kernel and in actuarial literature ϕ is called
state–price deflator.
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Each agent is characterized by a utility function ui, and he can be achieved by
trading any Xi ∈ X .

Agent i chooses his portfolio according to

max
Xi∈X

E[ui(Xi)]

with constraint
Π(Xi) = Π(Yi)

Proposition 1.24. (First Order Conditions) The optimal asset allocation for
agent i is given by u′i(Xi) = λiϕ for some λi > 0.

Proof. The Lagrangian for this optimization problem is

L = E[ui(Xi)]− λi(Π(Xi)−Π(Yi)).

Perturb Xi by some εX with X ∈ X and ε > 0:

L(ε) = E[ui(Xi + εX)]− λi(Π(Xi + εX)︸ ︷︷ ︸
E[ϕ(Xi+εX)]

−Π(Yi)).

In order for Xi to be optimal we have (for all X ∈ X ):

dL(ε)
dε
|ε=0 = [E[u′i(Xi + εX)X]− λi E[ϕX]] |ε=0

⇒ E[u′i(Xi)X]− λi E[ϕX] = 0 ∀X ∈ X

Thus u′i = λiϕ almost surely.

E

u′i(Xi)︸ ︷︷ ︸
>0

 = λi E[ϕ]︸︷︷︸
=1

= λi > 0

Remark.

E[u′i(Xi)] = λi E[ϕ] = λi

ϕ =
u′i(Xi)

E[u′i(Xi)]

Corollary 1.25. All optimal asset allocations Xi are commonotonic.

Proof. All agents are risk averse. u′′i < 0. Therefore u′i is strictly decreasing.

Xi = (u′i)
−1(λiϕ)

For ω1, ω2 in Ω:

Xi(ω1) < Xi(ω2)⇔ ϕ(ω1) < ϕ(ω2)⇔ Xj(ω1) < Xj(ω2)

Thus Xi are commonotonic.
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Assumption 1.26. (Economic Principle)

We have a risk-exchange economy, i.e.

N∑
i=1

Yi =
N∑
i=1

Xi

Remark. The value

Z =
N∑
i=1

Yi

is called the market capitalization.

Theorem 1.27. All optimal asset allocations are commonotonic to Z.

Proof. Xi are commonotonic, thus Z =
∑
iXi = f(ϕ).

Example. Exponential utilities, αi > 0.

ui(x) = − 1
αi
e−αix

Note: we have a heterogeneous behaviour, since we may choose αi 6= αk for
i 6= k.

u′i(x) = e−αix

Xi = − 1
αi

log(λiϕ)

By Proposition 1.24 we have

Xi = − 1
α1

log λ1 −
1
α1

logϕ

Z = −
N∑
i=1

1
αi

log λi − logϕ
N∑
i=1

1
α1

Define the market (or collective or aggregate) risk aversion as

α =

(
N∑
i=1

1
α1

)−1

and let

K = −α
∑ 1

αi
log λi

then

Z =
1
α
K − 1

α
logϕ

ϕ = eK−αZ
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In fact, ϕ is chosen endogeneously. We normalize

1 = E[ϕ]

1 = eK E
[
e−αZ

]
K = − log E

[
e−αZ

]
ϕ =

e−αZ

E[e−αZ ]

Π(X) = E[ϕX] =
E
[
e−αZX

]
E[e−αZ ]

Escher Price for X, see [Büh80]

Xi = − 1
αi

log λi −
1
αi

log
eαZ

E[e−αZ ]
=

α

αi
Z − 1

αi
log

λi
E[e−αZ ]

Π(Yi) = Π(Xi) = E[ϕXi] =
α

αi
E[ϕZ]− 1

αi
log

λi
E[e−αZ ]

⇒ − 1
αi

log
λi

E[e−αZ ]
= Π(Yi)−

α

αi
Π(Z)

Xi =
α

αi
(Z −Π(Z)) + Π(Yi)

Remark. Other utility functions (such as power utility) do not allow for a
closed form solution if financial agents are heterogeneous.
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2 Mean–Variance Analysis

Remark. Boldface letters x name vectors in Rn:

x = (x1, x2, . . . , xn) ∈ Rn.

Boldface letters x̃ with a tilde name vectors in Rn+1:

x̃ = (x0, x1, x2, . . . , xn) ∈ Rn+1

2.1 The Markovitz Model

Assume n + 1 financial assets with prices at time 0 given by s(0)
i and prices at

time 1 given by the random variables S(1)
i . (i = 0, . . . , n)

Assume a financial agent holds a portfolio ã. His wealth at time 0 is given by

w0 =
n∑
i=0

ais
(0)
i (deterministic)

and his wealth at time 1 by

W1 =
n∑
i=0

aiS
(1)
i (random).

Definition 2.1. The return of asset i is given by

Ri =
S

(1)
i

s
(0)
i

− 1

We denote the proportion of asset i in the initial capital by

xi =
aisi
w0

.

The wealth at time 1 can then be written as

W1 =
n∑
i=0

aiS
(1) = w0 + w0

n∑
i=0

xiRi.

Note that
n∑
i=0

xi = 1.

The goal for a financial agent is to choose an investment strategy x̃ such that
the expected wealth E[W1] is large and its variance Var[W1] is small.
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Assume that the financial agent is risk averse with utility function u. His asset
allocation problem can then be formulated as

maximize E[u(W1)]
subject to

ã ∈ Rn+1

n∑
i=0

ais
(0)
i = w0

E[W1] = w1

with a given expected wealth w1 ∈ R.

Define the expected return by

r =
w1

w0
− 1

The above problem can then be rewritten as

maximize E
[
u(w0(1 + x̃>R̃))

]
subject to

x̃ ∈ Rn+1

x̃>ẽ = 1

x̃> E
[
R̃
]

= r

using matrix multiplication notation and the vector ẽ = (1, . . . , 1).

Assumption 2.2. (Model Assumptions)

Asset 0 is a risk free asset: R0 = µ0 > 0 is deterministic.

The returns of the other (risky) assets follow a multivariate normal distribution
with expected returns µ and a positive definite covariance matrix Σ.

R = (R1, . . . , Rn) ∼ N (µ,Σ)

The utility function is given by

u(x) = − 1
α
e−αx.

with a given constant α > 0.

Lemma 2.3. Under these model assumptions the random variable e−αW1 has
a log-normal distribution with parameters −αw0(1 + x̃>µ̃) and α2w2

0x
>Σx.
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Proof.

R ∼ N (µ,Σ)⇒ x>R ∼ N (x>µ,x>Σx)

(not proven here)

−αW1 = −αw0(1 + x̃>R̃)

= −αw0(1 + x0µ0 + x>R)
E[−αW1] = −αw0(1 + x̃µ̃)

Var[−αW1] = α2w2
0x
>Σx

Corollary 2.4.

E[u(W1)] = − 1
α

E
[
e−αW1

]
= − 1

α
exp(−αw0(1 + x̃>µ̃) +

1
2
α2w2

0x
>Σx)

Proof. The first identity follows directly from the definition of u.

The expected value of a lognormal distributed random variable with parameters
m and s2 is given by exp(m+ 1

2s
2). As in the Lemma set m = −αw0(1 + x̃>µ̃)

and s = α2w2
0x
>Σx.

The problem can be rewritten to

maximize − 1
α

exp(−αw0(1 + x̃>r µ̃) +
1
2
α2w2

0x
>
r Σx)

subject to

x̃r ∈ Rn+1

x̃>r ẽ = 1

x̃>r E
[
R̃
]

= r

or equivalently, eliminating constant terms and factors from the target function

minimize x>r Σx
subject to

x̃r ∈ Rn+1

x̃>r ẽ = 1

x̃>r E
[
R̃
]

= r

Definition 2.5. The above problem is called the Markowitz Problem.

It can be spelled out as “Achieve a given return r with minimal variance”.
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2.2 Preliminaries

Definition 2.6. A matrix A is called positive definite if x>Ax > 0 for any
non-zero vector x 6= 0.

Proposition 2.7. A posivie definite matrix has a positive definite inverse.

