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1 Basics of claim reserving 1I._1 Introduction a_nd motivation
1.1.1 General insurance (1/2)

All starts with:

An insured (policyholder) pays some premium to an insurer in order to transfer the (more or less
directly related) significant monetary consequences (loss) of a randomly incurring future
event (risk).

v

Examples 1.1
insurance insured loss
Motor Liability (MTPL) | loss to a 3™ person caused by a self-inflicted car accident
General Liability (GL) loss to a 3™ person caused by the policyholder, except car accidents
Fire (Property) policyholders loss to household and property caused by fire
Health policyholders loss caused by illness
Pension policyholders loss, because of a long life
Life ‘another persons loss' caused by the death of the insured

Life insurance
The insured risk depends directly on the life of the insured.

General (or Non-Life or P&C for property and casualty) insurance

The insured risk does not depends directly on the life of the insured.
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Important words of the definition:

e transfer: therefore no self-insurance

e random future: not (completely) known, random in timing or amount
e loss: no lotteries and no betting

e significant loss: therefore no service contract



1 Basics of claim reserving 1I._1 Introduction a_nd motivation
1.1.1 General insurance (2/2)

Reinsurance, Health and Accident
There are types of insurances which have components of both, Life and

General insurance.
The classification depends on the regulator, the company and the
accounting standard.

Switzerland
Life (and Pensions), Non-Life (General insurance or P&C), Health and
Reinsurance )

IFRS 17

An insurance contract is

‘a contract under which one party (the issuer) accepts significant insurance
risk from another party (the policyholder) by agreeing to compensate the
policyholder if a specified uncertain future event (the insured event)
adversely affects the policyholder’

v
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1 Basics of claim reserving 1I._1 Introduct_ion and motivation
1.1.2 Claim reserves (1/2)

Problem 1.2
At the end of a business year an insurer usually knows all its contracts
but not all the corresponding claims and ultimate losses. Reasons may

be:
1. Not yet materialised or detected claims. For instance, product
liability insurance.
2. Not yet reported claims. For instance, time delay, because of
holidays.
3. Unknown future payments for not yet finally settled claims.

..payments

] 3T 4 1T 7T - Tt n TntIl Years
“ accident reported closed reopened finally closed
contract signed
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e Strictly taken: From the point in time where the insurance contract is in force (or the
insurance company has send a binding offer), the insurer has to account for all potential
claims. The precise rules for this depend on regulation and accounting standard.



1 Basics of claim reserving 1I._1 Introduct_ion and motivation
1.1.2 Claim reserves (2/2)

A exapmles of the development of payments in percent of the ultimate

100 %

Payment pattern

depend strongly on the underlying risk (exposure). Therefore, in practice an
actuary not only have to look at number based statistics, but also have to

understand the type of the underlying exposure.
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e red may be Motor Hull

o blue is typical for Garantie DA©cennale in France or Spain

e gray may be madatory accident insurance in Switzerland



1 Basics of claim reserving 1I._1 Introduction and motiyation
1.1.3 Relevance of claim reserves (1/2)

Claim reserves are often the most important part of the balance sheet of a
general insurer. Moreover, a small changes in the estimate of claim reserves
may make the difference between an annual profit or loss.

balance sheet Some examples*:
equity insurer equity | gain | reserves %rices
other liabilities Zurich $210| $3.0 $ 827 3.6%
Allianz €314 | €35 € 78.0 45%
assets ] Swiss Re $ 11.7 $ 3.0 $ 495 61%
claimreserves | Munich Re | €14.1 | €26 | €450 | 58%

*Amounts (in billion) representing only the general insurance part of the
company and are taken from the annual reports of 2012. The amounts are
not entirely comparable, because the separation of the general insurance
business from the other parts may be different from company to company.
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1 Basics of claim reserving 1I._1 Introduction and motiyation
1.1.3 Relevance of claim reserves (2/2)

Example: Converium AG

Converium AG was one of the largest reinsurers in the world. At
20t July 2004 the company issued a profit warning caused by a
strengthening of the claim reserves of the US general liability portfolio by
$ 400 million.
Consequences:

o loss of 35% of equity

« an immediate deep plunge of over 50 % (about 70 % until

October 2004) of the stock price
« rating downgrade from A to BBB+ by Standard & Poors

« unfriendly takeover by SCOR in 2007 (although Converium did make
profit again and got its A rating back)
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1 Basics of claim reserving 1.1 Introduction and motivation
L 1.1.4 Purposes of (stochastic) loss reserving

Loss reserving

is an integral part of many processes. For instance:
o annual closings
e pricing
o forecasts

« measuring risks, like under IFRS 17, Solvency Il and the Swiss Solvency
Test (SST)

« modelling the value of customers
[ ]

The resulting estimates for claim reserves depend on its purpose. For instance,
loss reserving in the context of annual closings deals with the past, whereas
in the context of pricing we are interested in the future. Moreover, in pricing
one usually looks at a more detailed split in subportfolios than during cIosings.)
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1 Basics of claim reserving 1.2 Basic terms and definitions
121 Terminology (1/2)

Definition 1.3 (Case reserves or outstanding)

Case reserves are estimates of the (undiscounted) sum of all future payments made by claim
managers on a claim by claim basis.

v

Definition 1.4 (Claim reserves or (technical) provisions)

Claim reserves are the estimates of the (undiscounted) sum of all future payments for claims
(of a portfolio) that have already happened.

claim reserves = case reserves + IBNR

Definition 1.5 (Incurred but not yet reported (IBNyR) reserves)

IBNyR reserves are the part of the claim reserves that corresponds to not yet reported claims.

4

Definition 1.6 (Incurred but not enough reserved (IBNeR) reserves)

IBNeR reserves are the difference between the claim reserves for claims known to the insurer
and the corresponding case reserves.

Definition 1.7 (IBNR or IBN(e/y)R)

IBNR reserves = IBNeR + IBNyR

y

©R. Dahms (ETH Zurich, Spring 2021) Stochastic Reserving: Lecture 1 JPZNZS Rvlopil 8 / 240



Stochastic Reserving
I—Basics of claim reserving

Basic terms and definitions

2021-04-26

Provided we take a positive sign for claim reserves IBNyR are non-negative, whereas IBNeR may
be positive or negative.

Usually, we will not look at discounted reserves, because discounting (and inflation) disturbs
the development of claims and is dealt with separately, i.e. first get undiscounted figures and
corresponding payment patterns and then discount.



1 Basics of claim reserving 1.2 Basic terms and definitions
121 Terminology (2/2)

Definition 1.8 (Incurred (losses) or reported amounts)
incurred = payments + case reserves

Definition 1.9 (Ultimate)

ultimate = payments + claim reserves
= incurred + IBNR
IBNyR
. IBNR IBNR
claim reserves IBNeR
ultimate — — | casereserves | — | case reserves [ —
incurred
payments payments payments

Remarks 1.10

o Payments are often called paid (losses).

o The naming is not consistent within the actuarial world. For instance, actuaries often
understand under IBNR only the IBNyR part.

o Precise definitions depend on the accounting standard. For instance, under IFRS 17
one has to discount the cash flows and one has to take the inception date (or the
begin of the coverage period) instead of the accident date.

4
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incurred — payments - case rsees

Defintion 1.9 (Ultmte)

uimate = payments + cim resenves




1 Basics of claim reserving

Main objects

1.2 Basic terms and definitions
122 Triangles (trapezoids) (1/2)

of reserving are claim development triangles (trapezoids), containing the development of pay-
ments (or other claim properties) per accident period for a whole portfolio.

development period

0 k
el
kel
I
[0}
c 5
-
i
5 i,k I
B
(O]
[}
(o]
calendar-
period
I+—

We assume that I > J. If I = J we have a triangle
and otherwise a trapezoid, but for simplicity we will
call it triangle anyway.

rows = accident (or origin) periods

columns = development periods

diagonals = calendar periods

S, ), are the payments during development period &
for claims happened in accident period <.

If more than one portfolio is involved we add an
additional upper index m to indicate the triangle.
Payments could be replaced by other claim
properties like

* changes of reported amounts (= incremental incurred)
* number of newly reported claims

* payments on just getting large claims
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Some actuaries look at those numbers from a different angel:

e accident periods or development periods decreasing instead of increasing
e permutation of accident, development and calendar periods

Moreover, the different kinds of periods have not to be based on the same single unit, like
months, quarters or years. For instance, sometimes one looks at accident years and development
months.



1 Basics of claim reserving 1.2 Basic terms and definitions
L 1.2.2 Triangles (trapezoids)

Reserving means

to project the future of the triangles in order to get full rectangles.

(2/2)

development period

o D" is the o-algebra of all information up to calender

period n:

o D! is the known part of the triangles.
o The unknown future of the triangles is:

D= (S 0<m< M, 0<i<I,0<k<JA(n—1i)

{Sm:0<m<M 0<k<J I-k<i<I}

We assume that there is no development after
development period J. That means we assume that there

is no tail development.

ultimate of accident period i =

0 J
’D’n
el
.2
g n
£ T
B
[}
(9]
(o]
calendar-
period
I

claim reserves of accident period i =

J

> St

k=0

J
m
ik

k=I+1—1i
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Prp—p——

On a diagonlal n we have for all accident and development periods i and k:
n=1i+k,

in particular on the last known diagonal I we have I = k + 4.



1 Basics of claim reserving 1.2 Basic terms and definitions
L 1.2.3 Stochastic reserving and Best Estimate (1/9)

Definition 1.11 (Stochastic loss reserving)

We call a reserving method a stochastic reserving method if it is based on a stochastic
model.

W

Remark 1.12

o Some actuaries call reserving methods that are based on simulations stochastic,
even if they are not based on a stochastic model.

 Since we have a stochastic model, we usually expect beside the estimate of
claim reserves some estimate of the corresponding uncertainties.

Types of stochastic reserving methods
We differentiate between

o distribution based reserving methods, which make explicit assumptions on
the distribution of claim properties Tk or related objects.

o distribution free reserving methods, which only makes assumptions on
moments of the distribution of claim properties e or related objects.
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1 Basics of claim reserving 1I._2 Basic terms an_d definit_ions :
1.2.3 Stochastic reserving and Best Estimate (2/9)

Definition 1.13 (Best Estimate)

The Swiss regulator defines (translation)

... Best Estimate reserves are the conditional unbiased estimator of the
conditional expectation of all future (undiscounted) cash flows based on all
at the time of estimation available information . ..

FINMA Rundschreiben 2008/42 Riickstellungen Schadenversicherung
y

Mathematically that could be interpreted like:

J J
E|E|DY_sp|p'| —E)D sm|p™* D] =0.
=0 =0

estimated claims development result

estimated at time [
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A definition of Best Estimate reserves is not easily to find. We will look at the one of the
Swiss regulator.

At the first look this definition looks promising. But if you try to translate the phrase
‘conditional unbiased estimator of a conditional expectation’ into formulas you will get
problems.

One possibility is the following:

First we do not look at future cash flows (or reserves) but at the ultimate payments.
Since we know the already paid amounts, both views are equivalent, but ultimates are
mathematically easier to handle then reserves:

We start with the expectation of the ultimate payments conditioned on all currently
available information.

estimate

One year later we do the same, but of course with more available information.

The difference is the observed claims development result (CDR) at time I + 1.

Taking the expectation conditioned on all currently available information we expect to
get zero. From the business point of view this means, we assume that the CDR is zero
within the planing framework at time I. Or in other words, we don not expect any profit
or loss on already happened claims.



1 Basics of claim reserving 1.2 Basic terms and definitions
L 1.2.3 Stochastic reserving and Best Estimate (3/9)

Uncertainty of the Best Estimate

o The Holy Grail of loss reserving is to estimate the (D!-conditional) distribution of the
reserves. Unfortunately, this would require very restrictive model assumptions.

o At least we would like to estimate beside the Best Estimate the corresponding uncertainty.
Often this is done via the mean squared error of prediction (mse):

Definition 1.14 (mse)

The B-conditional mean square error of prediction of the estimate Y ofa square integrable random
variable Y is defined by R R
mses M = E[(Y - Y)z‘B].

In practice one often fits some distribution to the estimates of the first two centred moments ¥
and msep [Y] In loss reserving one often takes a log-normal distribution.

Lemma 1.15 (Random and parameter error)

The mean squared error of prediction can be split into random the parameter error:

N TN 2
msep [Y] = VarlY|B] + (E[Y - Y‘BD .

random error parameter error

4
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A proof of the split of the mse will be given in Lecture 3.



1 Basics of claim reserving 1.2 Basic terms and definitions
L 1.2.3 Stochastic reserving and Best Estimate (4/9)

Definition 1.16 (Ultimate uncertainty)
The ultimate uncertainty of the estimated ultimate (or reserves) of accident

period i is defined by

7 2

J
mseps (> S| =E[[ D (Six—5ip) | |DF

k=0 k=0

and analogously we define the ultimate uncertainty of the whole ultimate (or
reserves) by
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1 Basics of claim reserving 1 Basic terms and definitions
L 1.2.3 Stochastic reserving and Best Estimate (5/9)

Definition 1.17 (CDR)

The true claims development result (true CDR) of accident period i at time I+ 1 is the difference
of the expected ultimates conditioned on all information at time I and I + 1, i.e.:

J J
CDRI = E LZ Sik Dl} -E LZ Sik D”l} :
=0 =0

The (observed) claims development result (CDR) of accident period i at time I + 1 is the
difference of the two corresponding estimates. If necessary we will denote the time of estimation
by an additional upper index:

J J
—TI+1 ~ ~
COR, =3 (8L, -8t = Z Sl — <ZI+1—i+ > Sff)-

k=0 k=I+1—i k=I+2—i

The true and the observed CDR of the aggregation of all accident periods are defined by:

I
—TI+1 ——TI+1
CDRI*! .= § :CDRI“ and  CDR =Y CDR;

o A negative CDR corresponds to a loss and a positive CDR corresponds to a profit.
o If we have a Best Estimate then the estimate of the D’-conditional expectation of the
observed CDR equals zero.
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For the true CDR we have
J J
E[CDRfH’DI]:E El > S|~ [Sispas+E| DD Sk [P [P =0
k=I+1—3 k=I+2—i
But for the observed CDR it depends on how do we estimate. Best Estimate is implicitly defined

by
——I+1
* } 0.

[CDR




1 Basics of claim reserving 1.2 Basic terms and definitions
L 1.2.3 Stochastic reserving and Best Estimate (6/9)

Uncertainty of the CDR

As we have seen in the example of Converium it is very important (in particular for the CFO,
Solvency Il or SST) to have some estimate of the uncertainty of the claims development result.
Often this is done via some kind of mean squared error of prediction:

Definition 1.18 (Solvency uncertainty)

The solvency uncertainty of the estimated ultimate (or reserves) of accident period i is defined

by
2
mseqpr {CDRZH} —E KCDRT.”1 - 0) DI}

and analogously we define the solvency uncertainty of the aggregated ultimate (or reserves) by
11 41 2
mseg|p1 [CDR }:: E (CDR —0) D.
Remark 1.19

Since in practice the deviation of the observed CDR from zero is more important than its deviation
from the true CDR, we take the difference between the observed CDR and zero instead of the
difference between the observed CDR and the true CDR.

v
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e SST means Swiss Solvency Test

e |t is also possible to look at the deviation of the observed CDR from the true CDR. The
corresponding uncertainty will always be less or equal to the one we are looking at.



1 Basics of claim reserving 1.2 Basic terms and definitions
L 1.2.3 Stochastic reserving and Best Estimate (7/9)

Best Estimate reserves, ultimate and solvency uncertainty

will be the main objects of interest for these lectures. When estimating them you
should always keep in mind:

o Best Estimate reserves can be compared with the real world. We only have
to wait some (maybe very long) time. Moreover, observing the CDR and
other statistics we can learn from the past in order to get better estimates
in the future.

o But uncertainties cannot be compared with observations from the real
world. They will always be a result of a model. Therefore, we cannot learn
from the past in order to get better estimates in the future (we even
cannot determine if some estimate is better than another).

» Best Estimate reserves and the corresponding uncertainties are like position
and impulse in physics:

You cannot (should not) measure both simultaneously!

For instance, in order to get a Best Estimate you may apply some expert
judgement, which cannot be reflected in the estimation of uncertainties by
the underlying model.
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1 Basics of claim reserving 1.2 Basic terms and definitions
L 1.2.3 Stochastic reserving and Best Estimate

(8/9)
Conditional expectations and intuition
Let assume a mother has two children.
a) What (approximately) is the probability that she has two girls?
1 1 1
0= 0= O -
2 3 4
b) Assume in addition that she has at least one daughter.
What (approximately) is the probability that she has two girls?
1 1 1
(e = -
2 3 4
c) Assume in addition that one daughter was born on a Monday.
What (approximately) is the probability that she has two girls?
1 1 1
O = 0= O -
2 3 4 )
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) Assume in sddtion that one daughter ws borm on 3 Monday
What (apprasimately) s th probabity tha she has two girls?

1 ! '
o3 O3 o1

e In general insurance and in particular in reserving conditional probabilities and
expectations play an important roll. But they are often not easy to understand.

e In order to illustrate this, let have a look at an easy exercise.

e Be careful: The human brain is not build for (conditional) probabilities and expectations.



1 Basics of claim reserving 1.2 Basic terms and definitions
L 1.2.3 Stochastic reserving and Best Estimate (9/9)

Reserving in the real world:

MCL, PIC, CLM CC BF, CLRM
ECLRM
underwriter P

e MCL Munich-Chain-Ladder-Method
marked

PIC Paid-Incurred-Chain-Claims-
news Method
CLM Chain-Ladder-Method
CC Cape-Cod-Method
CLRM Complementary-Loss-Ratio-
Method
ECLRM Extended-Complementary-
Loss-Ratio-Method
BFM Bornhuetter-Ferguson-Method
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Basic terms and definitions

On the one hand there are information. If actuaries speak of reserving they often thinks
in triangles or vectors, containing the usual candidates like payments, reported amounts
and number of reported claims, or more exotic things like payments just before closing a
claim.