Proposition 2.8. If X is a random vector with covariance matrix V then

Cov[AX + b, CX + d] = AV C>

Definition 2.9. Let f : Rn → R a sufficiently smooth function. The gradient
of f at x is given by

∇f(x) =
∂f

∂x
=
(
∂f(x)
∂x1

, . . .
∂f(x)
∂xn

)
.

Definition 2.10. The Hessian of a sufficiently smooth f is given by the matrix

Hf =
∂2f

(∂x)2
=
(

∂2f

∂xi∂xj

)
i,j=1...n

Example. Let A ∈ Rn×n and f(x) = x>Ax. Then

∇f(x) = (A+A>)x

Hf(x) = (A+A>)

2.3 Optimization

Unconstraint Unconstraint local maxima of a sufficiently smooth function
f : Rn → R are found by solving the following system:

∇f(x) = 0

z>Hf(x)z < 0 ∀z 6= 0

Equality constraint Maxima with equality constraints

maximize f(x)
subject to

g(x) = a

solve the Lagrange problem

∂L

∂x
= 0

∂L

∂λ
= 0
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where the Lagrange function L is defined as

L(x, λ) = f(x)− λ(g(x)− a)

The new variable λ is called the Lagrange-factor.

The problem can be written as

∇f(x)− λ∇g(x) = 0

−(g(x)− a) = 0

In order to have sufficient conditions for a constraint maximum, a second order
condition needs to be added.

Inequality Constraint The solution of the following problem

maximize f(x)
subject to

g(x) ≥ a

satisfies these necessary conditions (Kuhn-Tucker-Problem):

∂L

∂x
= 0

∂L

∂λ
= 0

∂L

∂b
= λ

(b− a)λ = 0, b ≥ a

where

L(x, λ, b) = f(x)− λ(g(x)− b)

2.4 Mean–Variance Analysis without risk free assets

Assumption 2.11. (Model assumptions) There are n assets with returns R =
(R1, . . . , Rn).

1. Let µ = E[R]. µ has at least one coordinate that differs from the others.

2. Let V = Cov[R]. V is positive definite.

Definition 2.12. Rp(x) = x>R is the portfolio return.

Remark. The expected return is equal to E[Rp(x)] = x>µ. The variance of
Rp(x) is given by x>V x.
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Definition 2.13. A vector x is called an investment strategy if x>e = 1. (Recall
that e = (1, . . . , 1).)

Definition 2.14. An investment strategy z is called efficient if there is no
investment strategy x with

E[Rp(x)] ≥ E[Rp(z)] and Var[Rp(x)] < Var[Rp(z)]

Our goal is to find efficient investment strategies. For a given portfolio return
rp we will study the two problems

xrp
= arg min

x ∈ Rn
x>e = 1
x>µ = rp

x>V x (4)

x+
rp

= arg min
x ∈ Rn
x>e = 1
x>µ ≥ rp

x>V x (5)

Note that in (4) we want to achieve exactly the given return, while in (5) we
want to achieve at least the given return.

In order to simplify further calculations we will consider the equivalent problems

xrp
= arg max

x ∈ Rn
x>e = 1
x>µ = rp

− 1
2x
>V x (6)

x+
rp

= arg max
x ∈ Rn
x>e = 1
x>µ ≥ rp

− 1
2x
>V x (7)

Problem (7) has the Lagrange function

L(x, λ1, λ2, r) = − 1
2x
>V x− λ1(x>e− 1)− λ2(x>µ− r)

which leads to the following necessary conditions (Kuhn-Tucker approach):

∂L

∂x
= −V x− λ1e− λ2µ = 0 (8a)

∂L

∂λ1
= −(x>e− 1) = 0 (8b)

∂L

∂λ2
= −(x>µ− r) = 0 (8c)

∂L

∂r
= λ2 ≤ 0 (8d)

(r − rp)λ2 = 0 r ≥ rp (8e)
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First Step Solve the Lagrange problem with fixed r consisting of (8a)–(8c).

Condition (8a) implies

x = −V −1(λ1e+ λ2µ)

= −V −1
(
e µ

)(λ1

λ2

) (9)

Note that V −1 exists since we assumed V to be positive definite. Now find λ1

and λ2 using (8b) and (8c). Define the 2× 2 matrix A by

A =
(
e>

µ>

)
V −1

(
e µ

)
. (10)

The conditions (8b) and (8c) imply that(
e>

µ>

)
x =

(
e>x
µ>x

)
=
(

1
r

)
.

Using (9) we obtain (
1
r

)
=
(
e>

µ>

)
V −1

(
e µ

)(−λ1

−λ2

)
= A

(
−λ1

−λ2

) (11)

Proposition 2.15. The matrix A from (10) is positive definite.

Proof. Let z = (z1, z2) ∈ R2, z 6= (0, 0). Define

y =
(
e µ

)(z1

z2

)
Using the definition of A we obtain(

z1 z2

)
A

(
z1

z2

)
=
(
z1 z2

)(e>
µ>

)
︸ ︷︷ ︸

y>

V −1
(
e µ

)(z1

z2

)
︸ ︷︷ ︸

y

= y>V −1y.

We assumed that not all components of µ are equal, therefore µ and e are not
collinear. Thus if z 6= (0, 0) then y 6= 0. Since V is positive definite, so is V −1,
and therefore y>V −1y > 0. Therefore(

z1 z2

)
A

(
z1

z2

)
> 0.

Since z is chosen arbitrarily this proves that A is positive definite.

Equation (11) can be solved and we find λ1 and λ2,(
−λ1

−λ2

)
= A−1

(
1
r

)
(12)

and by equation (9) the solution xr for the Lagrange problem is found.

xr = V −1
(
e µ

)
A−1

(
1
r

)
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Mean–Variance Diagram By solving the Lagrange Problem we have chosen
the equality constraint: E[Rp(xr)] = E

[
x>R

]
= x>µ = r.

The Variance is given by

Var[Rp(xr)] = x>r V x

=

x>︷ ︸︸ ︷(
1 r

)
A−1

(
e>

µ>

)
V −1 V

x︷ ︸︸ ︷
V −1

(
e µ

)
A−1

(
1
r

)
︸ ︷︷ ︸

A

=
(
1 r

)
A−1

(
1
r

)

Let a = e>V −1e, b = e>V −1µ, and c = µ>V −1µ. Then

A =
(
a b
b c

)
, A−1 =

1
ac− b2

(
c −b
−b a

)
and

Var[Rp(xr)] =
(
1 r

)
A−1

(
1
r

)
=
c− 2rb+ r2a

ac− b2

b
a

r Mean

Variance

Minimum Variance Portfolio

a
1

Figure 1: Var[Rp(xr)] as a function of r

If we chose r = b
a then the portfolio xr has minimal variance 1

a .
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Second Step Solve the Kuhn-Tucker problem (8a)–(8e).

We need to optimize the solution xr in r such that r ≥ rp. Study three cases,
for each case we must verify that the additional conditions (8d) and (8e) are
fulfilled. (12) implies that λ2 = b−ra

ac−b2 . Note that ac− b2 > 0 since A is positive
definite. The condition (8e) implies one of two possibilities: r = rp or λ2 = 0.

1. rp < b
a : The choice r = rp <

b
a implies λ2 = b−rpa

ac−b2 > 0 which contradicts
(8d).

Therefore we have 0 = λ2 = b−ra
ac−b2 , thus b− ra = 0 and r = b

a . (Fig. 2)

2. rp = b
a : Both choices (r = rp and λ2 = 0) imply that r = b

a .

3. rp > b
a : (8e) demands r ≥ rp. If we chose r > rp >

b
a we have λ2 =

b−ra
ac−b2 < 0 and thus (r − rp)λ2 < 0 which contradicts (8e). Therefore we
have r = rp. (Fig. 3)

b
a

r Mean

Variance

Optimal solution

rp
Best solution with return rp

Figure 2: Solution for rp < b
a

24



b
a

r Mean

Variance

Optimal solution
rp

Figure 3: Solution for rp > b
a

Definition 2.16. The solution xr for the Lagrange problem (6) is called min-
imum variance portfolio.

Definition 2.17. The solution x+
rp

for the Kuhn-Tucker problem (7) is called
efficient investment strategy.

Definition 2.18. Let rgmv = b
a . The global minimum variance portfolio xgmv

is given by xgmv = xrgmv . Note that

xgmv =
1

e>V −1e
V −1e

In this past section we have already proven the following theorem and its first
corollary.

Theorem 2.19. Under the model assumptions 2.11 the solution to (7) is

x+
rp

=

 V −1
(
e µ

)
A−1

(
1
rp

)
if rp ≥ rgmv

xgmv otherwise

= V −1
(
e µ

)
A−1

(
1

max(rp, rgmv)

)
.

Corollary 2.20.

xr = V −1
(
e µ

)
A−1

(
1
r

)
Example (Exercise). Let n = 3, µ = (0.08, 0.04, 0.045) and

V =

0.0025 0.0005 0.0010
0.0005 0.0004 0.0006
0.0010 0.0006 0.0010


Find rgmv = 0.0395.
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Corollary 2.21. Every minimum variance portfolio is a linear combination of
the two minimum variance portfolios xgmv and x(0) where

x(0) =
1

e>V −1µ
V −1µ.

Every linear combination of xgmv and x(0) is a minimum variance portfolio.

Proof. Recall that

xr = V −1
(
e µ

)(−λ1

−λ2

)
.

Let r(0) = c
b . If we choose r = r(0) then (12) implies that λ1 = 0, λ2 = −1

e>V −1µ
.

xr(0) = V −1
(
e µ

)( 0
1

e>V −1µ

)
= V −1µ

1
e>V −1µ

= x(0),

which shows that x(0) is indeed a minimum variance portfolio.

Since A is positive definite, its columns are linearly independent and therefore
b
a 6=

c
b , thus rgmv 6= r(0) and xgmv 6= x(0).

We will now prove the first statement from the corollary, that every minimum
variance portfolio is a linear combination of xgmv and x(0). Choose any return
r > 0 and its corresponding minimum variance potfolio xr. Since rgmv 6= r(0)

there exists α ∈ R such that r = αr(0) + (1− α)rgmv.

The minimum variance portfolio with return r is

xr = V −1
(
e µ

)
A−1

(
1
r

)
= V −1

(
e µ

)
A−1

(
α+ (1− α)

αr(0) + (1− α)rgmv

)
= αx(0) + (1− α)xgmv

which is indeed a linear combination of x(0) and xgmv.

In order to prove the second statement chose α ∈ R and let x = αx(0) + (1 −
α)xgmv. We need to prove that this is indeed a minimum variance portfolio.

Let r = αr(0) + (1− α)rgmv and observe (like above) that x = xr which proves
that x is a minimum variance portfolio.

Definition 2.22. Two investment strategies x and y are orthogonal if Cov[Rp(x), Rp(y)] =
0.

Note that Cov[Rp(x), Rp(y)] = x>V y.
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Proposition 2.23. For every minimum variance portfolio xr there exists an
unique orthogonal minimum variance portfolio x⊥r . Moreover x⊥r = xr⊥ where

r⊥ =
c− br
b− ar

.

Proof. Let λ⊥1 , λ
⊥
2 be the solution to the Lagrange problem with expected return

r⊥.

xr = −λ1V
−1e− λ2V

−1µ

xr⊥ = −λ⊥1 V −1e− λ⊥2 V −1µ

The covariance of the returns of these portfolios is

Cov[Rp(xr⊥), Rp(xr)] = xr⊥V xr

= (−λ⊥1 V −1e− λ⊥2 V −1µ)>V (−λ1V
−1e− λ2V

−1µ)

= (−λ⊥1 e− λ⊥2 µ)>V −1(−λ1e− λ2µ)

=
(
λ⊥1 λ⊥2

)
A

(
λ1

λ2

)
=
(
1 r⊥

)
A−1︸ ︷︷ ︸“

λ⊥1 λ⊥2
”
AA−1

(
1
r

)
︸ ︷︷ ︸0@λ1

λ2

1A
=
(
1 r⊥

)
A−1

(
1
r

)
=

1
ac− b2

(
1 r⊥

)(c− rb
ar − b

)
=
c− rb− r⊥b+ arr⊥

ac− b2

Until now we have used nothing about r⊥. The above shows that

Cov[Rp(xr⊥), Rp(xr)] = 0 if and only if r⊥ =
c− rb
b− ar

,

which proves the existence and uniqueness of the orthogonal minimum variance
portfolio.

Theorem 2.24. Assume xr is a minimum variance portfolio for r 6= b
a and xr⊥

the corresponding orthogonal minimum variance portfolio.

Choose an arbitrary investment strategy x ∈ Rn with expected investment
return rx = x>µ and variance σ2

x = x>V x. Then

rx − r⊥ = βx,r(r − r⊥)

where

βx,r =
Cov[Rp(x), Rp(xr)]

Var[Rp(xr)]

27



Proof. Let ej = (0, . . . , 0, 1, 0, . . . , 0) the vector with a single 1 in the jth posi-
tion.

Cov[Rj , Rp(xr)] = e>j V xr

= e>j V (−λ1V
−1e− λ2V

−1µ)

= e>j (−λ1e− λ2µ)

= −λ1 − λ2µj

=
(
1 µj

)(−λ1

−λ2

)
=
(
1 µj

)
A−1

(
1
r

)
By definition of orthogonality we have

0 = Cov[Rp(xr⊥), Rp(xr)] = x>r⊥V xr =
(
1 r⊥

)
A−1

(
1
r

)

Cov[Rj , Rp(xr)] = Cov[Rj , Rp(xr)]− Cov[Rp(xr⊥), Rp(xr)]︸ ︷︷ ︸
=0

=
(
0 µj − r⊥

)
A−1

(
1
r

)
=

(µj − r⊥)(−b+ ar)
ac− b2

Using the fact, that Rp(x) =
∑
j xjRj and linearity of covariance in its first

argument as well as
∑
j xj = 1, we obtain

Cov[Rp(x), Rp(xr)] =
∑
j

xj Cov[Rj , Rp(xr)] =
(x>µ− r⊥)(−b+ ar)

ac− b2
(13)

If we set x = xr in the above equation, we obtain

Var[Rp(xr)] = Cov[Rp(xr), Rp(xr)] =
(x>r µ− r⊥)(−b+ ar)

ac− b2
=

(r − r⊥)(−b+ ar)
ac− b2

(14)
Equations (13) and (14) imply that

Cov[Rp(x), Rp(xr)]
x>µ− r⊥

=
Var[Rp(xr)]
r − r⊥

which proves the theorem.

2.5 Mean–Variance Analysis with risk free assets

Assumption 2.25. Assume we have exactly one risk free asset with determin-
istic return R0 = µ0 and n risky assets with returns R such that

28



1. µj = E[Rj ] 6= µ0 for at least one j.

2. V = Var[R] is positive definite.

We reformulate problem (7) in order to take into account the risk free asset.

x̃+
rp

= arg max
x̃ ∈ Rn

x̃>ẽ = 1
x̃>µ̃ ≥ rp

− 1
2x
>V x

The portfolio return can be reformulated in terms of excess return R̃
e
:

Rp(x̃) = x̃>R̃ =
n∑
i=0

xiRi =
n∑
i=0

xi (Ri − µ0)︸ ︷︷ ︸
Re

i

+
n∑
i=0

xiµ0 = x̃>R̃
e

+ µ0

The problems (6) and (7) become now

xrp
= arg max

x ∈ Rn
x>µe = rep

− 1
2x
>V x (15)

xrp,0 = 1− e>xrp

x+
rp

= arg max
x ∈ Rn

x>µe ≥ rep

− 1
2x
>V x (16)

x+
rp,0

= 1− e>x+
rp

where
rep = rp − µ0 and µe = E[Re] = µ− µ0e

The Kuhn-Tucker conditions for (16) are

L(x, λ, re) = − 1
2x
>V x− λ(x>µe − re)

∂L

∂x
= −V x− λµe = 0 (17a)

∂L

∂λ
= −(x>µe − re) = 0 (17b)

∂L

∂re
= λ ≤ 0 (17c)

(re − rep)λ = 0 re ≥ rep (17d)

Equations (17a) and (17b) imply

x = −λV −1µe

x>µe = −λµe>V −1µe = re

−λ =
re

µe>V −1µe
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So we can write the solution to the Lagrange problem (15)

xre =
re

µe>V −1µe
V −1µe

Mean-Variance Diagram

Var[Rp(xre)] = x>reV xre =
(re)2

(µe>V −1µe)2
µe>V −1V V −1µe =

(re)2

µe>V −1µe

r Mean

Standard Deviation

Efficient Portfolios

µ0 Minimum Variance Portfolios

Figure 4:
√

Var[Rp(xr)] as a function of r

Theorem 2.26. Under assumptions 2.25 the solution to problem (16) is

x+
rp

=
max(0, rep)
µe>V −1µe

V −1µe.