But often we forget that there are a lot of other very important sources of information,
which even may not be numerical.

On the other hand there are a lot of reserving methods which may help us to get a Best
Estimate:

Most of them are based on one triangle only, like Chain-Ladder or Cape Code.

Others combine a triangle and a vector, like the Complementary-Loss-Ratio-Method and
the Bornhuetter-Fergueson-Method.

In recent years some methods, which combine several (in most cases two) triangles, have
been propagated. For instance, Munich-Chain-Ladder,
Extended-Complementary-Loss-Ratio-Method and Paid-Incurred-Chain-Claims-Method.
But at the end the actuary has to include all the other information in order to get his or
hers Best Estimate. And to be honest, often this has more to do with fortune telling
than with mathematics or statistics.



1 Basics of claim reserving 1.3 Literature and software (1/2)

Literature

[1] Claims Reserving Manual.
Institute of Actuaries, 2nd revised edition edition, 11 1997.

[2] Heinz Bauer.
Probability theory. Translated from the German by Robert B. Burckel.
Berlin: de Gruyter, 1996.

[3] Heinz Bauer.

Measure and integration theory. Transl. from the German by Robert B. Burckel.
Berlin: de Gruyter, 2001.

Schmidt, Klaus D.
A Bibliography on Loss Reserving (permanent update).
url: http://www.math.tu-dresden.de/sto/schmidt/dsvm /reserve.pdf.

[4

[5

Gregory C. Taylor.

Loss reserving : an actuarial perspective.

Huebner international series on risk, insurance, and economic security. Kluwer Academic, Boston
[u.a.], 2000.

Includes bibliographical references and index.

[6] Mario V. Wiithrich and Michael Merz.
Stochastic claims reserving methods in insurance.
Hoboken, NJ: John Wiley & Sons, 2008.
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1 Basics of claim reserving 1.3 Literature and software (2/2)

o Free software:
* R (www.cran.r-project.org), in particular the packages actuar and
ChainLadder.
* LSRM Tools (http://sourceforge.net/projects/Isrmtools/)
o Commercial software:
* IBNRS by Addactis
* CROS by Deloitte (not for sale any more)
* ResQ by Towers Watson (almost no further development)

*
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2.1 How does the Chain-Ladder method work
L 2.1.1 Chain-Ladder method without stochastic (1/2)
Basic idea behind the Chain-Ladder method

The Chain-Ladder method is based on a single triangle. Originally it was
formulated in terms of the cumulative payments

instead of the payments S, J, during the development period k.
The Chain-Ladder method is based on the idea that:

o cumulative payments of the next development period are approximately
proportional to the cumulative payments of the current period, i.e.

Cipr1 = [1Cig; and

(2

o accident period are independent.

In particular that means that all accident periods are comparable with respect
to their development.

4
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Basic idea behind the Chain-Ladder method
The Chain-Ladder method is based on a singl triangle. Originaly ¢ was
formulated in terms of the cumulative payments

instead of the payments ., during the development period k.
The Chan-Ladder method s based on the idea that
« comulative payments of the next development. period sre approximately
proportonal to the cumulative payments o the current period, e

Copor = Oyt and

« accident period are independent

n: accident periods respect
o thei development.



2 Chain-Ladder-Method (CLM) 2.1 How does the Chain-Ladder method work
L 2.1.1 Chain-Ladder method without stochastic

(2/2)
Simple example
Nk 0 1 2 3 4 | ultimate reserves
0 1.9/190f1.6 3041.23801.9380 380 0= 380 — 380
1 2.2065/1.6 4241.25301.0530 530 0= 530 — 530
2 2.0405/1.66481.28101.0810 810 | 162= 810 — 648
3 9280j:.6 4481.25601.0560 560 | 280= 560 — 280
4 | 2002:.9400:.66401.28001.9800 800 | 600= s00 — 200
ﬁ 20 16 12 1.0 3080 1042
I-1
—~ orE e L C, C.
fo = RS — 20 = T =t
im0 2h=0Cho Cio
—— ~~—
f/.\l — 383+§€234+46161§ = 1.6 weight observed development factor
190+265+
n 380+530
fo= 3041424 =12
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2 Chain-Ladder-Method (CLM)

Definition 2.1 (o-algebras)

development period

accident period

calendar-
perio

2.1

L

H
2.

°

Bi ) is the o-algebra of all information of accident period i up

to development period k:

Bij:=0(8,;: 0<j<k)=0(C;;:0<j<k)

D; 1, is the o-algebra containing all information up to accident

ow does the Chain-Ladder method work
1.2 Stochastic behind the Chain-Ladder method

period i and development period k:

D=0 (S,;: 0<h<i, 0<j<k)=0(Bur:0<h<i)
D" is the o-algebra of all information up to calender period n:
D" =0 (9,: 0<i<I,0<k<JA(n—1i))

=0 (Cip: 0<i<I,0<k<JA(n—1))

I JA(n—i)

(U U 5

i=0 k=0

Dy, is the o-algebra of all information up to development

period k:

Dy i=0(8;;: 0<i<I,0<j<k)
=0 (C;;:0<i<I,0<j<k)

(Y]

Dy =0 (D" UDy)

(1/4)

4
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(G

The o-algebra D} is used in order to enable us to separate two arbitrary payments Si1 ks and
S,y ko With (i1, k1) # (i2, k2). That means, for all (i1, k1) # (i2, k2) there exists n and k such
that

(Siy k6, €Dk and Sisks & Dk) or (Siy 6, €Dk and Siy ke € Di).



2 Chain-Ladder-Method (CLM) 2 How does the Chain-Ladder method work
L 2.1.2 Stochastic behind the Chain-Ladder method

Assumption 2.A (Mack's Chain-Ladder method)

There exist development factors f,, and variance parameters o7 such that the

cumulative payments

k
CLk = Z S’L,]
§=0
satisfy
\CLM
i)~ E [Cz k+1|B } e
ii)C"'\/I Var[C’LkH‘Bi,k] = a,%Ci’k and

iii)C"'\/I accident periods are independent.

(2/4)
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o

If B; ;. are replaced by ’ijk then the last assumption about independence is not necessary, i
it is enough to assume

SCLM E[ zk+l‘DZ ]:fkczk
D Var[C; s D] = 020,

We will see later that we can replace the exposure C, ok on the right side by more arbitrary ex-
posures, which will leads to a wide class of reserving methods called Linear Stochastic Reserving
methods (LSRMs), see section 4.



2 Chain-Ladder-Method (CLM) 2.1 How does the Chain-Ladder method work
L 2.1.2 Stochastic behind the Chain-Ladder method (3/4)

Remark 2.2

Since accident periods are independent, B; ; could be replaced by Dy, D; i
or DitF.

k
Published by Thomas Mack in 1991, see [22]. But other actuaries have
used at least parts of the stochastic model before. The reserving method
itself is much older.
From a statistical point of view the estimation of development factors and
variance parameters is critical, because we have to estimate 2J parameters
by only J(I — Z51) observed development factors. Therefore, in practise
the reserving actuary has to include other information in order to overcome
the lack of observed data (over parametrised model).
The method cannot deal with incomplete triangles, where payments for
early calendar periods are missing and therefore the cumulative payments
for early accident periods are not complete (usually too small).
There are other stochastic models that lead to the same estimates of the
reserves. For instance, the over-dispersed Poisson model, see [11].
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2.1 How does the Chain-Ladder method work
L 2.1.2 Stochastic behind the Chain-Ladder method (4/4)
Corollary 2.3
o The parts i)™ and ii)*"™ of Assumption 2.A can be rewritten in
terms of the incremental payments S, ; :
Ne
i) E|:Si,k+1‘8i7k} =(fr — 1)Ci,k and

i) Var[S, | B = 2C, 1
Therefore, Assumption 2.A means that under the knowledge of B; , the
cumulative payments C, . are a good exposure for next periods

payments Si,k—i—l‘
o lterating part i)cuvI of Assumption 2.A we get
E[C:tn| Bik] = E[E[Cipsn|Bikin]| Bix]
= fk—',—n—lE[Ci,k-i-n—l'B’i,k]

= fk-i—n—l Tt fk:Ci,k:'
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Proof of i")tM.

E[Si,kJrl’Bi,k] = E[CZ-,;C+l - Ci’k‘Bi,k]

=E [Ci,kH ‘sz] - Cik

Ci,k is B;  measurable

= fkci,k _Ci,k
N —r
ii)CLM

Proof of ii")*tM:

Var[S, s |Bik | = Var[Ciigr = Cie[Bi]

Var[ci,kH]Bi,k]
[

C

ik is B;  measurable



2 Chain-Ladder-Method (CLM) 223 (R G e
L 2.2.1 Projection of the future development (1/3)

Lemma 2.4 (Chain-Ladder development factors)

Let Assumption 2.A be fulfilled and take arbitrary D! N Dj-measurable weights 0 < w; . < 1 with
o w;, =0ifC;; =0 and
o ZI 1=k w =1 ifC’z-,kyéO for at least one 0 < i <IT—1—k.

Then:
1. The weighted means Ik Cir
o= Wik (2.1)
i=0 i,k
c, . . .
of the observed development factors —5*=1 are Dy-conditional unbiased estimators of the

deve/opment factors f,. In order to shorten notation, we use here and in the following the

def/mtlon =0.
Moreover, the weights C-,k
Wi g = Iflik (22)
Yh=0  Chi

result in estimators fk with the smallest (Dy-conditional) variance of all estimators of the

form (2.1).
2. For all k and all k,, > ky—1 > ... > ko > 0 we have

Ik 522, L R
var[fi[Di] = Y == £ and E[fi Ty Fio| o] = FinFis oo
i=0 R

4
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e unbiased:

I—1—k c, I-1-k
I i k+1 _ _
E{fk‘Dk]:E ) Wik lv+ D= > Wi 4 =
i=0 ik i=0 ,
measurable with respect to D, j)cLM
e minimal variance: Var{fk} = E[Var{fk |Dkﬂ + Var{E {fk ‘Dkﬂ = E[Var{fk |Dkﬂ +0
I—-1—k —1—k —1—k
R Cinin , Var{CiykJrl‘Dk] , , 1
Var[fk|Dk}:V3r ) Wik TG Dpl= > WikT g2 Yk > Wik o
=0 i,k i=0 i,k i=0 ik
measurable with respect to D, and iii)CLM ii)CLM
Lagrange: minimize E{:(}*k w% & C; 4+ A (l — E{:(}*k w, k)
- ! i,k - !
1 A ’ 2 C.
e=2wip——-A = w =0 and A= p—— = Wi = e ——
Ow; g Cik 2 Yico  Cig 2hoo  Cuk
— ——
I—-1—k
Yico = wik=!

® uncorrelated: E[fknfkn_l . 'fk0|Dk0} = E{E[fkn Dkn}fkn_l ca 'fk0|Dk0}

= P €[ Fuy o P [PE] = = e g



2 Chain-Ladder-Method (CLM) 223 (R G e
L 2.2.1 Projection of the future development (2/3)

Estimator 2.5 (Chain-Ladder Ultimate)
Let Assumption 2.A be fulfilled. Then the estimates

~

Cig = fo—1 - J1=Ci1—i

are Dr_;-conditional unbiased estimators of C, ., for I —i < k < J.
In order to shorten notation, we define

Ci,k = Ci,k’

for0 <k<I—i.

Theorem 2.6 (Chain-Ladder Best Estimate)

The Estimator 2.5 with the variance minimizing weights (2.2) satisfies the condition
of a Best Estimate, i.e.

glAarer _ A1 |pIl

Elcr - cl|p']=o,

where the additional upper index specifies the time of estimation.
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e Proof of unbiasedness:

E[ai,k|DI—i] = E[fk—l o FriCar

DI—i]

DI—i} = E[E[Ak—1|ka71}fk—2 co FroiCirg

Dlﬂ'}

= E[flc—lflc—2 EEIE S CF3y Ja) = f1—iCar

= E[Ci i |Pr]

s ) C. e} 3
e Best Estimate: f; 71 .=y F zf—’: I;kkk-,i—l
h=0 K,
C C
A1 T _ I—k.k pes T—k.k o
= E[fTYpi]=(1- =k & )fk+ e e L
2h=0Cnk 2h=0Chk
S[pI41] 1] 7T
= E[fTpi]=Fi
AI+1|pIT _ g[fl+1 FI41 I
E[Ci,J ‘D } = E[fJ—l s Frin—iCire1—4|P }
_ 1| T ] FI41 an I
- E[E[fJ71|’DJ71]fJ72 et fI+1—iCi,I+1—i D ]
_ 7 FI+1 FI+1 I
= E[fJ—lfsz s friiCirg1-4|P ]
_ _ s _
= =Fy lefiE[ciYHlf,i D }: Froi o Fraaosfi—iCir s

= E[G:,TJI‘DI} =fya-FliCig =Cf 5 = E[éz’l,J|DI]-
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L 2.2.1 Projection of the future development (3/3)

Chain-Ladder method in practice

o The Chain-Ladder method is probably the most popular reserving
method in general insurance and usually works fine for most of the
standard business, provided we take care of:

* The size of the portfolio (has to be large enough to get the law of large
numbers working).

* The homogeneity of the portfolio (for example exclude extraordinary large
or late claims).

o But it has problems with:

= Inflation or other diagonal effects, because such effects contradict the
assumption of independent accident periods.

* Too large or too small values at the last (known) diagonal. Because the
values of the last diagonal are realisations of random variables, this may
even happen if the portfolio satisfies Assumption 2.A perfectly.

©R. Dahms (ETH Zurich, Spring 2021) Stochastic Reserving: Lecture 2 BRVET@l0phE 31 / 240



2021-04-26

Stochastic Reserving

L Chain-Ladder-Method (CLM)
I—Future development

Chain-Ladder method in practice.

« The Chain-Ladder method i probably the most popular reserving
method in general insurance and usually werks in for most of the
standrd business, provided we take care of
- The size ofthe prtilio (hs to be lrge encugh to gt the b f arge

numbers working)
- The homagenciy o the portoi(for examle excude extracrinary lage
orlte chime)

+ But it has problems with

igonl ffcts, becaus such effcts contradict the
pendent sccidnt perods
o

ral. Because the




2 Chain-Ladder-Method (CLM)

2.3 Validation and examples (part 1 of 3)

L 2.3.1 Chain-Ladder method on Payments and on Incurred (1/4)
Example 2.7 (Chain-Ladder method on payments)
o We took the variance minimizing weights (2.2).
o For the calculation of the IBNR we used the corresponding incurred from Example 2.8.
Payments
AP\DP 0 1 2 3 4 5 6 7 8 9 Current  Ultimate  Reserves  IBN(e/y)R
0 1'216'632 1'347'072 1'786'877 2'281'606 2'656'224 2'909'307 3'283'388 3'587'549 3'754'403 3'921'258| 3921258 3'921'258 0 0
1 798'924 1'051'912 1'215'785 1'349'939 1'655'312 1'926'210 2'132'833 2'287'311 2'567°056 2'681'142| 2567056 2'681'142 114'086 -238'813
2 1'115'636 1'387'387 1'930'867 2'177'002 2'513'171 2'931'930 3'047'368 3'182'511 3'424'441 3'576'632| 3182511 3'576'632 394'121 318'805
3 1'052'161 1'321'206 1'700'132 1'971'303 2'298'349 2'645'113 3'003'425 3'214'137 3'458'471 3'612'174| 3003425 3'612'174 608'749 198'253
4 808'864 1'029'523 1'229'626 1'S90'338 1'842'662 2'150'351 2'368'112 2'534'252 2'726'902 2'848'093| 2150351 2'848'093 697'742  -450'905
5 1'016'862 1'251'420 1'698'052 2'105'143 2'385'339 2'732'771 3'009'512 3'220'652 3'465'481 3'619'496| 2385339 3'619'496 1'234'157 -82'931
6 948'312 1'108'791 1'315'524 1'487'577 1'730'732 1'982'819 2'183'614 2'336'811 2'514'452 2'626'200| 1487577 2'626'200 1'138'623 -1'077'913
7 917'530 1'082°426 1'484'405 1'769'095 2'058'267 2'358'060 2'596'855 2'779°043 2'990°302 3'123'198| 1484405 3'123'198 1'638'793 -1'284'899
8 1'001'238 1'376'124 1'775'689 2'116'244 2'462'160 2'820'781 3'106'435 3'324'374 3'577'088 3'736'063| 1376124 3'736'063 2'359'939 -396'694
9 841'930 1'039'196 1'340'932 1'598'106 1'859'328 2'130'146 2'345'860 2'510'439 2'701'279 2'821'331 841930 2'821'331 1'979'401  -224'045
Total| 22399976 32'565'588 10'165'612 -3'239'141
Observed development factors (ratios)
AP\DP 0->1 1->2 2->3 3->4 4->5 5->6 6->7 7->8 8->9
0 1.10721 1.32649 1.27687 1.16419 1.09528 1.12858 1.09264 1.04651 1.04444
1 1.31666 1.15579 1.11034 1.22621 1.16365 1.10727 1.07243 1.12230
2 1.24358 1.39173 1.12747 1.15442 1.16663 1.03937 1.04435
3 1.25571 1.28680 1.15950 1.16590 1.15088 1.13546
4 1.27280 1.19436 1.29335 1.15866 1.16698
5 1.23067 1.35690 1.23974 1.13310
3 1.16923 1.18645 1.13079
7 1.17972 1.37137
8 1.37442
Estimated development factors
0->1 1->2 2->3 3->4 4->5 5->6 6->7 7->8 8->9
1.23430 1.29036 1.19179 1.16346 1.14565 1.10127 1.07016 1.07602 1.04444
cum. 3.351028 2.714917 2.104007 1.765421 1.517393 1.324478 1.202685 1.12384 1.04444
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2 Chain-Ladder-Method (CLM)

2.3 Validation and examples (part 1 of 3)
L 2.3.1 Chain-Ladder method on Payments and on Incurred

Example 2.8 (Chain-Ladder method on incurred losses)

o We took the variance minimizing weights (2.2).
o For the calculation of the reserves we used the corresponding payments from Example 2.7.