Corollary 2.27. The solution to problem (15) is

x+
re =

re

µe>V −1µe
V −1µe.

Proof. Theorem and Corollary are consequences from Kuhn-Tucker conditions
(17a) – (17d).

Definition 2.28. A minimum variance portfolio xtan is called tangent portfolio
if x>e = 1.

(i.e. if x̃tan invests only in risky assets.)

Proposition 2.29. There exists an unique tangential portfolio. Its excess re-
turn is

retan =
µe>V −1µe

µe>V −1e
(18)
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Proof. A minimum variance portfolio with given excess return re has the form

xre =
re

µe>V −1µe
V −1µe

Thus
x>ree =

re

µe>V −1µe
µe>V −1e

The equation x>ree = 1 has the unique solution re = retan.

Remark. Practitionners would expect that rgmv > µ0 since the latter return
is achieved without any risk. Proposition 2.29 gives us the equivalence rgmv >
µ0 ⇔ retan > 0.

Indeed: Since the numerator in (18) is positive, re has the same sign as

µe>V −1e = (µ− µ0e)>V −1e = b− µ0a = a(rgmv − µ0)

When estimating model parameters µ̃ and V , make sure that this condition is
fulfilled.

Theorem 2.30. Assume xre is a minimum variance portfolio for re 6= 0, let x̃
an arbitrary portfolio with expected return rx = x̃>µ̃ = µ0 + x>µe. Then for
r = µ0 + re the following holds:

rx − µ0 = βx,r(r − µ0) where βx,r =
Cov

[
x>R,x>reR

]
Var
[
x>reR

]
Proof.

Cov[Ri,xreR] = e>i V xre

= e>i V

(
re

µ>V −1µe
V −1µe

)
=

re

µ>V −1µe
e>i µ

e

=
Var
[
x>reR

]
re

µei

Taking a linear combination with coefficients xi of the above we obtain

Cov
[
x>R,x>reR

]
=

Var
[
x>reR

]
re

x>µe

Remark. The coefficient βx,r can be written as

βx,r = Cor
[
x>R,x>reR

]√ Var[x>R]
Var
[
x>reR

]
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Remark. The portfolio xre plays the role of a market portfolio. If the corre-
lation is small then it is used for diversification. Due to the demand of such
portfolios they are expensive, i.e. their excess return re is small.

Remark (Practical Remarks).

1. There are often additional constraints to the optimization problem (6)
such as e.g. a maximum of 30% of assets in foreign currency∑

i∈{foreign}

xi ≤ 0.3

or a no-short-selling constriaint

xi ≥ 0

2. The mean return vector µ has to be estimated. An estimation based on
historical data is often too näıve.

The covariance matrix V can often be estimated with more confidence.
Theorem 2.30 can then be used to estimate µ.

3. Asset and Liability management (ALM). Need to replicate a liability port-
folio ỹ e.g. payouts of a life insurance using a deterministic life table or
predicted payouts based on claim triangles in non-life insurance.

This leads to the following problem. Note that not the variance of the
return is minimized but the variance of the difference to the return of the
given liabilites.

x+
rp

= arg max
x̃ ∈ Rn+1

x̃>ẽ = 1
x̃>µ̃ ≥ ỹ>µ̃+ r+

− 1
2 (x− y)>V (x− y)

where r+ is an additional profit.

As before we solve this problem using Kuhn-Tucker.

L(x̃, λ1, λ2, r) = −1
2
x>V x+x>V y−λ1(x̃>ẽ−1)−λ2(x̃>µ̃− (ỹ>µ̃+r))

∂L

∂x
= −V (x− y)− λ1e− λ2µ = 0 (19a)

∂L

x0
= −λ1 − λ2µ0 = 0 (19b)

∂L

∂λ1
= −(x̃>ẽ− 1) = 0 (19c)

∂L

∂λ2
= −(x̃>µ̃− (ỹ>µ̃+ r)) = 0 (19d)

∂L

∂r
= λ2 ≤ 0 (19e)

(r − r+)λ2 = 0 r ≥ r+ (19f)
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Equations (19a) and (19b) imply

x = y − λ2V
−1µe

From (19d) we get

ỹ>µ̃+ r = x̃>µ̃ = µ0 + x>µe = µ0 + y>µe − λ2µ
e>V −1µe

therefore
−λ2 =

r

µe>V −1µe

Finally, using (19e) and (19f), we have

x = y +
max(0, r+)
µe>V −1µe

V −1µe

(The risk free part x0 is given by (19c).)

If no additional profit is demanded, one chooses x̃ = ỹ.

If ỹ = 0̃ we have the solution from theorem 2.26.

2.6 Capital Asset Pricing Model

Motivation: Where do the µi come from? So far they where given exegenousely,
but a market equilibrium should allow for a endogenous determination of µi.
The model should tell us what the right prices are.

Assume rgmv 6= µ0. Then proposition 2.29

implies the existence of the unique tangential portfolio

xtan =
retan

µe>V −1µe
V −1µe

where retan =
µe>V −1µe

µe>V −1e

and x>tane = 1

Note that retan > 0.

Henceforth every minimum variance portfolio x̃re is a linear combination of the
tangential portfolio x̃tan and the risk free portfolio ẽ0 = (1, 0, . . . , 0).

x̃re =
(

1− re

retan

)
ẽ0 +

re

retan

x̃tan

Assumption 2.31. (Market Model)

Supply Assume n+ 1 financial assets satisfying assumptions 2.25. The total
value of asset j at time 0 is given by Mj .
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Demand We have N financial agents all holding a minimum variance portfolio
x̃(i) ∈ Rn+1 and having initial wealth wi.

Assumption 2.32. (Economic Principle) We have a risk exchange economy
with market clearance condition; i.e. supply equals demand.

Definition 2.33. The market portfolio x̃M is given by

xM
j =

Mj

M
where M =

n∑
j=0

Mj

Each agent holds a minimum variance portfolio.

wi

((
1− rei

retan

)
,
rei
retan

xtan

)
The total value of risky assets at time 0 is

N∑
i=1

wi
rei
retan

xtan

The market clearing condition implies

1. xtan = xM

2.
N∑
i=1

wi
rei
retan

=
n∑
j=1

Mj

Theorem 2.34. (Capital Asset Pricing Model CAPM) Under assumptions 2.31
and 2.32 we have

µj = µ0 + βj(rM − µ0)

where

rM = E
[
Rp(x̃M)

]
and βj =

Cov
[
Rj , Rp(xM)

]
Var[Rp(xM)]

Proof. Because of the market clearing condition we can replace the tangent
portfolio x̃tan with the market portfolio x̃M.

Then the theorem follows straightforward from theorem 2.30.

Remark. (CAPM)

1. The theorem above does not really tell wether the prices are exogenous or
endogenous, but rather gives a balance condition for prices µj .

2. Assume the market is large or single assets small, such that a single asset
does not really influence the market return rM.

In practice the following is done:
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(a) Determine βj . (Covariance matrix)

(b) Determine rM. (Expected market return) “growth of the economy”.

(c) Calculate prices assuming independence of the market on single asset
prices.

3. CAPM has many unrealistic assumptions:

• closed market

• market clearing condition

• all agents are mean variance optimizers

• all agents estimate the same parameter values

4. The parameters βj measure the systemic risk.
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3 Arbitrage Pricing Theory (APT)

Remark. In Chapter 1-3 we have two point models two time-points t0: in-
vest, t1: observe return. The idea with CAPM is to generalize that and use
distributions rather than expected values:

Rj = µ0 + βj(Rm − µ0)︸ ︷︷ ︸
systematic risk

+ εj︸︷︷︸
idiosyncratic component for asset j

where E[εj ] = 0. Thus we have:

E[Rj ] = µ0 + βj(rµ − µ0)

3.1 Exact APT, no ideosyncratic risk

Assumption 3.1 (Model). µ0 : risk free return,

R1, . . . , Rn: risky assets fullfilling:

• Ri = µi +
∑K
k=1 bikFk ∀i = 1, . . . , n, bik ∈ R

• E[Fk] = 0

• Cov[F ] = Φ, positive definite ∈ RK×K

• n > K

Interpretation: ReturnsRi are described byK underlying risk factors F1, . . . , Fk.
In Matrix form we can write that as R = µ+BF with B ∈ Rn×k. Since k < n:

∃x ∈ Rn\{0} orthogonal to all columns of B (20)

Expected return for such a portfolio x is:

E[Rp(x̃)] = x̃>µ̃ = µ0 + x>(µ− µ0e) = µ0 + x>µe

Var[Rp(x̃)] = x>Var[R]x = x>Var[(BF )]x = x>B︸ ︷︷ ︸
=0

Var[(F )]B>x︸ ︷︷ ︸
=0

= 0

Definition 3.2 (Economic Priciple). x̃ ∈ Rn+1 is an arbitrage portfolio if

(i)x>e = −x0 net invest 0
(ii) E[Rp(x̃)] > 0

(iii) Var[Rp(x̃)] = 0

From (ii) and (iii) follows that Rp(x̃) > 0 a.s..
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Theorem 3.3. Under the assumption of ”no arbitrage” (i.e. @x, x arbitrage
portfolio) we obtain ∃λ = (λ1, . . . , λk) risk premium such that

µi = µ0 +
K∑
k=1

bikλk ∀i = 1, . . . , n

Proof. Choose x̃ as in (20) and assume E[Rp(x̃)] 6= µ0. Without loss of gener-
ality we can assume r := E[Rp(x̃)] > µ0. Invest 1 unit into x̃ and −1 unit into
the risk free asset. Thus we have a net investment of 0 with return r − µ0 > 0,
which is a contradiction to the no arbitrage assumption. Thus

E[Rp(x̃)] = µ0

µ0 + x>(µ− µ0e) = µ0

⇒ x>(µ− µ0ẽ) = 0

This holds true fo all portfolios x which satisfies (20). µ−µ0e is in the span of
the columns of B. Thus

∃λ : µ− µ0e = Bλ (21)

Remark (1). The price of risk λ can explicitly be determined by solving the
system (21).

Remark (2). If k = 1:

µi = µ0 + biλ (λ is a scalar)

Compare this to CAPM:
µi = µ0 + βir

e
µ.

The pricing formula coincides.

Remark (3). The two Models should not be identified since we have two com-
pletetely different economic principles.

3.2 Ideosyncractic Risk

Assumption 3.4 (Model Assumption). • µ0 : risk free return

• R1, R2, . . . infinite sequence of risky returns.

• RN = (R1, . . . , RN ) = µN +BNF + εN , with:

– F = (F1, . . . , FK) market risk factors.

– BN are the first N rows of an ∞×K- Matrix.
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– εN = (ε1, . . . , εN ) with E[εi] = 0, Cov[ε] = ΩN positive definite all
eigenvalues bounded uniformly (in N) by λ

– Cov[εi, Fk] = 0

– Cov[F ] pos definite

– E[Fk] = 0

Remark. Hopefully the main behaviour can be explained by a finite number
K of market risk factors such that the remaining (ideosyncratic parts) εi are
sufficiently small.

Definition 3.5. An asymptotic arbitrage opportunity is a sequence of portfolios
wN ∈ RN such that

(i) wNeN = 0 net investment zero

(ii) lim supN→∞ E
[
(wN )>RN

]
≥ δ > 0

(iii) limN→∞Var
[
(wN )>RN

]
= 0

Theorem 3.6. Under previous model assumptuions and under exclusion of
asymptotic arbitrage opportunities. There exists λ̃

N
= (λN0 , . . . , λ

N
K) of risk

factors such that for N > K:

µi = λN0 +
K∑
k=1

bikλ
N
k + vNi , ∀i = 1, . . . , N

sucht that the error terms vNi satisfy

lim
N→∞

1
N

N∑
i=1

(vNi )2 = 0 (22)

Idea of the proof is choose in a smart way the sequence (λ̃
N

)N≥K and show
that (22) is satisfied.

Excursion
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Figure 5: Linear regression

a) Linear regression problem. Assume K = 1. µi = λN0 + bi1λ1 + vNi .

b) Multivariate linear regression

vN = µN − (λN0 e
N +BNλN )

Choose λ̃
N

such that ‖v‖2 is minimal. Optimal least squares methods (OLS).
Solve:

(1)
N∑
i=1

vNi = 0 (23)

(2)
N∑
i=1

vNi bik = 0 ∀k = 1, . . . ,K (24)

Choose this λ̃
N

and show that (22) is fullfield. Define wN = 1√
N

1
‖vN‖2v

N then
(23) implies:

(1)(wN )>eN = 0

(2)(wN )>RN =
1√
N

1
‖vN‖2

(vN )>(µN +BNF + εN )

=
1√
N

1
‖vN‖2

(vN )
>
µN + (vN )>BNF︸ ︷︷ ︸

=0

+(v)N
>
εN
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Calculating the expected value:

E
[
(wN )>RN

]
=

1√
N

1
‖vN‖2

(vN )>µN + E
[
(vN )>εN

]︸ ︷︷ ︸
=0


=

1√
N

1
‖vN‖2

(vN )>
[
vN + λN0 e

N +BNλN
]

=
1√
N

1
‖vN‖2

(vN )>vN + λN0 (vN )>eN︸ ︷︷ ︸
=0 with (23)(1)

+ (vN )>BNλN︸ ︷︷ ︸
=0 with (23)(2)

=
1√
N

and the variance:

Var
[
(wN )>RN

]
=

1
N

1
‖vN‖22

Var
[
(wN )>εN

]
=

1
N

1
‖vN‖22

(wN )>Cov
[
εN
]︸ ︷︷ ︸

ΩN

vN

≤
eigenvalues unif. bounded

1
N

1
‖vN‖22

λ̄‖vN‖22 =
λ̄

N
→ 0.

the λ̄ is uniformly bounded.

Proof. Assume (22) does not hold true for our choice λ̃
N

and vN . Then (i) and
(ii) are fullfield and there exists δ > 0 with

lim sup E
[
(wN )>RN

]
≥ δ

which contradicts the no arbitrage assumption.
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4 Multiperiod Models

We consider a discrete Time Model with finite time horizon, with t ∈ {0, 1, . . . , T},
T <∞ and a cashflow c = (c1, . . . , cT ).

Figure 6: Cashflow with finite time horizon.

The aim is to find a price we are willing to pay at time 0 for this cashflow.

4.1 Deterministic Cashflows and Arbitrage

Definition 4.1. v ∈ RN

• v ≥ 0 iff vi ≥ 0,∀i = 1, . . . , N , iff v ∈ RN+ ∪ {0}

• v > 0 iff v ≥ 0 and ∃i : vi > 0, iff v ∈ RN+

• v � 0 iff vi > 0 ∀i = 1, . . . , N , iff v ∈ RN++

Definition 4.2 (Security Market). A security market is a pair (Π, C) with
Π ∈ RN and C ∈ RN×T .

Π =



Π1

...
Πi

...
Πn

 , C =



c11 . . . c1T
...

...
ci1 . . . ciT
...

...
cN1 . . . cNT


Each row in C represents a cashflow. We thus have N cashflows with corre-
sponding prices Π at time zero.
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Definition 4.3. A prortfolio strategy is a vector θ ∈ RN . The cashflow gener-
ated by such a portfolio strategy θ is:

C>θ = (
N∑
i=1

θici1, . . . ,

N∑
i=1

θiciT )>.