(2/4)

Incurred
apop| 0 1 2 3 4 5 3 7 8 9 Current _Ultimate _ Reserves _IBN(e/y)R
0 [ '362'115 5217'243 4'754'000 4'381'677 4'136'883 4'004'140 4'018'736 2'971'591 2'041'391 3'021'258| 3021258 3'921'258 0 0
1 | 2640443 #4'643'860 3'869'054 3'248'558 3'102002 3'010'080 2'076'064 2'046'041 2'910'055 2'905'040| 2019955 2'005'040  337'984  -14'015
2 | 2'879'697 4'785'531 4'045'448 3467'822 3'377'540 3'341'934 3'283'928 3'257'827 3'230'899 3214'395| 3257827 3'214'305  31'884 43432
3 | 2'033'345 5'200'146 4'451'063 3'700'809 3'S53'301 3'469'S05 '413'921 3'379'021 2'351'084 3'334'861| 3413021 3'334'B61 331436 -79'060
4 | 2768181 4'658'933 3'936'455 3'512'735 3385120 3'208'008 3'243'821 3211'515 3'184'970 3'168'701| 3208998 3'168'701 1'018'350 -130'207
5 | 3'228'439 5271'304 4'484'946 3'798'384 3'702'427 3'632'746 3'571'987 3'536'413 3'507'182 3'489'267| 3702427 3'489'267 1'103'928 -213'160
6 | 2'927'033 5'067'768 4'066'526 3704113 3'S61'274 3'494'250 435'807 '401'589 2373473 2'356'241| 3704113 3'356'241 1'868'664 -347'872
7 | 3'083'429 4'790'944 4'408'097 3'842'969 3'694'775 3'625'239 3'S64'605 3'529'104 3'499'934 3'482'056| 4408097 3'482'056 1'997'651 -926'041
8 | 2'761'163 4'132'757 3'538'198 3'084'593 2'965'643 2'909'829 2'861'161 2'832'666 2'809'252 2'794'903| 4132757 2'794'903 1'418'779 -1'337'854
o | 3'045'376 5'025'345 4302373 3750799 3'606'160 3'538'201 3'479'L12 3'444'462 3'415'991 2'308'542| 3045376 3'308'542 2'556'612 353166
Total| 35804729 33'065'263 10'665'287 -2'739'466
Observed development factors (ratios)
AP\DP  0->1 1->2 253 3->4 4->5 5-6 6->7 7->8 8->9
0 155177  0.91138 092151 0.94413 0.98967 0.98158 0.98827 0.99240  0.99489
1 175874  0.83335  0.83943 0.95489 0.97356 098546 0.09021  0.99084
2 1.66182 0.84535 0.85722 0.97397 0.98946 098264  0.99205
3 1.80652 0.84013  0.83128 0.96017 0.97639  0.98398
4 168303 0.84493  0.89236  0.96367  0.97456
5 1.63277 0.85082  0.84692  0.97474
6 1.73137  0.80243  0.91088
7 1.55377  0.92009
8 1.49675
Estimated development factors
0>1 152 2>3 3->4 a->5 526 6>7 7->8 8->9
1.65016 0.85613 0.87180 0.96144 0.98118 098327 0.99004 0.99173  0.99489
cum. 1115068 0.67628 0.789923 0.906085 0.042427 0.960504 0.976842 0.986669  0.99489
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Comparison of the two results

o Both, payments and incurred losses, will eventually result in the same
ultimate. But the estimates are not the same! This gap is a systematic
problem of projecting payments and incurred losses independently of

o Although in total the difference is only 5% we have much larger
differences per accident period, which almost cancel each other.

2.3 Validation and examples (part 1 of 3)
L 2.3.1 Chain-Ladder method on Payments and on Incurred (3/4)

each other. For more information see [7].

”

AP\DP Chain-Ladder-Method on Payments Chain-Ladder-Method on Incurred Reserves: Incurred - Payments

Current Ultimate Reserves IBN(e/y)R Current Ultimate Reserves IBN(e/y)R Reserves in % of mean Reserves
0 3'921'258 3'921'258 0 0 3'921'258 3'921'258 0 0 0

1 2'567'056 2'681'142 114'086 -238'813 2'919'955 2'905'040 337'984 -14'915 223'897 99%

2 3'182'511 3'576'632 394'121 318'805 3'257'827 3'214'395 31'884 -43'432 -362'237 -170%

3 3'003'425 3'612'174 608'749 198'253 3'413'921 3'334'861 331'436 -79'060 -277'313 -59%

4 2'150'351 2'848'093 697'742 -450'905 3'298'998 3'168'701 1'018'350 -130'297 320'608 37%

5 2'385'339 3'619'496 1'234'157 -82'931 3'702'427 3'489'267 1'103'928 -213'160 -130'228 -11%

6 1'487'577 2'626'200 1'138'623  -1'077'913 3'704'113 3'356'241 1'868'664 -347'872 730'040 49%

7 1'484'405 3'123'198 1'638'793  -1'284'899 4'408'097 3'482'056 1'997'651 -926'041 358'857 20%

8 1'376'124 3'736'063 2'359'939 -396'694 4'132'757 2'794'903 1'418'779 -1'337'854 -941'160 -50%

9 841'930 2'821'331 1'979'401 -224'045 3'045'376 3'398'542 2'556'612 353'166 577'211 25%

Total| 22'399'976 32'565'588 10'165'612 -3'239'141 35'804'729 33'065'263  10'665'287 -2'739'466 499'676 5%
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Comparison of the two results
« Both, payments and incurred losse, wil eventualy reslt in the same
ultimate. But the estimats are not the same! This gap is 2 systematic
problem of projecting payments and incured losses independently of
each other. For mare information see [1]
+ Although in total the diffrence i only 5% we have much larger
ifferences per accident period, which almst cancel each other.




2 Chain-Ladder-Method (CLM) 2.3 Validation and examples (part 1 of 3)
L 2.3.1 Chain-Ladder method on Payments and on Incurred (4/4)

—m— 0 Payments
&1 Payments

—+—2 Payments
o 3Fayments

—a—4 Payments

2005000

—m— 5 Payments

—a— 6 Payments

—e—7 Payments

S o 8Fayments
—a— 9 Payments
—m—0lncurred
a1 Incurred
000000 ——2Incurred
o 3incured
—4— 4 Incurred
—m— 5 Incurred

S —a—6Incurred

—+— T Incurred
@ 8 Incurred

—a— 9 Incurred
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2 Chain-Ladder-Method (CLM) 2.3 Validation and examples (part 1 of 3)
L 2.3.2 How to validate the Chain-Ladder assumptions (1/6)
Validation of Chain-Ladder Assumption 2.A

o Since we only have very few data, any statistical validation of Assumption 2.A will
usually fail.

o There are some helpful statistics and graphical presentations that can be used to get
a feeling about which estimate we should trust more. In the following slides we will
show some of them.

o The most important information is the knowledge about the composition of the
underlying portfolio and the corresponding risks. We usually face the problem of
splitting up the portfolio in subportfolios, which are as homogeneous as possible, but
are not too small in order to get the law of large numbers working. Typical criteria
for separation are:

* Type of the risk insured.

= Type of claims, like property damage or bodily injury.

* Type of payments, like lump sums, annuities, salvage and subrogation or deductibles.

= Type of case reserves, like automatically generated, set individually by a normal claims
manager or set individually by an expert.

» Complexity of the claims, often the size of the claim may be a criteria for its complexity.

« Finally, actuaries have to use other information, too, in order to determine their
estimates.
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Validation of Chain-Lader Assumption 2.4

+ Since e only have ver fow dat, any statisica validation of Assumption 2 will
wualy .
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2 Chain-Ladder-Method (CLM) 2.3 Validation and examples (part 1 of 3)
L 2.3.2 How to validate the Chain-Ladder assumptions (2/6)

The projection of incurred is more stable and closer to the estimated ultimate than the projection
of payments. This may be an indication to trust it more.

—m— 0 Payments

&1 Payments

\ —e—2 Payments
3 o 3Payments
—a— 4 Payments
) —m— 5 Payments
S —a— 6 Payments

—+—7 Payments.

o 8 Payments

— —a— 9 Payments

_ e Expecied Payments
= ATy Uttmate
—m— 0 Incurred
= & 1 Incurred
—e— 2 Incurred
© 3 Incurred
—a— 4 Incurred
—m—5 Incurred

—&— 6 Incurred

——T7 Incurred
i 7 &8 Incurr=d
—a—8 Incurred

a—Expected Incumed
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2 Chain-Ladder-Method (CLM) 2.3 Validation and examples (part 1 of 3)
L 2.3.2 How to validate the Chain-Ladder assumptions (3/6)

Plot of residuals

Ci,,k,+1 _ f Ci,lc+1 _ f
The residuals are defined by Cin _ _Cik
—~ 1C &2
Var[ EELID } k
Ci,k: k Czk:
Payments Incurred
e Development Residuals o Development Residuals
20 2 15 H
12 oo 1.0 e ;
S 1 1 ; . 0.5 E f
0.5 N 4 95
0.0 . : e ' ;
o I . 0.5 H H i
1.0 : : Lo : !
4.5 . . : i -1.5 H
20 ; 20
*+ 2 3 4 5 8 7 8 9 *+ 2 3 4 5 8 7 8 9
Development Year Development Year

The residual plots are very similar, except that the incurred residuals look a bit more symmetric.J
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2.3 Validation and examples (part 1 of 3)
L 2.3.2 How to validate the Chain-Ladder assumptions (4/6)

2 Chain-Ladder-Method (CLM)

Backtesting step by step
Here we compare the observed values with the one step backwards projected estimate, i.e.

c Ci,k+1

i

Payments Incurred

Back testing (step by step) Back testing (step by step)
2 s i s . ; s s oo f 2 s . s . 7 s 5
Onctl  vaisen uson eSS 2siess rewa 2esior Sesis IS s Senss Okl SSZUS  s2vaes 7S GSSNe IeSE oo doiris Sersel Ssirsen 3srnss
Eucted | 1170166 ARHEE 1365710 2220145 2504205 2960605 3260420 4s9i6s 37Sea0s 391256 rpectod | 3513773 MEHARRTA 496103 wsi7ese wieosos doszsoi doigzio Swreden sesrsen swiiass
hewl 7 rosisiz rsves ruesm e o 2imes 2z 2ssr0ss thewl e sy siozoc: soism 2seces  Zsisan 2sissss
Gocted  sov0ss 11 967559, 1274503 IGHB 1766940 2024501 | 2229297 23859 2587056 Gveced 2609157 [NHBGHA S77e5 3206145 3022509 3026495 297309 2944291 2919955
Tl visen v iswss 2uron s ewmwn Sowa i Tl 2wew ana sowws Swmsn Swro Swis swem smven
Soecred 1067524 1317400 Zussea 257001 WA 2573wz 31525 Bowced 2850365 4759051 4069253 3547565 3073 365 3290598 3257627
Sl 1OwIs vmawe imoim iems 2nws rewin 3o Shctel  reas smwis swisss Srooss Swwi Swsses  3asen
Bowted 1077950 1330452 1716507 2046058 2380514 2727244 3005425 Gowcred 2905913 [NAGSHBE 4220757 Sesosis swss s4riess 3z
hcl s vowss vawers iwoms isves 215091 el 2esi sewsss Sewess Smovs swsas 329
Eecred | t5916 1045053 reszss reess 715031 Gowced 2839410 4essass doitdos 349715 3362277 3298995
Sl voiER vzie iewen 2wvie 2359 Shel | vnwes sz susesis S 370227
Eected [V 08015 1439568 1720257 2050215 2385955 Gowced 3326675 Suseuss awra e 3702427
nel sz viosrs iassa 1 Gactil 7o soerves sosssas  s7owiss
Bipected roastso rasrsy Gowced 3007470 495284 a2iwen 370013
Thctal | 3750 toss  dsedos Thctal 303305 70 240057
o 2012 1130381 1issios Goected 3120241 S84 4105097
Shctel 100128 1376128 Shctal 2761163 4132757
e 1110501 1376120 Eoected 2300465 4132757
nctel 841930 shctal 3085376
[ — Eected 3015376

Incurred seems to be a bit more stable, in particular for later development periods. J
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2 Chain-Ladder-Method (CLM) 2.3 Validation and examples (part 1 of 3)
L 2.3.2 How to validate the Chain-Ladder assumptions (5/6)

Backtesting the ultimate

Here we compare the projected ultimate starting at development period k with the one starting
at development period I — i (the estimated ultimate), i.e.

J-1 J-1
Cik H fi owith Gy H I;=Ci.
=k

j=I—i

Payments Incurred

Back testing (current to ultimate) Back testing (current to ultimate)
wor o 3 2 3 . s . ’ . B wor o 3 2 B . s . 7 . B
OO EEETIN  sse0:  sorrose 4oa0si Iesan ysdsss2 AOIEN Iose  eannse o [ arEo[EEMEE 376003 o011 Iess0 yoaam  IMSE0 Isige Ionase Iease

1 verran| 2ussess zsssonfESEEN #sivs s ysesns 2swsn zeie 1 7oesol BU40SSE 0694 294346 294 290703 2907144 2076t 2905040
2 mesy vvesen OGS vesns yewser Jeam vessou  ysisen 3 ynyeso ;e usssel Y2l Yisioss 3awsen Ja07em  I2ienss

3 msen ysasses Is7os0 FasOisL yusTass Isoaasse  ewravs 3 aoasoEEER 3607 33 Iussn BT 3L

s | 2nosie rmsonlESEHE rsorenr meon  reion 4 omaor yisoms iowass ievews 102 yiseror

s | worsaisisn st ameus e s ewms ysersso Isave Iuvess e

. Beren 266200 6 3eurs veoram) saaen 3meas

7 sowess| Zsaes umiss 7 sesrcos|EEOOE  eszoss

. 3736063 .

s s

2821331 3308502

Again, incurred seems to be a bit more stable, in particular for later development periods. |
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2 Chain-Ladder-Method (CLM) 2.3 Validation and examples (part 1 of 3)
L 2.3.2 How to validate the Chain-Ladder assumptions (6/6)

Sensitivity to exclusion or inclusion of individual observed development factors

Here we compare the projected ultimate based on the selected development factors with the
projected ultimate if we exclude (or include) a observed development factor within the estimation

of fi.

Payments Incurred

o e e B T T T T
Chingeofreserves  0.45%  030%  434%  oo2% 2208 a7e% 293 OSSR Chingeofreserves  107%  221% 8% 212%  161%  os% o9 osex I saeK
St e T e T S o o o et W o W R e ST v, soon| e
T oo S M oo o I e e MM A, e S

S vicllirves B v e Do v i e

R ol S oo — [l S C R o e W o M

s o o S e .

L T e St oo IR

I e L A B

L O

Again, incurred seems to be a bit more stable, in particular for later development periods. J
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2 Chain-Ladder-Method (CLM) 2.3 Validation and examples (part 1 of 3)
L 2.3.2 How to validate the Chain-Ladder assumptions

2 Chain-Ladder-Method (CLM)

2.1 How does the Chain-Ladder method work
2.1.1 Chain-Ladder method without stochastic

2.1.2 Stochastic behind the Chain-Ladder method
2.2 Future development

2.2.1 Projection of the future development

2.3 Validation and examples (part 1 of 3)

2.3.1 Chain-Ladder method on Payments and on Incurred
2.3.2 How to validate the Chain-Ladder assumptions
2.4 Ultimate uncertainty

2.4.1 Ultimate uncertainty of accident period 4

2.4.2 Ultimate uncertainty of the aggregation of all accident periods
2.5 Validation and examples (part 2 of 3)

2.5.1 Ultimate uncertainty

2.6 Solvency uncertainty

2.6.1 Solvency uncertainty of a single accident period
2.6.2 Solvency uncertainty of all accident periods
2.6.3 Uncertainties of further CDR's

2.7 Validation and examples (part 3 of 3)

2.7.1 Solvency uncertainty

2.8 Literature
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2 Chain-Ladder-Method (CLM) 2t timatellnceftainty
L 2.4.1 Ultimate uncertainty of accident period i

Ultimate uncertainty of a single accident period (repetition)

The ultimate uncertainty of the estimated ultimate (or reserves) of accident

period i is defined by

msepr [6’”} =E [(C@J — @7J>2 DI] .

(1/6)

The mse can be split into random and parameter error

msep: [61.“]} = Var[CZ-J|D1] + E [Ci,J - ai,J‘DIF
— ~

random error parameter error

and analogously for the ultimate uncertainty of the whole reserves.
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var[C; 4| D] = var[c, ;- €, 4[]

- E[(C’i", —61.“,)2’#}— E[Ci“, -

:mse,DI{ai’J]

)




2 Chain-Ladder-Method (CLM) 2t timatellnceftainty
L 2.4.1 Ultimate uncertainty of accident period i (2/6)

Taylor approximation of the mse (introduced by Ancus Réhr in [12])

Lets look at the (multi-linear) functional:
Ui(g) x :=gs—1- - gr—i.