The price of C>θ at time 0 is Π>θ =
∑N
i θiΠi

Definition 4.4 (Arbitrage opportunity). θ ∈ RN is an arbitrage opportunity
if it satisties one of the two conditions:

1. Π>θ = 0 and C>θ > 0 or

2. Π>θ < 0 and C>θ ≥ 0

Definition 4.5 (Arbitrage-free). A security market (Π, C) is arbitrage-free if
it contains no arbitrage opportunity θ.

Lemma 4.6. Let A be an m × n Matrix then exactly one of the follwoing
statements holds

1. ∃x ∈ Rm++ such that Ax = 0

2. ∃y ∈ Rn such that y>A > 0

Proof. Stiemke Lemma. See elsewhere.

Remark. Another proof would be given by the seperating hyperplane theorem.
Farkas?

Theorem 4.7. The security market (Π, C) is arbitrage free if and only if

∃d ∈ RT++ with Π = Cd.

Interpretation: d is the vector of discount factors. A cashflow of 1 at time i has
the price di.

Proof. Define

A =

−Π1 c11 . . . c1T
...

...
...

−Πn cn1 . . . cnT
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Apply Stiemkes Lemma:

from i)∃x ∈ RT+1
++ : Ax = 0

⇔∃x ∈ RT+1
++ : −Πix0 =

T∑
t=1

xtcit = 0 ∀i = 1, . . . , n

⇔∃x ∈ RT+1
++ : Πi =

T∑
t=1

xt
x0
cit ∀i = 1, . . . , n

define dt =
xt
x0

⇔∃d ∈ RT+1
++ : Πi =

T∑
t=1

dtcit ∀i = 1, . . . , n

It remains to prove that no-arbitrage assumption rules out being in case (ii) of
Stiemkes Lemma. Assume ∃y ∈ RN such that y>A > 0. There are now to
cases:

1. either (y>A)1 > 0 and (y>A)k ≥ 0 for k = 2, . . . , T + 1 ⇔ arbitrage
definiton case (2).

2. or (y>A)1 = 0 and (y>A)k ≥ 0 for k = 2, . . . , T + 1 and ∃l : (y>A)l > 0
⇔ arbitrage definiton case (1).

We have shown that in Stemkes Lemma (i) ⇔ there exists a discount factor.
(ii) ⇔ there exists an arbitrage opprotunity.

Remark. In the finite dimensional setup “No arbitrage”⇔ “There are discount
factors”. Probabilities play no role.

Remark. In more general models: discrete time but infinite probability space
or in continous time models we can usually show:

∃martingale measuere⇒ no arbitrage

For the case⇐ it is important which definition of arbitrag implies the existence
of a martingale measure. (See: [DS93]. Why are infinite probabilities space so
much harder? For example in continous time one needs to exclude “doubling
strategies”, which plays infinitely many lotteries each doubling the investment
until the first win.

Remark. We do not say anything about the uniquenss of d.

Definition 4.8. The market (Π, C) is called complete if for any y ∈ RT there
exists θ ∈ RN such that C>θ = y. (i.e. if we can replicate any cashflow y)

Proposition 4.9. The market is complete if an only if there exists an unique
d ∈ RT++ such that Π = Cd.

Proof. No proof given.

Remark. In that case C can be choosen as a regular T × T -matrix.
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4.2 Term Structures in Discrete Time

Assume (Π, C) is arbitrage free and complete. It follows that there exist unique
discount factors d.

Definition 4.10. A zero-coupon bond (ZCB) with maturity t ∈ {1, . . . , T} is
given by et = (0, . . . , 0, 1, 0, . . . , 0) ∈ RT , where the 1 is at the t-th position.

Proposition 4.11. The price of ZCB(t) at time 0 is given by dt.

Proof. Due to completeness ∃θt : et = C>θt It follows that:

Price(ZCB(t)) = Π>θt = (Cd)>θt = d>C>θt = d>et = dt

Corollary 4.12. The price of any casfhlow c ∈ RT is given by

Price0(c) =
T∑
t=1

ctdt

Proof. Write c =
∑
ctet and use linearity.

All we need in this section is arbitrage-free and complete. We have not assumed
any monotonicity properties on d. You would guess dt+1 < dt, but this is not
assumed or implied here. We use the following terminology to normalize d0 = 1.

Definition 4.13. Assume d ∈ RT++ is given as above. The spot rate at time 0
is r0 = 1

d1
−1. The (one period) t-forward rate at time zero is f(0, t) = dt

dt+1
−1.

Definition 4.14. Yield-to-maturity of ZCB(t):

y(0, t) =

(
1
dt

1/t
)
− 1⇔ dt = (1 + y(0, t))−t

Term structure at time 0 is given by (y(0, 1), y(0, 2), . . . , y(0, T )).

4.3 Duration

c ∈ RT : cashflow, d ∈ RT++ given.

Price0(c) =
T∑
t=1

ctdt =
T∑
t=1

ct
(1 + y(0, t))t

In old models one assumes often y(0, t) = r

Price0(c) =
T∑
t=1

ct
(1 + r)t

=: Π0(c, r)
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dΠ0(c, r)
dr

= −
∑

t
ct

(1 + r)t+1
= − 1

1 + r

T∑
t=1

t
ct

(1 + r)t

Relative change:

dΠ0(c,r)
dr

Π0(c, r)
= − 1

1 + r

∑
t ct

(1+r)t∑ ct

(1+r)t︸ ︷︷ ︸
=:D(c,r)Maucaly Duration

“Average time of the payouts ct” or “Expected value of the payout time” eD =
E[ct] for a certain probability measure. We can do a Taylor expansion on:

Π0(c, r +∆r) = Π0(c, r)−Π0(c, r)
D(c, r)
1 + r

∆r + o(∆r)

Assume c are liabilities and y are cashflow of our assets. How should we choose
y? For ALM buy y such that

Π0(y, r) =Π0(c, r)
D(c, r) =D(y, r)

Remark. Similar approximations are available for non-constant term structure
curves and interest rate shocks. See (Shiu 1987, Fong-Vasicek 1984).
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4.4 Stochastic Cashflow in Discrete Time

Assumption 4.15. Assume a final time horizon T ∈ N, (Ω,F , P,F) a filtered
probability space with filtration F = (Ft)t=0,...,T where Ft ⊂ Ft+1 ⊂ F , Ft a
σ-field.

Assume X = (X0, . . . , XT ) is a F-adapted cashflow on (Ω,F , P )

The goal will be to calculate the price process for any such cashflow X under
an appropriate valuation functional.

Assumption 4.16. (General Assumptions) Assume all components Xt of X
are square-integrable i.e. E

[
X2
t

]
<∞ for all t ∈ {0, . . . , T}.

Remark. L2
T+1(Ω,F , P ) is a hilbert space:

• E
[
X2
t

]
<∞ for all t, for all X ∈ L2

T+1

• 〈X,Y 〉 = E
[
X>Y

]
scalar product

• ‖X‖ =
√
〈X,X〉 norm

If ‖X −Y ‖ = 0 then X = Y P -almost surely. In that case we identify X with
Y .

Definition 4.17. (Notation)

• X ≥ 0 if and only if Xk ≥ 0 P -almost surely, for all k.

• X > 0 if and only if X ≥ 0 and there is a k such that P (Xk > 0) > 0.

• X � 0 if and only if for all k: Xk > 0 P -almost surely.

4.4.1 Market Consistent Valuation at Time Zero

Assumption 4.18. Assume a functional Q0 : L2
T+1(Ω,F , P ) → R with the

properties

1. (Positivity) X > 0⇒ Q0(X) > 0.

2. (Continuity) If (X(i))i=1,2,... is a convergent sequence in L2
T+1:

X(i) i→∞−→
L2

X =⇒ Q0(X(i)) i→∞−→ Q0(X).

3. (Linearity) Q0(aX + bY ) = aQ0(X) + bQ0(Y ).
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Definition 4.19. If Q0 satisfies the assumptions above we call it a pricing
functional and we call Q0(X) the price of X at time 0.

Lemma 4.20. In the assumptions above positivity and linearity imply conti-
nuity.