Then we get:

) Ui(g) =
U Y, T

agj z(g)x gj—1 9j+195-1 gr—i® g s
Ul() i, 1—i f fI i 7,[ i i,J7
Ui(F)CzI 1:F Fl[ ZCzI i — YiJg and

J—
Ciy—Cigr Z 5Flk ?Cz‘,l—i <Fi,k_fk>

F(Ra=h).

where we used a first order Taylor approximation and F; and f denote the vector of all link ratios
Fix: = Cirn/c,, of accident period i and the vector of all estimated development factors f,,

M“

respectively.
Note, for i + k& > I we have:

E[Fx|D'] = fi, Var[FiiD']~

Q)
ENN)

and Cov[Fi,k,Fh,j\DI] =0 for (i, k) # (h, 7).
ik

>\
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Sine Fj j, = Ci k41/C; ,  we get for i + k> 1T

E[Fiyk|DI] - E[E [Fiyk|Df€+k”DI] —E

C.
E i,k+1
Cik

itk
o }

Var[Fi,k|D’] - E[Var[Fi7k|Di+k]‘Dl] + Var[E [Fi7k|Di+k”Dl]

D’} =E[/IDT]= fi

_ itk 9 _
e Var[Cl,kgl‘Dk ] oI |40 E|:Uk62’i,k DI:| _ fi .
ik Cik Cik

For the covariance statement we get: If h4j < I then F}, ; € D! and we are done. Otherwise,
since (i,k) # (h, ), either F; 3, € D;.H'J or Fy, ; € ’D;:rk. Lets assume the first:

Cov [Fk F,w-|DI] - E[Cov [FM,F,L,]-{D?””DI] + Cov [E [FM{D?”] , E[th{D?””DI]

—0+ COV[FiYk,fA'DI] -0



2 Chain-Ladder-Method (CLM) 2t timatellnceftainty
L 2.4.1 Ultimate uncertainty of accident period i

Estimator 2.9 (Linear approximation of the ultimate uncertainty of accident period 7)

msep: [@J] =E [(CM _ ai»J)ZIDI}
J—1 5 ~ 2
( E— fk) D! (Taylor approximation)

X
m
7

= @,J STE[(Fo— o) (Futs — Fin) 2]

ki,ko=I1—1 fkl sz

J-1 C.
J

= Z b i (COV ik zk2|D] (fkl fkl) (ﬁz_sz))

k1,ko=I—i fk1 fk2

J-1
~ 3 Cov[Fi,, Zk2|D]+Cov[fkl,fk2 D]
k1,ko=I—1i fk1
random error parameter error
J— AQ - I—k=1,, J=1 ~9 I—k—1, 2
Z Tk Z %ia Z ez Te( Loy oy Zhe
/‘2 ZJ i,J ) = C

=I— Cik  nol- f k=I—iJk Ci, h=0 ~hk
random error parameter error

(3/6)

4
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E[(Finy = Fay) (Fira = B ) [P = E[(#rm = 1) = (B = 130 (Frmz = 71z) = (i = 7152
= E[(Fins = 11y (Fiea = )| 2" = E[(Fioky = £10) (Fhy = 15 )|P]

7E[(fk1 fkl)( kg T f’92)|D ]+E[(fk1 fkl)(fk'z 7fk‘2)‘D }
= Cov[Fy kys Fi kg [P | = E[Finy — £y |[P7] (Fay = Fra)

- E[Fiv"? B fk‘z‘DI} (fkl - f’“l) + (fAkl - fkl)(sz B f’“z)
= Cov[Fy ky s Fing [P = 0= 0+ (Fiy = fiy) (Fry — Fiy)
For ki < ko we have f,cl € Dy, and F; i, € ’D£2. This leads to

C°"[f’c1'fk2‘Dk1Ak2}: E[C°"[f’c1'f’c2|D’“2”Dk1Ak2}+C°"[E[fk1‘Dkz]'E[f’c2|D’“2”Dk1M2}

-0+ cov[fkl S |‘Dk1/\k2] -0
c°v[Fi,k1,Fi,k2|DI}: E[CO\/[FLM,Fi,k2|D£2]|D’]+Cov[E[Fi,kl|D£2},E[Fi,k2|D£2]|DI]

=0+ Cov[F; ks Fry |DI] =0



2 Chain-Ladder-Method (CLM) 2.4 Ultimate uncertainty
2.4.1 Ultimate uncertainty of accident period i (4/6)
Corollary 2.10

o If we use the variance minimizing weights

- Ci,k
Wik = 7251
> Ch,k
h=0
we get
8. JZ (L 1
msepz[ ] yom k I
it s Chui

o For the estimated coefficient of variation (and variance minimizing weights) we get

Jalen] fmen o)

\TB\C 61 = < ~ =
( ) E |:Ci,J:| Ci,J
"i (1 1 0
- . G — ;
k=I—i ]?Z Ci,k Z{L Ch k/ C.j (or I with I —i=v)—o0

which means the coefficient of variation of the ultimate uncertainty (or at least of the
parameter error) vanishes with increasing volume. Usually, this is not valid in practice.
Therefore, you should always consider in addition some model error.

4
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If we always use only the n last observed diagonals in order to estimate the development factors
the parameter error term in the coefficient of variation will not converge to zero for I — oo.

In practice, this is often a reasonable approach, because the comparability of the development
of very old (calender) periods in respect to the expected future is very questionable.
Nevertheless, you should always consider some model error.



2 Chain-Ladder-Method (CLM) 2t timatellnceftainty
L 2.4.1 Ultimate uncertainty of accident period i (5/6)

Corollary 2.11

o Instead of using a Taylor approximation you can directly estimate the
random and the parameter error like Mack has done in the original
approach, see [22]. The result is the same.

o For the process error we have made five approximations:

= Taylor approximation,
Var[i/c, JDT] ~ Ve, ,,

~

*Cip =g

'L7

*

~

* fo = fi, and

* o,% %3,%.

Following the original calculation of Mack, one can see that the first
two approximation cancel each other.

©R. Dahms (ETH Zurich, Spring 2021) Stochastic Reserving: Lecture 3 [NV ET@-{PA} 46 / 240



Stochastic Reserving ’
L Chain-Ladder-Method ( CLM ) o a1 e v e o o doe e g

approach, s [22]. The resut is the same.

« For the process error we have made five approsimations:

I—UItimate uncertainty

he oriinal calculaton of Mack, one can see that the first
two approximation cancel each other.

2021-04-26

Original estimation of the random error:
Var[C, ;|D'] = Var[C; 4|Bi ]
—_———
i) CLM
=Var[E[C; ;|Bi,s1][Bir—i] +E[Var[C; ;|Biy1]Bir—i]

= Va'[fJ71C¢.J71|Bi.I—'i}+ E{Gaf1cri,J71 ‘B'i,lfi]

i)CLM ii)CLM
J—2
2 2
:fJ—lvar{ci,J—1|Bi.I—'i}+’~7J—1 Il ¢
J=I—i
-
J—1 J—1 s 9 k—1 Corollary 2.3
== 2 Il fHew Il £ G-
k=1 —ij=k+1 j=I—i
2

J—1
IT #Cir.
j k3

j=I—1




2 Chain-Ladder-Method (CLM) 2t timatellnceftainty
L 2.4.1 Ultimate uncertainty of accident period i

Estimator 2.12 (Variance parameter)
Let Assumption 2.A be fulfilled. Then

(6/6)

I-1-k 2
o 1 C Ci,k+1 ~
O = A ik "o k| >
k i=0 ik
with
I-1-k 1 Tk
— 2
Zk =1-2—-k+ Z wi’kc—_ Z Ch,/w
i=0 bk p=0
are Dy-conditional unbiased estimators for the variance parameters 0']%, provided that
Z > 0.
If Z;, < 0 one could take
~2 \2
~ . (G_1)” - ~2
Uk = min T’o-k7270-k71
Ok—2
Variance minimizing weights
of (22)lead to Z;, =1 — k — 1.
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Unbiasedness:

Cik -
E{CM ( ikl > } = Ci’kva.[% e Dk:|
ik

le} k1 le}
=C; yVar Zhktl Z Wy g"“ Dy
ik h=0 h,k

I—k—1 C. c ]
Ci,kVaf i,k4+1 _ wh,,k h,k+1 Dk
h (I - k)ci,lc Ch k ]

Q

=0

T—1-kI—1—Fk
ikt Chy k1 Cikt1 Chy kt1
=C, Cov| | —ktl ) 1 R ikt —w ) 2 D
S e (e, ey, S o,

h1=0 hgy=0 hi,k ho,k
—l—kI—1— 2 2 2
I—-1—kI—-1—Fk a% okwi,k Ukw'i,k ok’whl,kwhz,k
=G 20 2 N\ T, Tomo, T Tomo, e TG e
h1=0 hy=0 (I =k)2C; 4 (I =F)C; 4 I =k, 4 hi,k
I—1—k I—1—k 2
s Cikt1 =
=of(1-2w,, +Cop > = > OE|C | = ) D] = 2k
: ko= o S - ’ c,
— s i=0 ik
change order of summation
Taking the variance minimizing weights we get
I—1—k 2 I—1—k I—1—k
Ok 1 Cik
Zp=I=2-kt 3 35— 2. Cnr=I1-2-k+ 3 s STtk
i=0 (Zh=0 c, k) ik h=0 i=0 2h—o Tk



2 Chain-Ladder-Method (CLM) 2t timatellnceftainty
L 2.4.2 Ultimate uncertainty of the aggregation of all accident periods (1/3)

Ultimate uncertainty of all accident periods

Analogue to the procedure we used for a single accident period, we split the
ultimate uncertainty of the aggregation of all accident periods into:

I I I 2
msepr E C;,7| = Var E Cig DI+ E g (CLJ — C’i,J) D!
=0 i=1—J+1 1=I1—-J+1
random error squared parameter estimation error

Since accident periods are independent, the random error of the sum of all
accident periods is simply the sum of all single periods random errors.

But for the parameter error this is not the case, because the accident periods
are coupled via the same estimated development factors.
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Ultimate uncertainty of all accident periods

Anslogue to the procedure we used for 3 single accident period, we it the
P‘J

Since accident periods are independent, the random error o the sum of all
accident periods is simply the sum of all single periods random errors.

But for the parameter eror tis i not the case, because the accident periods
are coupld via the same estimated development factors

uimate uncertainty of the aggregation of al accident periods into

e R e




2 Chain-Ladder-Method (CLM) 2t timatellnceftainty
L 2.4.2 Ultimate uncertainty of the aggregation of all accident periods (2/3)

Estimator 2.13 (of the ultimate uncertainty of all accident periods)

I 1 2
msepr Z AN =E Z (CLJ - @J) D!
i=0 i=0
I J-1 & 0\
= El Z G (Fi,k fk) D! (Taylor approximation)
o k=1—i Tr
1

<
L
)
)

4 s Cosf (5, 7,) (-,

11,i2=0 k1=1—11 ko=I—is

=ZZ

(COV [Fiy ks By s DY)+ (J?kl - fkl) (sz - sz))

I
k1, ko=0iy=I—ky is=I—ks fk1 f
J—-1 I I ~ ~

~ i1,J g, J
~ Z Z COV ’01 k1s 12,k2|D ]+Cov{fk17fk2 Dkl/\kg]

k1,ko=01i1=1—ky io=I—k> fk] sz

random error parameter error
2

J—1 ~9 I J—1 ~o 1 I—k-1_2
~S %y L Nk & Wik
~ ) iJ S ) i,J C

=0 T iZ1-k ik k=0 Tk \izIk h=0 ~hk

random error parameter error

V.
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For i1 + k1 > I and ig + ko > I we get

I
Cov[ i1, kleiz,k2|D ]

= c'.w[E[Filyk1 ‘Dilka} , E[F%,c2 |‘D,€1V,c2]|‘DI] + E[Cov[Fil’kl Fiy ks ‘D,{N@HDI}

=04+1;,-4,1 2 gl Iplla1, i P
= ir=iz ki =k 7k, B | o RN Liy=igtk1=ko %%k 7
i1,k1 i1,ky
I—ky—1 2
~ _ 2 hik1
Cov[Fuys oy [Pranka] = Thi=hooty Do S
h=0 h,k
Therefore,
mse ;1 [CLJ}
J—1 I I O ® I—ky—1,2
- Ciy,g Cigu 1 L bk
~ Z Tkylhy=ky | Lig=in 5 + e
kqika=0i1=T—ky io=T—ko Jky by i1,k h= h, k1
2
—1 -2 I I I—k—1,2
o ~ 1 w
_ k 2 h,k
STA (v a2 as) x s
k=0 i=I—k ik i=I—k =0 “n,k



2 Chain-Ladder-Method (CLM) 2t timatellnceftainty
L 2.4.2 Ultimate uncertainty of the aggregation of all accident periods (3/3)

Corollary 2.14
If we use the variance minimizing weights C
"
Wik = Ifkfi
> Ch
~ h=0
and the notation C ; 1= C,;, fori+k < I, we get
msepr [ai“]]
) 1 AzJ 1 2 1
k i, ~
SAs (s a) ot
> Z Z i,J T—k—1
=0 fi \iz1=k Ci i=I—k n=0  Chu
J-1 I A r & Y I A Y I & Y
_ . 31% Ci%J (Zh:o Ch,J) n (Zizl—k Ci,J) (Zh:o Ch,J)
- ™ ~ 2 =~ ~ 2 T—k—1
im0 Ji \iZik ( fL:O c, J) Ci,k (Z{z:o c, J) > h=0 Ch,k
J-1 I A I & Y I A Y I A Y
0 Z Ch (Zh:o Ch,J) N (Zi:pk Czk) (Zh:o Oh,J)
- ) ~ 2 ~ ~ 2 I-k—1
im0 Ji \iZr ( {L:o c, k) Ci,k (Z{L:o C, k) >h=0 Ch,k
1 2J-1 9
- (X0 Z % (s 5
i, ) T—k—1 4 I A
i=0 im0 fi \ im0 Cip im0 Cis
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For each k < J we have

I I—k—1 SIZhte, o, et I I
P i=0 ik =~ = -~ =
D Cikyr= Z Ci k1t Z R e Z Cint > FuCin =75 Cin
i=0 i =Tk Yico Gk =0 =Tk i=0
Therefore, we get for each k > I — ¢
Cig  fi—1 MGk Cik
T & = =~1 & T &
Ei C fJ—l "‘fk Zi:O Ci,k 21— Ci,,
Finally,
N I 2
i c2, 1 (Zi:l—k ka) 1

i—I—k (Z}Imo 6‘,%,6)2 Cik (Z{L=O 6‘,%,6)2 Sizh=te Chk
ik a7k Z{;&;l a7k + (E{:I—k ai,k)2
(SloCin) =i i
_ Sl 67k (Zf—é_l PR D D ¢, )
(BloC.u) Bizd T o

B .
2i=1—x Cik 1 1

= =7 = T—k—1 T —~I—k—1 Y
TheoChk Thio O ZiZo Gk ZiooCin



2 Chain-Ladder-Method (CLM) 2.5 Validation and examples (part 2 of 3)
L 2.5.1 Ultimate uncertainty 1/7)

Credibility like weighting of ultimates

One way of combining (two or more) estimates for the same ultimate is to use a credibility
like weighting. This means, for an estimated ultimate we take the lesser credibility the
further away it is from the last known value. In formula:

v

Estimator 2.15 (Credibility like weighted ultimate)
Let @"”f, 0 <m < M, be estimates of the same (unknown) ultimate. Then

-1

m m Al 1
iI—i C C’ —i ~m
g min —, = E min , —= i
m m C’l El
zI i i,J i,Ifi iJ

mixing weights

is a credibility like weighted mean of these estimates.

Remark 2.16 (Credibility like weighted ultimate uncertainty)

We will see later, see Section 4, that it is possible to transfer the weighting of ultimates
to the corresponding ultimate uncertainties.

y
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2 Chain-Ladder-Method (CLM)

2.5 Validation and examples (part 2 of 3)
L 2.5.1 Ultimate uncertainty

Credibility like weighting of ultimates from Examples 2.7 and 2.8

o We used the standard estimators for the variance parameters, see Estimator 2.12.
o Since the incurred values are much faster near the ultimate, the corresponding projection
gets more weight.

(2/7)

>
o

Payments

Incurred

Credibility like weighting

Ultimate

Reserves

Ultimate

Reserves

Ultimate

Reserves

QO ~NO O WON =2 O

(]

3'921'258
2'681'142
3'576'632
3'612'174
2'848'093
3'619'496
2'626'200
3'123'108
3'736'063
2'821'331

114'086
394121
608'749
697742
1'234'157
1'138'623
1'638'793
2'359'939
1'979'401

3'921'258
2'905'040
3'214'395
3'334'861
3'168'701
3'489'267
3'356'241
3'482'056
2'794'903
3'398'542

337'984
31'884
331'436
1'018'350
1'103'928
1'868'664
1'997'651
1'418'779
2'556'612

3'921'258
2'795'238
3'386'164
3'462'371
3'027'598
3'5642'859
3'075'415
3'347'249
3'126'759
3'254'340

228'182
203'653
458'946
877247
1'157'520
1'587'838
1'862'844
1'750'635
2'412'410

Total

32'565'588

10'165'612

33'065'263

10'665'287

32'939'252

10'539'276
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Creibiy e weightng of ulimates from Examples 27 and 28

W e the standard simators o the sncs prametrs, e Existor 2.2

Credbilty ke weighing

Payments Incures
| Utimate | Reserves | Utimate | Roserves | Utimate
o 3212 | yearas 3021258
1| zestiaz 114088 2005040 337984 2785238
2 3s7eeR2  se412i 3214395 B1BE4 3366164
3 3612174 G0BTeS 3334B61 V4 T4625TH
4 2848093 697742 3168701 1018350 3027598
5| 3619496 1234157 3489267 1103928 3547659
6 2626200 1138623 356241 TGS 30755
7 3123198 1636793 3482056 1997651 3347249
8 2359030 2704903 1416779 3126759
9

Total 52565568

01

25182
203653,
preee
s7r2e7
157520
567838
re6z8as
1750635

70165612/ 33065263 1065287 32939252 10539276)




2 Chain-Ladder-Method (CLM) 2.5 Validation and examples (part 2 of 3)
L 2.5.1 Ultimate uncertainty (3/7)

The projection of incurred is much faster very close and stable to the estimated ultimate than
the projection of payments. This may be an indication to trust it more.

—m— 0 Payments

&1 Payments

\ —e—2 Payments
3 o 3Payments
—a— 4 Payments
) —m— 5 Payments
S —a— 6 Payments

—+—7 Payments.

o 8 Payments

— —a— 9 Payments

_ e Expecied Payments
= ATy Uttmate
—m— 0 Incurred
= & 1 Incurred
—e— 2 Incurred
© 3 Incurred
—a— 4 Incurred
—m—5 Incurred

—&— 6 Incurred

——T7 Incurred
i 7 &8 Incurr=d
—a—8 Incurred

a—Expected Incumed
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2 Chain-Ladder-Method (CLM)

Ultimate uncertainties for Examples 2.7 and 2.8

2.5 Validation and examples (part 2 of 3)
L 2.5.1 Ultimate uncertainty

(4/7)

o We used the standard estimators for the variance parameters, see Estimator 2.12.

« Since the incurred values are a bit more stable, in particular for later development periods,
the corresponding uncertainties are lower.

o The linear approximation for the (parameter estimation) uncertainty results in almost the
same values as without approximation.

Ultimate uncertainty for payments| Ultimate uncertainty for incurred Credibility like weighting
AP Proc Var | Para Err Total Proc Var | Para Err Total Proc Var | Para Err Total

1 68'914| 56'985| 89'423 1'935 1'665 2'553| 32'813| 27101 42'558
2| 184'912| 144'485| 234'666 4'160 3'097 5'186| 85'511 66'895| 108'568
3| 203'838| 154'232| 255'612 7'819 4'967 9'264| 90'233| 68'639| 113'373
4| 223'462| 135'431| 261'298 9'419 5'434 10'874| 95'731 57'690| 111'770
5| 270'501| 178'156| 323'899| 30'001 14'319| 33'243| 106'489| 70'459| 127'689
6| 241'283| 131'817| 274'942| 51'348| 22'054| 55'884| 87'607| 48121 99'953
7| 330'933| 173'453| 373'634| 153'690| 60'273| 165'086| 170'661 77'709| 187'520
8| 437'284| 227'437| 492'894| 198'225| 66'754| 209'163| 228'791 98'782| 249'205
9| 430'953| 182'846| 468'137| 302'941| 107'849| 321'566| 274'932| 99'374| 292'340

Total| 865'025| 1'247'250| 1'517'861| 397'988| 222'173| 455'802| 449'186| 499'717| 671'926

Linear approximation

Total] 865'025| 1246'787| 1'517'480 397'988] 222'157| 455794] 449'186] 499'556] 671'806)

We always show the square root of uncertainties.
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The uncertainty of the weighing has been calculated using a LSRM coupling of both CLM via
0,1 _ 51,0 .. 50,0 1,1 .

the exposure Ri,k = Ri,k = Ri,k + Ri,k' see Section 4.

One can derive estimators for the ultimate uncertainty without a first order Taylor approximation,

see [21]. In practice, the resulting figures are almost alike.



2 Chain-Ladder-Method (CLM) 2.5 Validation and examples (part 2 of 3)
L 2.5.1 Ultimate uncertainty (5/7)

Density plot of the distribution of the estimated reserves using
Lognormal distributions (dotted lines representing the Best Estimate)

Projection of Incurred

Credibility like weighting

Projection of Payments
in million

& \

6 8 10 12 14 16

y
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The projection of incurred losses results in a more symmetric and tight distribution than the
projection of payments. Therefore, if we believe in the incurred projection and the corresponding
estimate of the ultimate uncertainty we would expect that the true future payments will only
deviate from the estimated reserves by a small amount. Whereas the projection of payments
indicates much larger differences (uncertainty).

The uncertainty of the Weighing has been calculated using a LSRM coupling of both CLM via

the exposure RZ k = R ’ = Rl e T Rl o See Section 4.



2 Chain-Ladder-Method (CLM) 2.5 Validation and examples (part 2 of 3)
L 2.5.1 Ultimate uncertainty (6/7)

Problem 2.17 (Fitting a distribution to Best Estimate reserves and mse)
Assume that for a portfolio we have

o A Best Estimate for the reserves,

e an estimate for uncertainties in terms of mse and the corresponding estimate of the
reserves R. That means the method, which was used for the estimation of the
uncertainty gives us a corresponding estimate of the reserves, which will usually differ
from the Best Estimate reserves.

How to fit a distribution to those estimates?

Fitting a distribution to Best Estimate reserves and mse
o Shifting the distribution: Means we fit the distribution with

Expectation = Best Estimate reserves (or ultimate)

Variance = mse

o Stretching the distribution: Means we fit the distribution with

Expectation = Best Estimate reserves (or ultimate)

mse - (Best Estimate reserves)?
RZ

Variance =

4

©R. Dahms (ETH Zurich, Spring 2021) Stochastic Reserving: Lecture 3 [NV ET@-{PA} 56 / 240



Stochastic Reserving
L Chain-Ladder-Method (CLM)
I—Validation and examples (part 2 of 3)

2021-04-26

| prefer the stretching, as long as it leads to plausible results, which in particular is not the case
if R=0.



2 Chain-Ladder-Method (CLM) 2.5 Validation and examples (part 2 of 3)
L 2.5.1 Ultimate uncertainty (7/7)

Density plot of the Lognormal distributions

Best Estimate reserves (BE) =1
mse=05 and R=38

Shifting 02 = 0.5

~ 1.22

: 2 _ 1002
Stretching 0 = 0.5 3
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V/Variance

Expectation constant.

Stretching means to keep the coefficient of variation
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2 Chain-Ladder-Method (CLM) 2.5 Validation and examples (part 2 of 3)
L 2.5.1 Ultimate uncertainty

2 Chain-Ladder-Method (CLM)

2.1 How does the Chain-Ladder method work
2.1.1 Chain-Ladder method without stochastic

2.1.2 Stochastic behind the Chain-Ladder method
2.2 Future development

2.2.1 Projection of the future development

2.3 Validation and examples (part 1 of 3)

2.3.1 Chain-Ladder method on Payments and on Incurred
2.3.2 How to validate the Chain-Ladder assumptions
2.4 Ultimate uncertainty

2.4.1 Ultimate uncertainty of accident period 4

2.4.2 Ultimate uncertainty of the aggregation of all accident periods
2.5 Validation and examples (part 2 of 3)

2.5.1 Ultimate uncertainty

2.6 Solvency uncertainty

2.6.1 Solvency uncertainty of a single accident period
2.6.2 Solvency uncertainty of all accident periods
2.6.3 Uncertainties of further CDR's

2.7 Validation and examples (part 3 of 3)

2.7.1 Solvency uncertainty

2.8 Literature
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2 Chain-Ladder-Method (CLM) 20 SElvEiey TEEiEnsy
L 2.6.1 Solvency uncertainty of a single accident period (1/7)

Claims development result and solvency uncertianty (repetition)

The observed claims development result (CDR) at time I + 1 of a single accident period i is the
(observed) difference of the estimated ultimates of estimation time I and estimation time I + 1:
et AL Al
COR, =Cl,-Cl3\.

Here and in the following we denote (if necessary) the time of estimation by an additional upper

index.

A negative CDR corresponds to a loss and a positive CDR corresponds to a profit. Moreover, in
the Best Estimate case the estimate of the conditionally expected CDR is zero, i.e.

E[C/D\Rj“

D’]:o.

) ) ) T i —I+1
The solvency uncertainty of a single accident period i is defined as the mse of the CDR;
conditioned under all information at time I, i.e.
Df]

2
=E [(c/[ﬁf“ - 0)

= Var[@f}l‘Dl]—&- E[CA’f}rl — @{J‘DI}

—T+1
mseg|pr {CDRi

2

random error parameter error
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2 Chain-Ladder-Method (CLM) 2.6:5olvency uncertainty
L 2.6.1 Solvency uncertainty of a single accident period (2/7)

Assumption 2.B (Consistent estimates over time)

In order to have consistent estimates at times I and I + 1 we assume that there exist

D! N Dy-measurable weights 0 < wff,lc r < 1 with

o Cr_pr =0 implies wf',lC r =0

e witi= (1wt Jwly, for0<i<T—1—F

Remark 2.18

The above assumption means that we do not change our (relative) believes into the old devel-
opment periods and only put some credibility wI k « to the new encountered development.

The variance minimizing weights, introduced in Lemma 2.4, satisfy Assumption 2.B.

Lemma 2.19 (Consistent estimates over time)

Let Assumptions 2.A and 2.B be fulfilled. Then we have
L f/ﬂ“ =(1- wf*,ﬁ k)flc +wit k% =(1- wﬁi k)fk + w{tllc,kFI*kvk’
> fo=E[R D] [f’“!vf} (U= wf L DI+l d = T
3. Gy o= E[a{}rl‘pl] = k 1+1 i FofriCiris

. E{CDRHI

DI } = 0, which means we have a Best Estimate.

y
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I—Solvenc uncertaint,
Yy Yy
AT41 = 41 Cintr R Ci k1 1+1 Cr—k,k+1
7 witTh ZDRT — (1 — Gi, wit ki L ok
ik Cin I—k,k ; Cik I—k,k Cr .k
- c N
_ I+1 I+1 I—kk+1 _ I+1 T I+1
=@ —wr iy W)k R B A —wp T I +wily o Fr-
I—k.k
7I+1 I I+1 I I+1 71 I+1
= E[fk |D ]:E[fk |’Dk}:(1*w1tk,k)fk+w1tk,kfk
% <1
E fk = fk
I I = 1 B I
=~ 1 1
e[ciH o' ]=€| TI #Ht'cirnap'|=€|g[fiTi|pio] TI FP'Cirnaa|D
k=I+1—1 k=I+1—1
J—2 E 1 E
=fs-1E 11 kar Cis1—i|D'|=...= I ka[Ci,Ii»lfi"D }
k=If1—i k=If1—i
-1 -1
= JI 7ElCir+1-ilBir—il= 11 Fufr—iCii—:
k=I+4+1—1i k=I+1—i
T+1|,1 I I I I = =
~ P A _
E[COR, D' =€[¢] ,|p']-e[¢/H D= TI Ficii—i— TI Fufi—iCints
k=I—1 k=I+4+1—1

J—1

J-1
H f]ﬁc'i,l—i_ H

k=I—i k=I+1—i

Q

T I
fkfjfici,l—i =0




2 Chain-Ladder-Method (CLM) 2.6:5olvency uncertainty
L 2.6.1 Solvency uncertainty of a single accident period (3/7)

Taylor approximation of next years estimates
Recall the (multi-linear) functional:

Ui(g)x :==gj-1---gr—iz.
Then we get:
0 Ui(g)z

U@ r=g7-1"" gj+19j-1 " gr—it = ——,
dg; " j+19j i py

Ui (?I) Cires =11 F-iCiz_i=Cl;,
Ui (Ffﬂ) Ciri

TI+1 AT+1
PGy = ClYY and

J—-1
_ N 9 N
ot -Clix Y U (Ff+1) ol (F,{,jl - f;i) :
I

I+l
Pyl aF
cly = cl, N
:$( iI—i — f[ ) Z ! w; kk(Flfk,kfflg)
fizi k=I—i+1 fk

where we used a first order Taylor approximation and ! denotes the vector of the at time I
estimated development factors and Ff“ is a vector with components
pret [ BT forit k> 1,
bk Fp, fori+k=1I
The red parts are the difference to the ultimate uncertainty case.

4
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For k =1 — i we get
I+1 T nt
Fi,I—i_fI—i_ i,I—i_fI—i

and for k > 1 —iitis

I+1 T _ 7141 T I+1 i I+1 o I+1 )
il —Te=R" = F= 0w )f +wr o Frowe — fi = wili, (Fl—k,k - fk)



2 Chain-Ladder-Method (CLM) 20 SElvEiey TEEiEnsy
L 2.6.1 Solvency uncertainty of a single accident period

(4/7)
Linear approximation of the CDR
If we replace in the linear approximation of the ultimate, i.e. in
J-1 aIJ
AL i, iy
Ciy—Cig~ Z 7 (Fi,k - fk),
k=I—i Jk
the term (FMC fk> by
ﬁl =I FI kk_]?]g, fOFkZ]—i,
ik _fi’k o w§+}€ k (Flfk,k — fé) s for k> I —1,
(1k I+ Lp>1- zw§ kk) (FI kk—fk>
we get the linear approximation of the CDR, i
CI+1 Cly~ /7 (Fufi ) Z wit Tk (FI kk — fk)
f1oi —I—i+1
J— I ~7
z I N
= Z = (Fk —fk>.
e i |
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The term ﬁilk _J?i,k depends on the accident period i only via the indicator functions 1,_;_;
and 1k>17i-



2 Chain-Ladder-Method (CLM) 2.6:5olvency uncertainty
L 2.6.1 Solvency uncertainty of a single accident period

Estimator 2.20 (Solvency uncertainty of accident period 7)
— ~ ~ 2
mse|pr [CDRZ-] —E {(q{jl -¢ly) ’DI]

(5/7)

J-1 61 - ~I 2
E Z i’IJ (Fllk —fi7k> D! (Taylor approximation)
k= k
J-1 Al
l

1%

CI
_ J Y, J I+1
= fl (1k1_1 it Lpysr—iwi Ty kl) (1k2:1—i + 1psr—i w[,kgvh)

ki,ko=I1—i fk1 ko
E[(Fits = ) (Frotos = 1) ]
J-1 ~2

o 2 1
~ Z A’“ ((1;, T—i+ 1g>7— 711)1 kk)CI ) o

keI —i (fé) I—kk
random error
J—-1 I k—1 ¥
H. ol
Ok 1 . 1 RS ( hk
+ 5 k=I—i T 1k>1—i U’I—k,k C
k=I—i (ﬁ) h=0 h.k

parameter error
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From the derivation of the ultimate uncertainty we already know
7T I 7T I __ I 2 2
EKFI*klv’“l - fk‘l) (Flszvk'z - fk2)|D ] - C°V[F1*k1~’“1‘F’*’“2vk2 ‘D }Jr (fkl - fkl) (sz - sz)

~ CQV[FI—Icl,kl v FI ko ko |’DI] + Cov[f;{l , f;{Q "Dkll\kQ}

2
~2 I—k1—1 =2 I
~ 1 Tk 21: Tk (whv )
~ tk1=ko Iel C
I—ky ky h=0 hokq

Therefore (the red terms are the differences to the ultimate uncertainty case),

mse, o1 [CDRi]
J-1 @&l &l

i,J Yig I+ ) I41
T (1k1:1—7‘,+1k1>1—7’,“«’1,1\.1,1\.1)(1k-,2:1—7,+1k2>1—7,“~’1,;\.2‘k.2>
k1,ka=0 Jky Ty

Q

2
~2 I—ky—1 52
1 ky L™ %y (whvh)
ki=k2 | & + Z c
I—kq,k1 h=0 h,kq
2
-~ I—-k—1 52
1 N2 Ch Tk (wh,k)
_ + k
= it le>r—ivrign) g F c




2 Chain-Ladder-Method (CLM) 2.6:5olvency uncertainty
L 2.6.1 Solvency uncertainty of a single accident period

Ultimate uncertainty for accident period i

2
J=1 o J-1 9 I—k—1
2 1 o <wh k)
ol k
mseps O] = > (¢ )CI+Z GO
k=I—i ( ) k=I—i (fk> h=0 hk
random error parameter error

(6/7)

Solvency uncertainty for accident period ¢
mse0|DI [ﬁz}

J—1 ~9

o 2 1
~ E — ((lk [7z+1k>1721b[ kk)(][ ) o
k=I—i ( ,g) I-kk

random error

’\2

- 2
=+ Z ~ ((lk 171+1k>171u/1 kk>CI )

I
k=I—i k) h=0 )

parameter error
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It almost looks like a simple multiplication by the factor
I+1
<1k:I—i + 1k>1—iw1tk’k> )

except for the index replacement (i by I — k) in the random error part.