Proof. See Wüthrich–Bühlmann–Furrer (2008) Springer

Theorem 4.21. (Riesz Representation Theorem) If Q0 is a pricing functional
on L2

T+1(Ω,F , P ) then there exists ϕ ∈ L2
T+1(Ω,F , P ) such that for all X ∈

L2
T+1(Ω,F , P ): Q0(X) = 〈ϕ,X〉.

Definition 4.22. The ϕ in the theorem above is called deflator.

In economic literature it is often called state price density and in financial math-
ematics pricing kernel.

Remark. • Positivity of Q0 implies ϕ� 0.

• On the subspace of all F-adapted cashflows ϕ can be chosen F-adapted.

Indeed: define ϕ̃k = E[ϕt|Ft]. ϕ̃ is a deflator and it is F-adapted.

If X is F-adapted then 〈X,ϕ〉 = 〈X, ϕ̃〉.

• The F-adapted deflator is unique.

Indeed: assume two deflators ϕ and ϕ∗

〈ϕ,X〉 = 〈ϕ∗,X〉 for all X

In particular for X = ϕ−ϕ∗.

0 = 〈ϕ−ϕ∗,ϕ−ϕ∗〉 = ‖ϕ−ϕ∗‖2

And thus ϕ = ϕ∗

• In the following we will always use the F-adapted deflator ϕ to represent
Q0.

4.4.2 Understanding Deflators

1. In theorem 4.7 we have seen security market pricing iff there exists d ∈
RT++ such that Π = Cd. (finite space model)

In theorem 4.21: Q0 pricing function iff there exists ϕ� 0.

2. Attention: In general ϕ and X cannot be decoupled.
T∑
t=0

E[ϕtXt] 6=
T∑
t=0

E[ϕt] E[Xt]

3. The price of a ZCB with maturity t is

Q0(et) = 〈ϕ, et〉 = E[ϕt] = P (0, t).

It is F0-measurable, i.e. known at time zero, (deterministic discounting)
whereas ϕt is Ft measurable and allows for stochastic discounting.
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4.4.3 Pricing at Positive Time

Definition 4.23. For X ∈ L2
T+1(Ω,F , P,F) we define its price at time t by

Qt(X) =
1
ϕt

E

[
T∑
s=0

ϕsXs

∣∣∣∣∣Ft
]

.

Observe that Qt((X)) is Ft-measurable.

Lemma 4.24. (ϕtQt(X))t is an (Ω,F , P,F)-martingale.

Proof.

E[ϕt+1Qt+1(X)|Ft] = E

[
ϕt+1

1
ϕt+1

E

[
T∑
s=0

ϕsXs

∣∣∣∣∣Ft+1

]∣∣∣∣∣Ft
]

= E

[
E

[
T∑
s=0

ϕsXs

∣∣∣∣∣Ft+1

]∣∣∣∣∣Ft
]

= E

[
T∑
s=0

ϕsXs

∣∣∣∣∣Ft
]

= ϕtQt(X)

Theorem 4.25. The pricing system (ϕtQt(X))t on L2(Ω,F , P,F) is arbitrage-
free for an appropriate definition of arbitrage.

Remark. A rigorous version of this theorem can be found in [DS98] and in M.
Schweizers lecture on financial mathematics.

Example.

P (s, t) =
1
ϕs

E[ϕt|Fs] = E
[
ϕt
ϕs

∣∣∣∣Fs] (s ≤ t)

4.4.4 Equivalent Martingale Measure

In financial math one typically chooses an appropriate unit (called numéraire)
such that formulae become simple. Here: bank-account numéraire.

Definition 4.26. The spot rate process (R(t))t is given by

R(t) = − logP (t, t+ 1) = − log
(

1
ϕt+1

E[ϕt+1|Ft]
)

.

Remark. The spot rate R(t) is Ft-measurable.

If the time step is one year then R(t) corresponds to the one year risk free asset.
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The spot rate process plays the role of the bank account: invest 1 at time zero,
this then provides the value Bt at time t.

Bt = expR(0) · expR(1) · . . . ·R(t− 1) = exp
t−1∑
s=0

R(s)

The goal of this section is to study the price process relative to the bank account
numéraire 1

Bt

We have seen that (ϕtQt(X))t is an (Ω,F , P,F)-martingale, now what about
(B−1

t Qt(X))t?

Note that ϕt is Ft-measurable, observable at the end of period [t−1, t], whereas
Bt is Ft−1-measurable, observable at t− 1. This property is called previsible.

Definition 4.27. ξt = ϕtBt for t = 1, . . . , T and ξ0 = 0.

Lemma 4.28. ξ � 0 and (ξt)t is an (Ω,F , P,F)-martingale and E[ξT ] = 1.

Proof. Positivity: ϕ� 0 and B � 0 therefore also ξ � 0.

Martingale property: observe that

ξt = ϕtBt = ϕt−1Bt−1
ϕt
ϕt−1

expR(t− 1)

E[ξt|Ft−1] = ϕt−1Bt−1e
R(t−1) 1

ϕt−1
E[ϕt|Ft−1]

= ϕt−1Bt−1e
R(t−1)P (t, t+ 1)

= ϕt−1Bt−1

Expected Value:
E[ξT ] = E[ξ1] = B1 E[ϕ1] = 1

Note that ξt is a density process with respect to P . ξt is a density.

Definition 4.29. The equivalent probability measure P0 is given by the Radon–
Nikodym derivate

dP0

dP
= ξT = ϕTBT .

In other words
P0(A) =

∫
A

ξTdP for all A ∈ F

Corollary 4.30.

EP

[
dP0

dP
|Ft
]

= EP[ξT |Ft] = ξt
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Lemma 4.31. For s < t the following holds P -almost surely:

EP0[Qt(X)|Fs] =
1
ξs

EP[ξtQt(x)|Fs]

Proof. For all A ∈ Fs the following holds:

P0(A) = EP[ξT1A]
= EP[EP[ξT1A|Fs]]
= EP[1A EP[ξT |Fs]]
= EP[1Aξs]

EP0[1AQt(X)] = EP[ξT1AQt(X)]
= EP[EP[ξT1AQt(X)|Fs]]

= EP

[
1Aξs

1
ξs

EP[ξTQt(X)|Fs]
]

And therefore P -almost surely

1
ξs

EP[ξtQt(X)|Fs] = EP0[Qt(X)|Fs]

Corollary 4.32. The process (B−1
t Qt(X))t is an (Ω,F ,P0,F)-maringale. (Note

the changed probability measure.)

Proof. Applying lemma 4.31 with s← t, t← t+ 1

EP0[Qt+1(X)|Ft] =
1
ξt

EP[ξt+1Qt+1(X)]

= EP

[
ϕt+1

ϕt
eR(t)Qt+1(X)

∣∣∣∣Ft]
= eR(t) 1

ϕt
EP[ϕt+1Qt+1(X)|Ft]

using the fact that ϕtQt(X) is a P -martingale

= eR(t) 1
ϕt
ϕtQt(X)

= eR(t)Qt(X)

Thus we have

EP0

[
B−1
t+1Qt+1(X)|Ft

]
= B−1

t+1 EP0[Qt+1(X)|Ft]
= B−1

t+1e
R(t)Qt(X)

= B−1
t Qt(X)
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In the real-world probability space (Ω,F , P,F) the process (ϕtQt(X))t is a
maringale.

In the risk neutral measure or equivalent martingale measure (Ω,F ,P0,F) the
process (B−1

t Qt(X))t is a martingale.

Remark. Usually pricing is simpler with the bank account numéraire B−1
t and

P0, whereas modelling insurance products is simpler with the deflator ϕt and
P .

Corollary 4.33. Let s < t. Then

P (s, t) =
1
ϕs

EP[ϕt|Fs] = EP0

[
exp

(
−
t−1∑
u=s

R(u)

)∣∣∣∣∣Fs
]

Proof.

EP0

[
exp

(
−
t−1∑
u=s

R(u)

)∣∣∣∣∣Fs
]

= EP0

[
Bs
Bt

∣∣∣∣Fs]
= Bs EP0

[
B−1
t P (t, t)|Fs

]
Using the fact that (B−1

τ P (τ, t))τ is a P0-martingale

= Bs(B−1
s P (s, t))

= P (s, t)

4.4.5 Market Price of Risk

The market price of risk will explain the difference between P and P0.