2 Chain-Ladder-Method (CLM) 2.6:5olvency uncertainty
L 2.6.1 Solvency uncertainty of a single accident period (7/7)

Corollary 2.21

If we use the variance minimizing weights
C.
I _ i,k I+1 ik
Wik =T and W=
> Chk > Chk
h=0 h=0
we get for the solvency uncertainty of accident period i
mseg|pr [CDRi]
o} Ct i 1 iy Ch
Cty Z 3 | Le=1—i + 1r>1- c +) P 3
= fk> (zibe, k) ek 050 G (ST CL)
&7 Cik 1 1
CZ; Z —— | Le=1—i + L1 . 2l\e + <= ,
k=I—i (fk) ( h—0Ch k) 1-kk  2p=o  Cpi
where the red terms indicate the differences to the ultimate uncertainty case.
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2 Chain-Ladder-Method (CLM) 2.6:5olvency uncertainty
L 2.6.2 Solvency uncertainty of all accident periods (1/4)

Dependent accident periods

~T o
Since ﬁfk andﬁ depend on F7_x = Crk+1/C;_, ., for all 4, the CDRiIH,
i < I, are not independent. Therefore, we cannot simply take the sum over all
accident periods in order to derive the solvency uncertainty of the aggregation
of all accident periods.
But the Taylor approximation still works: |
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2 Chain-Ladder-Method (CLM) 20 SElvEiey WEEiEnsy
L 2.6.2 Solvency uncertainty of all accident periods

Estimator 2.22 (Solvency uncertainty of all accident periods)
2

1 I
mse|pr ZC/D\RZ = Z (C’I+1 6,{,) D!
=0 =

(Taylor approximation)

J—1 J—1 61

s o1 1) (- )PP

k1 k2

2
m
Rl
Z
Iy ~
(=)
VLS
I
)
H;:)‘:Q
<
VRS
el
o
PN
Eal
N
)
2,

i1,12=0 k1 =1—141 ka=I—i2

‘ oI+l ) o I+1
=14y + 1k1>1711w17k1,k1) (lkz:lfzz + 1k2>1712w1—k2,k2)

2

(2/4)

J-1 6_\2 1 1
~ . 5 Z <1k I—i + 1k>[ i U’[ k k) CI -~
1 C
k=0 (fk> i=I—k I—kk
random error
2
J-1 o I 21—k—1 (!
T A1 hk
+ Z Yier—i+ 1psr— ] k k C §
7Y ¢
k=0 ( fi i=I—k h=0 h.k
parameter error
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From the single accident period case we know

52 I—ki—1 52 2
o o w
=T =1 17 . k1 kl( hvkl)
E[(FI—ICLIH_fkl)(FI—kQ,kQ_sz)‘D ]~1k1:k2 o 7T > a)
I—Fky,ky h=0 h,kq

Therefore, we get

I
mse, o1 Z CDR;
K2

=0
N 2
I J-1 J—1 I Az I—ki—15 I
Cl ¢, 1=t E7, (“’h k1
B DIED DI ey =k + > ——
ooF 1=k \ o T c
i1,ig=0ky=I—iy kg=I—ig Jkq ko I—kq,kq h=0 h,kq
I+1
(1761—1*!1 + 1k1>1*11w1 kl Ky (1k2 T—ig t lhg>T—igWrlg,, kQ)
. . 2
J-1 I I 1 1 I—ki—1 52 I
Cii,7 Cig,g L7 Ty (Whig
- - Loy [y TR
F c
k1,kp=0i1=I—ky io=I—ky Jkq ko Crky by h=0 h,ky
I+1
(1k1—1*t1 + 1k1>1*11w1 kl k1 (1k2 T—ig t lhg>T—igWrly,, kg)
2
1 _ 1
=1 52 I 11 . I—k—1 (wh,k)
k=0 (fk) i=I—k Crokk h=0 h,k



2 Chain-Ladder-Method (CLM) 2.6:5olvency uncertainty
L 2.6.2 Solvency uncertainty of all accident periods

(3/4)
Ultimate uncertainty of all accident periods
J—-1 32 I 2 1
msepr CIJ Z k Z CIJ =
3 ,.7 2 2, CI
k=0 (fk) i=I—k ik
random error
2
J-1 o I 21—k—1} (w!
Tk Al hok
+ C; — 7
Z e 2 Z iJ Z C
k=0 (fk> i=I—k h=0 h.k
parameter error )
Estimator 2.23 (Solvency uncertainty of all accident periods)
I o J-1 b\_g I 1
~ k I+1 \AI
mseg|pr Z CDR; | = Z Z <1k:1—i + 1~ w17k7k> Ci,J ol
i=0 k=0 (f,f) i=I—k I—k.k
random error
2
J-1 9 I 21—k—1 (!
T I h.k
+ PN Z (1}%'*1 + i wy kk)c Z C
k=0 (f,i) i=I—k h=0 hok
parameter error
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2 Chain-Ladder-Method (CLM) 2.6:5olvency uncertainty
L 2.6.2 Solvency uncertainty of all accident periods (4/4)

Corollary 2.24

If we use the variance minimizing weights

C.
I _ i,k I+1 _ i,k
Wik = 7757 and Wik = Tk
> Cuy > Cu
h=0 h=0

we get for the solvency uncertainty of all accident periods

mse|p1 [GD\RZ}

I 27-1 1

~ (a2 -

~ ,J =~ 2 T—k—1 C I—k C ’
i=0 k=0 ( k) h=0 hok h=0“nk

where the red term indicate the difference to the ultimate uncertainty case.

©R. Dahms (ETH Zurich, Spring 2021) Stochastic Reserving: Lecture 4 AV ET@{PA 68 / 240



2021-04-26

I

Stochastic Reserving
L Chain-Ladder-Method (CLM)
I—Solvency uncertainty

I

C
I+ AT I—k,k AL
Z (lk I1—i+ lksr—qwil kk)ch*CI kot 2 =TR iJ
Tk i=I—k+1 2h=0 Ch,k
I ol
AT - k J Al
=Cr_pa+ > ~r Cig
imi—ht1 Sh_g CL,
I AT I
_al L Yici—k+1%ig ) &l Crop,k
=Cr—gg |1+ Tk &I =>Cli=r% 1
Eh:o h,J =0 h=0 “h,J

Therefore, we get for the solvency uncertainty of all accident periods

mse

o|p!

[coR, | ~

i=0

()

=0

2
Cr_ik ) ( 1 i 1
T—k T—k—1
Zh=0Cnk Crekre  ZhZo g
—~ 2 I-k
57 ( Crokk ) 2h=0Cn,k
T—F—1
;5) 6 k) Ci—kk2h=0 Chk
oh Crokk

1

(7L ShZo " Cnx Tazo Cn i

k=0 (

52 (
iy

T—k—1
Yh=0 Chux

T Ik
2h=o

‘ch,k)

)
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- 2.6.3 Uncertainties of further CDR's (1/4)

Estimation at time n > I
Analogously to the next years estimation we can look at the estimation of
the ultimate at any timen > 1

J—1 n—i—1 J—1
Ano mo_ m
i,J Ci,n—i H fk _Ci,I—z' H Fi,k H fk'
k=n—i k=I1—1i k=n—i

The development factors are estimated by

n—k—1

D wpFa
h=0

with consistent future weights w},. That means for I —k <i<n—k—1,
there exists D}-measurable weights 0 < w[’; < 1 with

¢« Cp,=0 implies wyy = 0,

o wip = (1 —wy_ Jwy L fori+k<n.

v
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Analogously to the next years estimation we can look at the estimation of
the ultimate at any time 1 >

L Chain-Ladder-Method (CLM) e i e i £

L Solvency uncertainty st s '

with consisent future weights . That means for I~k < < n—k 1,

there exists Dj-measurable v ity = 1 with
+ €y =0 imples

oy = (1= foridk<n
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- 2.6.3 Uncertainties of further CDR's (2/4)

Claims development result between two estimation time I < n; < ny

Since formulas will get very tedious (see for instance [12]), if one analyses the
CDR with respect to two time periods I < nj < ng analogously to the next
year claim development result, we will only consider the special case of variance
minimizing weights

Cik

2,

n— k 1 ’
>h=0  Chp
which leads to the following estimates (at time n) of the development factors

n—k—1 n—k—1
Ci k+1 Z C k+1

fi = Zw?kc = anlc

i=0 i,k

w;'y = (2.3)

In this case we have

I I
POIHED IS | i3 (24)

v
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& L—Chain-Ladder-Method (CLM)
< L .
< Solvency uncertainty i s 0 h loing it (o i) of he delgmen s
i 2 ‘Z’:‘
N 3
N p 4

For each k > 0 we have

I n—k—1 I
AN T Aan
D Clrpi= > Cipnt > FRCH
i=0 i=0 i=n—k
—k—1 k-1 I
E?:O ci k+1 " n An
= n—k—1 Z Cik+ fi Z Cik
Yico Gk i=0 i=n—k
n—k—1 I

I
=3
]
Q
Eal
+
=
]
o
“R‘

which by induction proves (2.4).



2 Chain-Ladder-Method (CLM) 2.6:5olvencyiuncertainty.
L 2.6.3 Uncertainties of further CDR's

Estimator 2.25 (Uncertainty of the CDR™"? with variance minimizing weights)

In the case of variance e minimizing weights (2.3) the uncertainty of the claims development
') between two time periods I < ni < ngy can be estimated by

result S0 0( C’

mseq| pr [C/D\R

nl,n2:|

(3/4)

i=0

I 2 J-1 J—1 2
~(ew) g (M- T2 o

=0 k=0 k=0

1 2 (J-1 oy
“(ZC@J> L+ ik2< n1—1911 ~1 ngkll 1> -1

i=0 k=0 ( ,g) Yito G 2o €

2 5_
2 n1—k— no—k—1 ~ .
=0 k=0 ﬁ >izo 10] 2izo 1CiI,k
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We will start with some very brave approximations

I J—1 J—1 2 E
/\nlyng _ ’\‘712 A’Ll
mse, o1 [CDR }7 S Ciol E HEI I D
1=0
J

2
Cl,o)

o (M- 1

. .. . g . . .
In order to estimate the remaining expectations of the square of fi 2, we will look at the corresponding variance

Q

Q
- 1t4-
Q .

g

m]- :g:q(f;l)

=0

and expectation of f:z and always replace all future weights w?% by their estimates at time I, i.e. by
Pt

Sn2 .
ik’ 1
h,k
We get ’
€ ge ng—k—1 C. b1 nog—k—1 C. i1 ny—k—1 C. et no—k—1
Fno ny| _ ng 2, n| ~ ~n9 1, ny| _ ) i,k ~no
E{fk ‘D ]*E > ik |0 |FE > Dk o |P T > ik g T > Bk
i=0 ik i=0 ik i=0 ik i=nj—k
ny—k—1 ~T no—k—1 ny—k—1 51 no—k—1 A7
_ Z Ci,k Ci,k+1 Zh_nl— ch k h=0 C}L,k f”l Zh=n1—k ch,k‘ f
- ng—k—1 ~7 C. n2 k—1 A7 k& n2 k—1 =1 k no—k—1 A7 k
i=0  2pZo Ch,k ik Xh= Ch k Xh= Ch,lc 2hZo Ch,k
ng—k—1 =1
>
n h=nj—k “hk n n ny,mn wn
~ it + (fp = FoY) = FPY+ Q20" 2(F, — 2

n k—1 x71
Z 2 C(h k
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This leads to
(€[22 | = (7 42003 ™2 7 (g — 7o)+ (2012 P (g, — 7707

< (70 o (P o] = () + 58

ng—k—1 571 2
(Zi*nl—k Ci,k)
ny—k—1 31 no—k—1 7 \2~’
Zi:O Cz k Ei:o ci,k

,D'n1:|

For the variance we get

nog—k—1
Var[f;Q‘Dnl]:Var Z w ﬁ

=0 ik

nog—k—1 C.
’D"1:| ~ Var|: Z @2 ikl
ik C
=0 i,k

no—k—1 c
_~ng )2 i, k41 |9

= E (w, i) Var Ziktl D"

. i C.

i=ni—k i,k

no—k—1 c

2 i P

= E (@"%) Var |E kA1 'Dzl D" | £ E|Var Zi,k+1 Dl?l Dl

. v C .

i=ni—k ik ik

ESS)

ng—k—1 2 ng—k—1 51
D ~ ~no\2 Tk _ 2 Z1_”1* C
~ > (@R) Fz-= f’kw'
i=n1—k ik (Z C] k)

i

i=nj—k
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Both estimates together lead to

2 I (Zr2 ool i Ol
om0 o (e R s EEE

no—k—1 x1
2iZny —k Cik

F1\2 | -2
(7Y +ot—

1—k—1 57 ng—k—1
2i=o0 Ci ke 2i=0 Cik

PV I 1 1
- (fk) + %% (an—k—l ar - an—k—l o1 >

i=0 ik i=0 ik

J—1
1 1 ~I1\2
2 T
: - - )
ny—k—1 77 no—k—1 A7 >> H ( k
(Ei:o ci,k 2iZo Ci,,lc k=0
2
(XI:C > J-1 - 52 ( 1 1 )
= i,J ~\2 ni—k—1 A7 ~ma—k—1 57 -
i=0 k=0 (flf) 2i=o0 Cik 2iZo Cik

2
1 J—1 ~2
Z A’IJ Z o . - -
y s, — 71 thl—k—l Gl Ew—k—l éfk

ik i=0

Combining all we get

coptln2
mseg o1 [CDR ] ~

4
~/
1~
Q
°
M
I/~
)
-
—
~~
=
-
N~—
N
+
q
=

22
e N
‘Ié

where we used in the last step a Taylor approximation in 3% at zero.
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- 2.6.3 Uncertainties of further CDR's (4/4)

Remark 2.26

o All summation over accident periods stop at I, but we skipped AT in
order to keep the formulas a bit simpler.

o the red parts are the differences to our estimators for the solvency and
ultimate uncertainty, i.e.

* If we take no = I + 1 and ny = I Estimator 2.25 leads to the same
formulas as in the solvency uncertainty case, see Corollary 2.24.

* If we take no = 0o and n; = I Estimator 2.25 leads to the same formulas
as in the ultimate uncertainty case, see Corollary 2.14.

« The derivation of Estimator 2.25 is based on the article [12] by Ancus
Rohr and discussion with Alois Gisler.

o In practise the differences between the last two lines of Estimator 2.25
are usually very very small.
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Remark 2.26

« All summation over accident periods stop at I, but we skipped A1 in
order to keep the formulas 3 bit simpler.
« the red parts are the diffrences 10 our estimators for the solvency and
imte uncertainy,

« The derivation of Estimator 2.25 s based on the article [12] by Ancus
R and discussion with Alois Gisler

« In practse the ifferences between the last two fines of Estimator 225
are usually very very smal



2 Chain-Ladder-Method (CLM)

Solvency uncertainties for Examples 2.7 and 2.8

2.7 Validation and examples (part 3 of 3)
L 2.7.1 Solvency uncertainty

(1/4)

o We used the standard estimators for the variance parameters, see Estimator 2.12.

« Since the incurred values are a bit more stable, in particular for later development periods,
the corresponding uncertainties are lower.
o The linear approximation for the (parameter estimation) uncertainty results in almost the

same values like without approximation.

Ap Solvency uncertainty for payments| Solvency uncertainty for incurred Credibility like weighting
Proc Var | Para Err Total Proc Var | Para Err Total Proc Var | Para Err Total

1 68'914 56'985 89'423 1'935 1'665 2'553 32'813 27101 42'558
2| 171'037| 126'690| 212'847 3'741 2'610 4'561 79'147 58'707 98'543
3| 109'318 73'276| 131'605 6'748 3'961 7'825 47'066 31'872 56'842
4| 143'337 73'807| 161223 5'929 3'045 6'666 63'039 32'229 70'800
5 126'341 73'120| 145'975 28'448 13115 31'325 46'567 27'713 54'189
6 92'633 49'013| 104'800 42'423 17'435 45'866 33'101 18'187 37'768
70 212791 89'328| 230'780| 144'761 55'891| 155175 144'968 56'753| 155'681
8| 261'148| 111'014| 283'765| 143'548 46'460| 150'879| 159'362 59'347| 170'054
9| 215'464 78'066| 229'170, 211'338 71'652| 223154, 171'916 58'364| 181'553

Total| 847'287| 539'524| 1'004'481| 327'445| 116'968| 347'709| 415'961| 231'429| 476'008

We always show the square root of uncertainties.
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The uncertainty of the weighing has been calculated using a LSRM coupling of both CLM via
0,1 _ 51,0 .. 50,0 1,1 .

the exposure Ri,k = Ri,k = Ri,k + Ri,k' see Section 4.

One can derive estimators for uncertainties without a first order Taylor approximation, see [21].

In practice, the resulting figures are almost alike.



2 Chain-Ladder-Method (CLM) 2.7 Validation and examples (part 3 of 3)
271 Solvency uncertainty (2/4)

Density plot of the distribution of the CDR using Lognormal
distributions (dotted lines representing the Best Estimate)

Projection of Incurred|:

Credibility like weighting

// Projection of Payments
‘ ‘ ‘ in million

6 8 10 12 14 16
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The incurred projection results in a very symmetric and tight distribution of the CDR. Therefore,
if we believe in it we would expect only very small amounts for the CDR.
The uncertainty of the vxgeighin% Igas been calculated using a LSRM coupling of both CLM via

0,1 __ 1,1 .
the exposure R“ﬁ = R“ﬁ = Ri,k + Ri,k' see Section 4.



2 Chain-Ladder-Method (CLM)

2.7 Validation and examples (part 3 of 3)
L 2.7.1 Solvency uncertainty

Ultimate vs. solvency uncertainties for Examples 2.7 and 2.8

o We used the standard estimators for the variance parameters, see Estimator 2.12.

o In total the square root of the solvency uncertainty is about 70 % of the square root of the
ultimate uncertainty, whereas it is higher in older and lesser in recent accident periods.
That means during one business period we gain information that is worth about 30 % of

« For standard business one usually expects that the square root of the solvency uncertainty

the uncertainty.

lies between 50 % and 90 % of the square root of the ultimate uncertainty.

(3/4)

AP Uncertainty for payments Uncertainty for incurred Credibility like weighting
Ultimate | Solvency % Ultimate | Solvency % Ultimate | Solvency %

0 — - — — — - — — —

1 89'423 89'423 100% 2'553 2'553 100% 42'558 42'558 100%

2| 234'666| 212'847 91% 5'186 4'561 88%| 108'568 98'543 91%

3| 255'612| 131'605 51% 9'264 7'825 84%| 113'373 56'842 50%

4| 261'298| 161223 62% 10'874 6'666 61%| 111'770 70'800 63%

5| 323'899| 145'975 45% 33243 31'325 94%| 127'689 54'189 42%

6| 274'942| 104'800 38% 55'884 45'866 82% 99'953 37'768 38%

7| 373'634| 230'780 62%| 165'086| 155175 94%| 187'520| 155'681 83%

8| 492'894| 283'765 58%| 209'163| 150'879 72%| 249'205| 170'054 68%

9| 468'137| 229170 49%| 321'566| 223154 69%| 292'340| 181'553 62%

Total| 1'517'861| 1'004'481 66%| 455'802| 347'709 76%| 671'926| 476'008 71%

We always show the square root of uncertainties.
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The uncertalnty of the welghmg has been calculated using a LSRM coupling of both CLM via
the exposure RZ e = R ’ = Rl e T Rl o See Section 4.



2.7 Validation and examples (part 3 of 3)
271 Solvency uncertainty (4/4)
Density plot of the distribution of the CDR (solid curves) and

estimated reserves (dotted curves) using Lognormal distributions
(dotted lines representing the Best Estimate)

Projection of Incurred

Credibility like weighting

el
(Tolhe

~L\. Projection of Payments
iq million

6 8 10 12 14 16
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b Projection of Payments

i it

16

Note, distributions of the estimated reserves have been obtained by fitting the Lognormal distri-
bution to the estimated reserves as mean and the corresponding uncertainty as variance.

Like expected, the densities of the solvency uncertainty are much tighter than the one of the
ultimate uncertainty.

The uncertaintyO ?f the vxgeighin% Igas been calculated using a LSRM coupling of both CLM via

, 1 1,1 .
the exposure Ri,rk =R = Ri,k + Ri,k' see Section 4.
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3l0ther classicallreservingimethods 3.1 Complementary-Loss-Ration method (CLRM)
L 3.1.1 CLRM without stochastic (1/2)

Basic idea behind the Complementary-Loss-Ration method
The Complementary-Loss-Ration method is based on a single triangle and a
exposure P; depending on accident periods i. Often pricing information like
the risk premium is taken as exposure.
The Complementary-Loss-Ration method is based on the idea that:

o The payments of the next development period are proportional to the

given exposure, i.e.
Si k1 = D

o Accident period are independent.
In particular, that means that all accident periods are comparable with respect
to their development.
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L Complementary-Loss-Ration method (CLRM)

Basic idea behind the Complementary-Loss-Ration method
“The Complementary-Loss-Ration method is based on 3 single trangle and a
exposure P, depending on accident periods i, Often pricng information like
the isk premium is taken 35 exposure.
The Complementary-Loss-Ration method is based on the idea that
« The payments of the next development period are propartional to the
given exposure, e

Supet ® i
+ Aecident period are independent
In partculr, " d

e i |



3l0ther classicallreservingimethods 3.1 Complementary-Loss-Ration method (CLRM)
L 3.1.1 CLRM without stochastic

(2/2)
Simple example
i\k | 0 12 3 4 | exposure | ultimate reserves
0 | 100 3.8380/2.8280 1.0100 0.00 100 860 0= 860 — 860
1 | 120 3.6360]2.6260 1.2120 0.00 100 860 0= 860 — 860
2 | 200 3.9/780/2.3460 1.1220 0.00 00 1660 | 220= 1660 — 1440
3 | 1403.8570[25375 11165 0.00 150 1250 540= 1250 — 710
4 | 2003883625550 1.1242 0.00 220 1828 | 1628= 1828 — 200
fil 38 25 11 00 770 | 6458 2388
I-1
]? — 3804360+780+4570 _ g ¢ b SM
0 = T00+100+200+150 — 2° = -1 p P
i=0 tho h N
R icht  observed development factor
f = 280+260+460 __ o & welg
1 = 100+100+200 — “
7 _ 1004120 _
fa= 1001100 =11

— 0 _
3= 100 = 0.0

v
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3l0ther classicallreservingimethods 3.1 Complementary-Loss-Ration method (CLRM)
L 3.1.2 Stochastic behind CLRM (1/3)
Assumption 3.A (CLRM)

There exist exposures P;, development factors f, and variance parameters a,% such
that

i)CLRM E {Si7k+1‘8i,k} = kaz:
ii)CLRNI Var {S, Bi,k} = O']%]Di and

i,k+1
)CLRM accident periods are independent.

Remark 3.1

o Since accident periods are independent, B; j could be replaced by Dy, or by D,’:r]?

o Often the assumptions are formulated without conditioning. The difference
between both ways are:

= In taking unconditional expectations we take the average over all possible triangles
and therefore ignore the observed past B; j, completely.

*« In taking conditional expectations we explicitly assume that the observed past B; j
has no influence on the expected future development.
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Assumption 3.A (CLRM)

er exst exposures I, development foctors f, and variance parameters o such

accdent priods are independent.

Remark 3.1
. Sine acciden periods s indepeodent, B, couk b repsced by D o by D"

+ Oftenthe sssumptions sre formulted vithou conditning. The dference
betuesn both v e

thatth obsered s ..



3l0ther classicallreservingimethods 3.1 Complementary-Loss-Ration method (CLRM)
L 3.1.2 Stochastic behind CLRM (2/3)

Estimator 3.2 (Future development for CLRM)

Let Assumption 3.A be fulfilled. Then for every set of D-conditionally un-
biased estimators f, of f, the estimator

CCLRM —iyng t Z FeP
k=I1—1i

is a Dr_j-conditionally unbiased estimator for the ultimate outcome C; ;.

Remark 3.3

o Usually one takes

I—-k-1

~ P; St
Jr = Z I—kz—l o
i=0 Zh:o Py, P

o Because of the additive structure of Estimator 3.2, the
Complementary- Loss-Ratio method is often called additive method.
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E[é\ic,bRM‘llei] =Ci(q1—iyas + JZ_l E[J?;C‘foi] P;
k=I—i

=Ci,(1—ias t Jil E[E[fk’Dk”DI—i] P;
k=i
J-1

=Cig-ogrs+ Y b
k=1 i

k3

= Ci1—ipns + Jil E[E[Si,k+l‘Dk]‘D1_i]
k=I—1

k3

j)CLRM

=E[Ci,7|D1-4]



3l0ther classicallreservingimethods 3.1 Complementary-Loss-Ration method (CLRM)
L 3.1.2 Stochastic behind CLRM (3/3)

Remark 3.4

o The method itself is well known and often used. But, because of its simplicity, corresponding
stochastic models haven't been studied so much as for the Chain-Ladder method.

o From a statistical point of view the estimation of the development factors and the variance
parameters is critical since we have to estimate 2.J parameters based on J(I — %)
observed development factors. Therefore, in practise the reserving actuary has to include
other information in order to overcome the lack of observed data (over parametrised model).

o The method can deal with some kind of incomplete triangle, where some upper left
sub-triangle is missing.

« Since the exposures P; are given and fixed over (development) time, the method cannot

really react on observed changes in the data. For instance, assume we take the risk premium

as exposure and observe at time k = 1, that the frequency of claims has doubled. Therefore,
we would expect twice the payments compared to those that have been projected with

CLRM.

Often the CLRM is used for the early development periods, where we do not have so much

information within the observed data. And for later development periods other methods like

CLM are used in order to take the information contained in B; , into account.

CLRM of Assumption 3.A, CLRM cannot deal with diagonal effects like

Because of part iii)
inflation.
Analogously to what we have done for the Chain-Ladder method, see Section 2, we could
derive formulas for the ultimate uncertainty as well as for the solvency uncertainty.

©R. Dahms (ETH Zurich, Spring 2021) Stochastic Reserving: Lecture 5 RLEVET-{PA} 82 / 240



Stochastic Reserving
Other classical reserving methods
I—Complementary—Loss—Ration method (CLRM)

2021-04-26

We will analyse uncertainties in the more general setup of Linear Stochastic Reserving methods
later in section 4.



3 Other classical reserving methods B2 | St i AEEem mEdies! (H1FU)
L 3.2.1 BFM without stocastics (1/2)

Problem 3.5 (How to include an experts opinion about the ultimate?)

We have often repeated that an actuary has to use all available information in order to de-
termine a Best Estimate. But how to combine an experts opinion U about the ultimate C;
with the observed data.

V.

Bornhuetter-Ferguson method

One solution is to used the Bornhuetter-Ferguson method, introduced by Bornhuetter and Ferguson
in [15]. The basic idea is that we take the last observed data C;;_; and add a fraction 1 — [; of
the external given a priori ultimate Ufri, ie.

CEM .= G i+ (1 - 1)U, (3.1)

where the factors I; are called link ratios and should represent the proportion of the ultimate that
has already developed.

v

Problem 3.6 (Where to get the link ratios?)
Possible answers:
o Experts opinion. R
o Use a reserving method and take [; :=
L= g;}_i(;cw')‘l, which was the original idea behind BFM.

o Use a stochastic model that leads to estimators which have the same shape like (3.1).

Cé’ ‘. In the case of CLM we would get
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Roughly spoken, we take the a priori ultimate and replace the already developed part by the
observated data.



3 Other classical reserving methods B2 | St i AEEem mEdies! (H1FU)
L 3.2.1 BFM without stocastics (2/2)

Remark 3.7
o Since the link ratios I; should represent the proportion of the ultimate that has
already developed, we expect that [;_; = 1, provided we have no tail development.
o As actuaries we have to be very careful in using experts opinions, in particular, if we
take the a priori ultimate and the link ratios from the same expert. The reason is
that those experts often have own interests in a profitable (or sometimes non
profitable) outcome of the portfolio.

BFM as credibility weighted average

If we take a reserving method in order to determine the link ratios I; := %ﬁ and if all
i,J

link ratios 0 < I; < 1 then ClBJFM could be looked at as credibility like weighted average of

the a priori ultimate Uf” and the estimated ultimate @J with credibility weights (1 — ;)

and [;, respectively:
C Cigia ) N )
CEM =C i+ (1 - LU = —5I Cis+ (1 —L)UP" = 1,C g+ (1 — 1)U,
i,J

Note, this formula is similar to the credibility like weighting of ultimates proposed in Es-
timator 2.15.
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3 Other classical reserving methods E2jEomiuettephereusoninethodi(CRM)
L 3.2.2 Stochastic behind BFM

Remark 3.8 (BFM as Complementary-Loss-Ratio method)

If we take the Complementary-Loss-Ratio method with exposure P; := Uip” we get the

estimate (see 3.2)
J-1

M= Comang + Y BB
k=I—1

Defining the link ratios via

we get the same form as in (3.1). Therefore, the Bornhuetter-Ferguson method can be
looked at as Complementary-Loss-Ratio method with exposures UP™".

Remark 3.9

There are other stochastic models that lead to estimators of the form (3.1), see for instance
[18, Section 6.6].

»
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3 Other classical reserving methods 3.3 Benktander-Hovinen method (BHM)

Basic idea behind the Benktander-Hovinen method

The basic idea of BHM is to apply the Bornhuetter-Ferguson method on the Chain-
Ladder method estimation with the weighted a priory ultimate

UiBHMpri — TAleM +( _Z)Uzpm _ Ci,Ifi + (1 _’l\i)Ume CBFM7
and the link ratioslAi of the Chain-Ladder method. Therefore, we assume that

0<7;<1.
Then we get the estimate

CPM = Cirmi+ (1= ;) CEM.

Remark 3.10
Connection between BHM, BFM and CLM
o BHM was independently developed by Benktander, see [14], and Hovinen,
see [16].
o The BHM is a twice iterated BFM with Chain-Ladder link ratios.
o Iterating BFM further will finally lead to the CLM Best Estimate, see [17].
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Basic idea behind the Benktander-Hovinen method
“The basc dea of BHM is 1o aply the BormhueterFrguson method on the Chai
Ladder method estimtion ith the weghted 3 prory ulimate

Gl (1T = I

Then'we et the esimate

= i+ (1 TN

Remark 3.10
Connection between BHM, BFM and CLM
- BHM was independently develoed by Benkiander, s [14], and Hovinen,
s [16]
HIM s 3 tice itersted BFM vith Chai-Lacder Ik ri.
- trating BFM furher will inally lead to the CLM Best Estimate, e [17]




3 Other classical reserving methods 3.4 Cape-Cod method (1/2)

Basic idea behind the Cape-Cod method (CCM)

We have seen that the Best Estimate reserves of the Chain-Ladder method depend heavily
on the last known diagonal, which makes this method vulnerable to outliers of C; ;_;.
The Cape-Cod method uses an external given exposure P; to smooth the last diagonal.
Therefore,
1. We assume that there exists a k with
Ci1—i = Kl P;

where I; := k T z(/\c'-M)*1 are the link ratios of the CLM.
2. Then we estimate « by
DY e e
>imr- g Libs

3. Finally, we calculate the reserves with CLM where the values C; ;_; are replaced by

CEM = 71, P,.

2

CEM =i+

Then we get J_1
( [T 7Mes - Cff“’l) =Ci-i+ (1=L)RP.  (32)
k=

—1
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3 Other classical reserving methods 3.4 Cape-Cod method

(2/2)

Remark 3.11

o The name Cape-Cod refers to the place where this method has been
introduced for the first time.

o Because of (3.2), CCM can also be seen as a BFM with (by <)
modified a priory ultimate KP;.
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« The name Cape-Cod refers to the place where this method has been
introduced for the first time.
+ Because of (3.2), CCM can also be seen as 2 BFM with (by 7)
modified a prory uimate £F



3l0ther classicallreservingimethods 3.5 Extended-Complementary-Loss-Ration method (ECLRM)
L 3.5.1 ECLRM without stochastic (1/2)

Basic idea behind the Extended-Complementary-Loss-Ration method

The Extended-Complementary-Loss-Ration method is based on a triangle of payments Si{k

and a triangle of the corresponding (changes of the) incurred losses SO
The Extended-Complementary-Loss-Ration method is based on the |dea that:

o The payments of the next development period are proportional to the case reserves
at the end of the current development period, i.e.

k

Sil,k+1 ~ fli Z (Sio,j - Sil,j) = fl%R

Jj=0
o The changes of the incurred losses during the next development period k > 1 are
proportional to the case reserves at the end of the current development period, i.e
0 . 0
Sike1 = SRy

o Accident period are independent.
In particular, that means that all accident periods are comparable with respect to their
development.
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3l0ther classicallreservingimethods 3.5 Extended-Complementary-Loss-Ration method (ECLRM)
L 3.5.1 ECLRM without stochastic

Simple example

Changes of incurred losses S, Payments S},

Case

reserves Rz‘, b

(2/2)

k|0 1 2 3 ik|o 1 2 3 k| o 1 2 3
0 | 50005200 -0.4-160 0.00 0 | 100 05200{05200 1.040 0 -04000.1 400.00
1| 700 0.4[160-0.4-160 0.00 1 | 300 0.4160/05200 1.040 1 | 4001040004 40090
21 90003120/ -0.4-112 0.00 2 | 500 0.6240[0.5140 1.028 2 00j.72800.1, 280.00
3| 55004120 -04-108 0.00 3| 2500515005135 1.027 3 | 3000927001 270.90
o 04 04 00 fi] 05 05 10 il 09 01 00
f = 20500120 — 0.4 Jo = 200le2io — 0.5 fo=1+04-05=09
70 _ =160—160 F1 _ 2004200 - —
fi= 2004400 —04 fi= 4001400 =05 fi=1-04-05=0.1
B=25%=00 fr=9_-190 fo=1+400-1.0=00
i | Ultimate | Reserves | IBNR )
0 540 0 0 The case reserves develop according to the
1 200 10 Chain-Ladder method with f, =1+ f? — fi.
2 008 168 | -112 e If we use CLM we would get
3 562 212 12 ‘ CLM on Payments | CLM on Incurred
S 2710 520 | -100 Reserves | 969 | 398

©R. Dahms (ETH Zurich, Spring 2021) Stochastic Reserving: Lecture 5 RLEVET-{PA}

90 / 240



2021-04-26

Stochastic Reserving
Other classical reserving methods

L Extended-Complementary-Loss-Ration

method (ECLRM)




3l0ther classicallreservingimethods 3.5 Extended-Complementary-Loss-Ration method (ECLRM)
L 3.5.2 Stochastic behind ECLRM (1/3)
Assumption 3.B (ECLRM)

There exist development factors f;"*, m € {0,1}, and covariance parameters
M2 my mg € {0, 1}, such that

Tk
)ECLRM E{ zk+1‘82k] Tt Z_] 0(50 _Sl ) = fi' R, 1,

)ECEM Cov| ST 1, ST, |Bis| = o™ R, . and

i,k+1° k+1

)ECLRM

i accident periods are independent.

Remark 3.12

o Since accident periods are independent, B; ;, could be replaced by Dj,
or by D”k

o Usually, SY 'k and S} |, representing changes of incurred losses and
payments durlng development period k for claims of accident period ¢,
respectively. Then R, are the case reserves at the end of development
period k for claims of accident period i.

4
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Extended-Complementary-Loss-Ration method (ECLRM)

Assumprion 3.8 (ECLAM)
Thee st dselopment s 7.
ST s € 101) e

D e ] = g7

€ {0.1), and covariance parameters

E Cou[s, . ST
e

i accident periods are independent.
Remark 3.12

Since accident periods ae independent, 5, could be replaced by Dy
orby D}

Ustaly, %, and 51, representing changes of ncured losss and
payments during development peio  fo clims of sccident period
respectvly. Then 1, ar the case resrves 3¢ the end of developmen
perod  for csims of accden perod §



3l0ther classicallreservingimethods 3.5 Extended-Complementary-Loss-Ration method (ECLRM)
L 3.5.2 Stochastic behind ECLRM (2/3)

Estimator 3.13 (Future development for ECLRM)

Assume Assumption 3.B is fulfilled. Then for every set of Dy-conditionally
unbiased estimators f;" of f;"* the estimators
k—1

CryECRM _cm Z Il a+ 72— R,

k=I—1i j=I—1

are Dy_;-conditionally unbiased estimators for the ultimate outcome C[";.

Remark 3.14
Usually one takes

I—-k—1 m
=% Rixg  Siin

: I—k—1 :
> R

1=0 h=0

R; 1,
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filled, Then fo every set of Dconditionaly
the
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I—E><tended—Complementary—Loss—Ration method (ECLRM)

2021-04-26

From Assumption 3ABAi)ECLRM it follows that E[Ri,k-f—ll‘Dk} =1+ f,g — f}i)Ri,k- Therefore, we get

—1 k—1
B[O E M| i] = CTlumiyng + Z E{fk [T a+7i -7

k=I—i j=I—i

DI—i:| R 1—i

1

J—1 k— o
=Clu—ins + 2 E{[ Dy.] H -7
=I—

k=I—1 J

DI—i:| R 1—i

J—1 k—
= Ol s T X f)Z”E{ 1 a+7i -7

k=I—i j=I—i

DI—'i:| Ri1—i

J—1 k—1
= =Clu st > T O+#) = FHRia—s
k=I—i  j=I—i
J— k—1
=Clu—iyns + Z 0TI o+ £ = £)E[Rs 1—iv1|Dr—i]
k=I—1i j=I—i+1
J—1
= =Cu_pas T D FRE[Rk|D1-]
k=I—1
J—1
= O+ > E[SThia|Dri] =[O
k=I—1

]



3l0ther classicallreservingimethods 3.5 Extended-Complementary-Loss-Ration method (ECLRM)
L 3.5.2 Stochastic behind ECLRM (3/3)

Remark 3.15

o ECLRM couples payments and incurred losses in a natural way via the case reserves such
that the projections of both triangles lead to the same ultimate, provided we don't have
any tail development. But we will still get two estimates for the ultimate uncertainty as
well as for the solvency uncertainty.