Assumption 4.34. Let (Ω,F , P,F) a filtered probability space. Assume (εt)t=0...T

is F-adapted and εt|Ft−1 ∼ N (0, 1). Assume the short rate dynamics R(t) is
given by

R(0) = r0 > 0, R(t) = f(t, R(t− 1)) + εtg(t, R(t− 1)) for t = 1 . . . T (25)

where f and g are sufficiently nice functions.

Our goal will be to find appropriate deflator models and an appropriate equiv-
alent measure P0 ∼ P .

Assumption 4.35. Assume we have a second F-adapted process (δt)t=0...T

such that δt|Ft−1 ∼ N (0, 1) and Cov[P ] δt, εt = ρ.

Define the deflator

ϕt = exp

(
−

t∑
s=1

(
R(s− 1) + 1

2λ
2(s,R(s− 1))

)
+

t∑
s=1

λ(s,R(s− 1))δs

)
(26)

where λ is a sufficiently nice function.

51



Definition 4.36. The function λ is called market price of risk.

Remark. Observe that λ describes the difference between B−1
t and ϕt in the

sense that B−1
t = ϕt when λ ≡ 0.

λ describes the aggregate market risk aversion. It is often given exogeneously.

Proposition 4.37. The equations (25) and (26) give a meaningful model i.e.

• ϕt is F-adapted.

• ϕt ∈ L2(Ω,F , P ).

• R(t) = − log
(

1
ϕt

EP[ϕt+1|Ft]
)

Proof.

− log
1
ϕt

EP[ϕt+1|Ft]

= − log EP
[
exp(−R(t)− 1

2λ
2(t+ 1, R(t)

]
+ λ(t+ 1, R(t))δt+1)|Ft)

= − log
(
exp(−R(t)− 1

2λ
2(t+ 1, R(t))) EP[exp(λ(t+ 1, R(t))δt+1)|Ft]

)
using expected value of a lognormal distributed random variable

= − log
(
exp(−R(t)− 1

2λ
2(t+ 1, R(t))) exp(0 + 1

2λ
2(t+ 1, R(t)))

)
= R(t)

The equivalent martingale measure under previous assumptions is obtained by
the Girsanov transformation in discrete time.

dP0

dP
= ϕTBT = exp

(
−1

2

∑
s

λ2(s,R(s− 1)) +
∑
s

λ(s,R(s− 1))δs

)

Lemma 4.38. ε∗t = εt − λρ has, given Ft−1 a standard normal distribution
under P0.

Proof. We will proove the lemma by comparing the moment generating function
of ε∗t with the moment generating function of a standard normal distributed
random variable. Choose s ∈ R. The moment generating function of ε∗t under
P0, given Ft−1, is

(mP0ε
∗
t )(s) = EP0[exp ε∗t s|Ft−1]

= exp(−sλρ) EP0[exp(−sεt)|Ft−1]

= exp(−sλρ) EP
[
exp(− 1

2λ
2 + λδt + sεt)|Ft−1

]
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λ = λ(t, R(t− 1)) is constant with respect to Ft−1.

= exp(−sλρ− 1
2λ

2) EP[exp(λδt + sεt)|Ft−1]

using lognormal expectancy and λδt + sεt|Ft−1 ∼ N (0, λ2 + 2λsρ+ s2)

= exp(−sλρ− 1
2λ

2) exp( 1
2 (λ2 + 2λsρ+ s2))

= exp( 1
2s)

which is indeed the moment generating function of a standard normal dis-
tributed random variable.

Remark.

P (s, t) =
1
ϕs

EP[ϕt|Fs] = EP0

[
−
t−1∑
u=s

R(u)

∣∣∣∣∣Fs
]

indeed, from (25) we obtain

R(t) = f(t, R(t− 1)) + δλ(t, R(t+ 1))g(t, R(t− 1)) + ε∗t g(t, R(t− 1))

for the short rate dynamics under P0.

4.4.6 Vasicek Model in Discrete Time

([Vasicek, 1997] in continuous time)

Assumption 4.39. Under real-world probability measure we assume

R(t) = b+ βR(t− 1) + σεt

where 0 < β < 1 and εt as in the previous section.

R(t) is called an autoregressive process of order 1 (AR(1)).

Remark. In discrete time εt|Ft−1 can have any distribution as long as the
necessary moments exist.

In discrete time we could take any process for R(t), e.g.

• ARMA(p, q): Autoregressive moving average

• GARCH models

whereas in continuous time one has to be more restrictive in order to obtain
solutions.

In order to apply the model to the previous section (?) we choose

λ(t, R(t− 1)) = λ ∈ R (fixed)
δs = εs
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then

ϕt = exp

(
−

t∑
s=1

R(s− 1) + 1
2λ

2R(s− 1)2 + λR(s− 1)εs

)
Under P0 we have

R(t) = b+ (β + λσ)R(t− 1) + σε∗t

Lemma 4.40. Under the previous assumptions the distributions of R(t) under
the two probability measures are

R(t)|Fs
P∼ N

(
(1− βt−s) b

1− β
+ βt−sR(s),

1− β2(t−s)

1− β2
σ2

)
R(t)|Fs

P0∼ N
(

(1− kt−s) b

1− k
+ kt−sR(s),

1− k2(t−s)

1− k2
σ2

)

with k = β + λρ.

Proof. (Sketch)

R(t) = b+ βR(t− 1) + σεt

= b+ β(b+ βR(t− 2) + σεt−1) + σεt = . . .

= b(1 + β + β2 + . . .+ βt−s−1) + βt−sR(s) + σ

t∑
u=s+1

βt−uεu = b
1− βt−s

1− β
+ βt−sR(s) + S

where S is a sum of normal random variables, thus

S ∼ N

(
0, σ2

t∑
u=s+1

β2(t−u)

)
.

Theorem 4.41. (Vasicek Zero-COupon-Bond Prices)

P (s, t) = exp(A(s, t)−R(s)B(s, t)) (s < t) (27)

where

A(t− 1, t) = 0
B(t− 1, t) = 1

A(s, t) = A(s+ 1, t)− bB(s+ 1, t) + 1
2σ

2B(s+ 1, t)2 for s < t− 1

B(s, t) =
1− kt−s

1− k

Remark. Choose u < s then P (s, t)|Fu is lognormal distributed.

Whenever P (s, t) has the form (27) we say, we have an affine term structure
(ATS).
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What are sufficient model assumptions for obtaining an ATS model? (for ATS
in continuous time see [Fil09]

Proof. Under P0: R(t) = b+ kR(t− 1) + σε∗t . We will proceed with a proof by
induction. For s = t− 1 we have

P (t− 1, t) = EP0[exp(R(t− 1))|Ft−1]
= exp(−R(t− 1))
= exp(0− 1 ·R(t− 1))

For s < t− 1 we assume the theorem for s+ 1.

P (s, t) = EP0

[
exp(−

t−1∑
u=s

R(u))|Fs

]

= EP0

[
EP0

[
exp(−

t−1∑
u=s

R(u))|Fs+1

]∣∣∣∣∣Fs
]

= EP0

[
exp(−R(s)) EP0

[
exp(−

t−1∑
u=s+1

R(u))|Fs+1

]∣∣∣∣∣Fs
]

= EP0[exp(−R(s))P (s+ 1, t)|Fs]
= EP0[exp(−R(s) +A(s+ 1, t)−R(s+ 1)B(s+ 1, t))|Fs]
= exp(−R(t) +A(s+ 1, t)− bB(s+ 1, t)− kB(s+ 1, t)R(s)) + EP0

[
exp(−σB(s+ 1, t)ε∗s+1)|Fs

]
= exp(−R(t) +A(s+ 1, t)− bB(s+ 1, t)︸ ︷︷ ︸

A(s,t)

− kB(s+ 1, t)R(s)︸ ︷︷ ︸
B(s,t)

) + exp( 1
2σ

2B2(s+ 1, t))
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