The method can deal with incomplete triangles, where some upper left sub-triangles are

missing, as long as case reserves are available for all recent calendar periods.

It depends heavily on the case reserves. In particular, it may have problems dealing with

portfolios with a high reopening rate, because in such situation the case reserves may be

very small or even equal to zero.

o The method itself is not so well known, in particular under the name ECLRM.

o From a statistical point of view the estimation of the development factors and the variance
parameters is critical since we have to estimate 5.J parameters based on 2.J(I — %)
observed development factors. Therefore, in practise the reserving actuary has to include
other information in order to overcome the lack of observed data (over parametrised
model).

o Because of part iii
like inflation.

o Analogously to what we have done for the Chain-Ladder method, see Section 2, we could
derive formulas for the ultimate uncertainty as well as for the solvency uncertainty.

)ECLRM of Assumption 3.B, ECLRM cannot deal with diagonal effects
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We will analyse uncertainties in the more general case of Linear Stochastic Reserving methods,
see section 4.



3 Other classical reserving methods 3.6 Other methods

Other methods

There are many more methods used for reserving. Some of them are based on
a stochastic model and some not. For instance:

Frequency severity models, which model the claim frequency and the
severity separately.

Generalised linear models (GLMs) are sometimes used for reserving.
Munich-Chain-Ladder method, which tries to project payments and
incurred losses simultaneously.

Bayesian models, which model development factors as random variables.
Distribution based models, which assume some kind of distribution and
fit the corresponding parameters based on the observed data.

The over-dispersed Poisson model, which leads to the same estimates
for the reserves like the Chain-Ladder method we have discussed. But
the estimates for the corresponding ultimate (or solvency) uncertainties
are different.
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Other methods
There are many more methods used for resening. Some of them are based on
3 stochstc madel and some not. For instance:
+ Frequency severity models, which model the claim frequency and the
severity separaely.
+ Generslised linear models (GLMs) are sometimes used for resenving:
+ Munich-Chain-Ladder method, which trissto project payments and
incurred losses simultaneously
+ Bayesian models, which model development factors 25 random variables.

the estimates fo the corresponding ultimate (or sovency) uncertanties
are diferent.
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A llinear:Stochastic:Reserving imethods 4.1 How do Linear-Stochastic-Reserving methods (LSRM) work
L 4.1.1 LSRM without stochastic (1/2)

Motivation for LSRMs

All the methods we have seen up to now can only handle one or at most two
triangles. In order to estimate Best Estimate reserves we could simply add the
estimates of all portfolios, but how to deal with the uncertainties? Depending
of the portfolios we would expect some diversification effects, caused by the
law of large numbers, and some dependencies, caused for instance by:

« same underlying risk (hail storms for property and motor hull)
o monetary and superimposed inflation
« changes in insurance contracts (deductibles)

In practice one often takes a covariance matrix to couple the uncertainties of
portfolios, but how to estimate such covariance matrices?

Moreover, there are simple dependencies, which cannot be modelled even for
the ultimate outcome. For instance, it is intuitive that future subrogation
(regress) may be approximately proportional to the sum of all payments up to
know.
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L How do Linear-Stochastic-Reserving methods (LSRM) work

Motivation for LSRMs
Al the methods we have seen up to now can only handle one or at mst two
triangles. I order to estimate Best Estimate reserves we could simply 3dd the
estimates of all portolcs, but how to deal with the uncertaintes? Depending
of the portialios we would expect some diversficaton effects, caused by the
Taw oflage numbers, and some dependencies, caused for instance by

+ same underling risk (hail storms for property and mtor hul)

+ monetary and superimposed infation

changes i insorance contracts (deductibls)

In practice one often takes a covariance matri to coupl the uncertantis of
portolcs, but how to estimate such covariance matrices

Moreover, there are simple dependencies, which cannot be modsled even for
the utimate outcome. For instance, it is intuitve that future subrogation
(regress) may be appraximtely propertonal o the sum of all payments up to
know,




A llinear:Stochastic:Reserving imethods 4.1 How do Linear-Stochastic-Reserving methods (LSRM) work
L 4.1.1 LSRM without stochastic (2/2)

Basic idea behind Linear-Stochastic-Reserving methods

Linear-Stochastic-Reserving methods are reserving methods for a whole collection
of claim properties S}'}. (triangles), which may be

o payments

o incurred losses

o number of reported claims

o small or large claims

of the same or different portfolios.

The basic assumption behind LSRMs is that the changes of each claim prop-
erty S7}. are approximately proportional to an exposure R}, which is a linear
combination of claim properties of the past. 7

For instance, denote subrogation by Sgk and other payments by Szlk Then we
could take

1 ~ £l 1 0 ~ £0 0 1
Stea = fiY Sty and Sl DY (S); +SE))
=0

J=0

S
ko

v
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Basic idea behind Linear-Stochastic-Reserving methods

methodsfo a whole collection

« number of reported chims
= small o large chims

fleent porfolos.
ption behind LSRMs i that the changes of each clim prop-

ately proprtiona to an exposure R}, which is 2 nea|
of claim propertes of the past
dencte subrogation by 57, and other payments by %, Then we

Sam A S Y s



A llinear:Stochastic:Reserving imethods 4.1 How do Linear-Stochastic-Reserving methods (LSRM) work
L 4.1.2 Stochastic behind LSRMs (1/8)

o-algebras (repetition) o B;; is the o-algebra of all information of accident period i up
to development period k:
Big =0 (S7%: 0<j <k, 0<m< M)

=0 (Cf5:0<j<k, 0<m< M)

e D;; is the o-algebra containing all information up to accident
development period period 7 and development period &:
k

J
0 : Dij =0 (S, 0<h<i, 0<j<k0<m< M)
:U(Bh,k: 0 < h < ’L)
- o D" is the o-algebra of all information up to calender period n:
.2 . .
gi n D”::cf(Si’k:OSZﬁI,OSkSJ/\(nfz),OgmgM)
= 7 I JA(n—i)
[
2 =0 U U Bk
® i=0 k=0
calendar o Dy is the o-algebra of all information up to development
period period k:
I D=0 (8,;:0<i<I,0<j<k 0<m<M)

~(Us)

e D} :=0 (D"UDy)
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The o-algebra D} is used in order to separate two arbitrary payments Si"l”k and Sm2k2 with
(41, k1) # (i2,k2). That means, for all (i1, k1) # (i2, k2) there exists n and k such that

(s, €Dy and 73, ¢DR) or  (SIM, ¢Dp  and ST €D}).

i1,k1



A llinear:Stochastic:Reserving imethods 4.1 How do Linear-Stochastic-Reserving methods (LSRM) work
L 4.1.2 Stochastic behind LSRMs (2/8)

Assumption 4.A (Linear-Stochastic-Reserving method)
We call the stochastic model of the increments Si'y @ Linear-Stochastic-Reserving
method (LSRM) with

o development exposures R € Diy, which depend linearly on the claim
properties, and
e covariance exposures le’mz € Dix,

mi,m2

if there exist constants f]" and o such that

|)|‘SRNI for all m, i and k, the expectation of the claim property et under the
condition of all information of its past D”k is proportional to R}y, i.e.

E[[S7% i [DF] = fi R

ii)"SRNI for all mq, ms, i and k, the covariance of the claim properties Sﬁlﬂ and
Sﬁf ', under the condition of all information of their past ijk is

proportional to mkl M2 e,
i+k mi1,m2 pmi1,m2
COV{ DR+ zk+1‘D } op R

y
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We will call the parameters f;™ and crml’

parameters, respectively.

The stochastic model of LSRMs was introduced in [21]. Unfortunately, this article
contains some typing errors, which make the implementation very hard. Therefore, a
corrected version can be obtained by the lecturer. However, in the next lectures we will
use a different approach to derive estimators of the uncertainties.

A GPL-licensed implementation of LSRMs (ActiveX component and a corresponding
Excel interface) can be obtained from http://sourceforge.net/projects/Isrmtools/ .

The choice of the exposures Rm,C and le’m2 is of great importance. Unfortunately, we
neither can provide a statistical nor a general heuristic concept for this choice. In some
cases there is portfolio based information that may help with the choice of exposures, for
instance for subrogation. Another useful technique is back-testing, that means to look
for exposures for which we see now that the corresponding projections would have been
reliable in the past.

™2 development factors and covariance


http://sourceforge.net/projects/lsrmtools/

4 Linear-Stochastic-Reserving methods

4.1 How do Linear-Stochastic-Reserving

methods (LSRM) work

L 4.1.2 Stochastic behind LSRMs (3/8)
LSRM step by step
S0 k St
S0 M
i,k+ ik+
044
M
Dk |2 i
RO \ k Rl
0 1 M
] Bk ) Rk ) Rk
(2 (2 (2
y
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FZLk denotes the linear operator that generates R;’fk.



A llinear:Stochastic:Reserving imethods 4.1 How do Linear-Stochastic-Reserving methods (LSRM) work
L 4.1.2 Stochastic behind LSRMs (4/8)

Remark 4.1 (Dependencies of accident periods)

o There is no additional assumption about independent accident periods

necessary!

o Roughly spoken, part ii)"SR'\/I means something like: ‘accident periods

are uncorrelated up to the first column’.
This means LSRMs are affected by (changes in) inflation, too! ®

o But known diagonal effects can be easily compensated by changing the

exposures.

mi,m2
i,k

o The choice of the exposures R, is not completely free. They have

to fulfil the covariance assumption ii)LSRM, which means that all

resulting corresponding covariance matrices have to be positive
semi-definite.
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L How do Linear-Stochastic-Reserving methods (LSRM) work

Remark 4.1 (Dependencies of acidet perods)
 Thee i o adiionl ssumpion sbot independent accident periods
necesy ©

« Roughly spaken. part i)/ means something Ihe: ‘sccident perods
o unconeated up to the it colamn
“This means LSRMs ar afectd by (changes i) infation too! @
« But known disgonal efects can be casly compensated by changing the
+ The choic of the exposures

is not compltely free. They have
o fulfil the covariance assumption 1)
resulting corresponding covari
semi-definite

which means that all
atrices have to be posiive




A llinear:Stochastic:Reserving imethods 4.1 How do Linear-Stochastic-Reserving methods (LSRM) work
L 4.1.2 Stochastic behind LSRMs (5/8)

Lemma 4.2
Assume ST, satisfy Assumption 4.A. Then

2) E[S7h1[D"**] = B[S [ D] = E[STh 11| Di]

E[ zk+1‘Dl+kka} 'R
+k
b) COV[SZE+17 zk-&-l‘pZ } {zk-&-l’ zk+1‘IDk} COV[ zk+1’ zk+1‘Ile}
= COV[ e zk+1‘,Dz+ ka} Z“’mQRTkl’m2'

c) Cov[ D”} =0, for j1 # Jo.
d) provided that all exposures R depend only on the i-th accident period, all accident

periods will be uncorrelated under the knowledge of some past, i.e. for all o-algebras
Dy, all iy # iy and arbitrary ki1, kz, m1 and my we have

ma
n+1—J17J1 »Mn+1—j2,52

Cov [S

2

1k1’S

12,k

Dﬂ —0.

e) If we have independent accident periods the conditioning on D}jk could be replaced
by conditioning on B; .

y
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S I—How do Linear-Stochastic-Reserving methods (LSRM) work
i
N
=)
5%
a),b) Follows from the measurability of Rmk and le "2 with respect to D; .

c) Assume that j; > jo. Then s

nt1—jo.jo is Djlfl—measurable and we get

my mo
C°"[Sn+1—.7‘1,j1*Sn+1—.7‘2,j2|D ]
_ my n mo n n my ma n n
= Cov[E[Sith s, 5y (PR 1] B[Sy o [P )PP B[OV [T s 51 SR gy 5y [PT 1] P7]

s™1 n
mq ; _omq mq Fts s D -measurable
E[Sn+1—j1,.7‘1 ”D.;Ll_1}_f.7‘1—1R"+1—_7‘1,.71_1 is D measurable Fntignan ™ Pi-1

=0

d) If S?lllk or SL2 o is measurable with respect to Dg we are done. Otherwise, D',’CL is a subset of

pittki—1 o D72+k2—1

vy . . mo .
kq—1 and S'il kS measurable with respect to the past of S,i21k2 or vice versa.

. k
Without loss of generallty assume that S:Zlkl is Dzét 12 —measurable. Then we get

S, ol o]

C°"{S i1,k1 Pig, k2 ko —1

::1761 5122k2 ‘D’:L] = E{COV {S
+ Cov[E[s7, [Pizth2 1] E[sm2, Dtz op]

n
_O+COV[ i1, kl’f’czflRlz k2*1|‘D’C]‘
’”1

mo

Since R:’; ko —1 € B, ky—1 and depends linearly on S it is enough to show that S; i ko —1

and S,
k1

my mo

are ’Dg—condltlonal uncorrelated. Iteration until S cor S, 4 .
1,k1—J i2,k2—J

is ’Dk—measurable proves part d).
e) Because of independent accident periods.



4 Linear-Stochastic-Reserving methods

4.1 How do Linear-Stochastic-Reserving methods (LSRM) work
L 4.1.2 Stochastic behind LSRMs

Remark 4.3 (CLM as LSRM)

Because of Corollary 2.3, i.e

E [Sz‘o,kﬂ ‘Dlifk]

0 0 itk
Cov [Si,k—i-lv Sik+1| Dy ]

k
(f =18 = (fp = DCip
7=0

k
2 0o _ 2

Ukzsi,j = Ukci,kv
=0

the Chain-Ladder method is a LSRM with exposures

and parameters

0 _ p00 _
R = R)Y = Ciy

0
P=f-,
00 _ 2
Uk —O'k.

(6/8)

y
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Remark 4.3 (CLM a5 LSRM)
Beca

Corallary 23, i

E[sthn[Pi] = (5

the Chain-Ladder methad is a LSRM
Ry

and parameters

Y8 (-

exposures




A llinear:Stochastic:Reserving imethods 4.1 How do Linear-Stochastic-Reserving methods (LSRM) work
L 4.1.2 Stochastic behind LSRMs

(7/8)
Remark 4.4 (CLRM as LSRM)
If we set gl . P, fork =0,
0, otherwise,
then the Complementary-Loss-Ratio method can be rewritten as
E|Siia [ D] = £ P
i+-k mi,m2
E[Szk—i—l’ zk—f—l‘D ]_Uk: B
with parameters
0 1
20—013 and Ugl—aio—ail—o.
Therefore, it is a LSRM with exposures
0 _ pl _ p00_ p0l_ pl0o_ pll_ p
Riy=Rijp=R,, =R =R} =R =D
©R. Dahms (ETH Zurich, Spring 2021) 1Y BTN EETV I S R ITNCN 31 March 2021 104 / 240



2021-04-26

Stochastic Reserving
Linear-Stochastic-Reserving methods
I—How do Linear-Stochastic-Reserving methods (LSRM) work

Remark 4.4 (CLRM as LSRM)

£ e set

with parameters

and

o and
Therefre, it s  LSRM with exposures

R = Rl = R = R

A=l =r



A llinear:Stochastic:Reserving imethods 4.1 How do Linear-Stochastic-Reserving methods (LSRM) work
L 4.1.2 Stochastic behind LSRMs

Remark 4.5 (BFM as LSRM)

Since we can look at BFM as a Complementary-Loss-Ratio method (see Re-

mark 3.8), it can also be interpreted as LSRM.

(8/8)

Remark 4.6 (ECLRM as LSRM)

By definition the Extended-Complementary-Loss-Ratio method is a LSRM

with exposures
k
00 _ 501 _ pl0_ pll _ 1 0
Rijpy = Rij = B) = Ry = Z(Si,k — Sik)

and parameters f;” and o,
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Remark 4.5 (BFM as LSRM)
Since we can lock at BFM as a Complementary-Loss-Ratio methad (see Re-
mark 3.8), it can also be interpeted 35 LSRM.

Remark 4.6 (ECLRM as LSRM)
By defintion the Extended-Complementary-Loss-Ratio method is 2 LSRM
with exposures

R = R = R = Y = 3k - )

and parameters [ and o



4 Linear-Stochastic-Reserving methods gr2iiutnteiceveiopmens
L 4.2.1 Projection of the future development (1/5)

Estimator 4.7 (of the development parameter f}*)

Let S}'}. satisfy Assumption 4.A. Then for each set of D! N Dy-measurable weights wyy, with
o w;’fk >0 and Rl’-flk =0 implies wZ‘k =0,
. Zf;ol_k wy, =1 if at least one R} # 0

we get that -1k gm
e ik+1
. = Wik (4.1)
i=0 ik

is a Dy-conditionally unbiased estimator of the development factor fi"* and the weights

m 2 I-1-k m 2\ 7!

o (B[ (R)

Wi = R ORI P (4'2)
ik o Dnk

result in estimators fi™ with minimal (Dy-conditional) variance of all estimators of the

form (4.1). R N
o For every tuple ", ..., fI'" with ki < kg <--- <k we get

E[f - Fr|Dw] = s s = E[R

Dkl} ...E [fk":r

Dkr] ;

which implies that the estimators are pairwise Dy, -conditionally uncorrelated.
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<
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—
N
o
N
. . i itk 1k
e unbiased: o I—1—k {E [S{:lk+1|Dk ”Dk] I—-1—k . flc R:nk .
E[F|e] = Z wy T = ik m = Tk
i i,k i=0 i,k
e minimal variance: Var {fgn] = E[Var [fA,Z” "Dkﬂ + Var{ [f,z” "Dkﬂ = E{Var {fm’ Dkﬂ +0
I—1—k sm I—1—k Var[sm |‘D I—1—k R M
7 i,k+1 i,k+1| 7k m,m m i,k
Varf\km"Dk = Var Z wmkti’D,c = Z (w k) — Y =0} Z (w k) —
[ ] = K3} R?,llc i (Rzzk)2 = A (R"’ )2
measurable with respect to D, ii)LSRM
RI™
Lagrange: minimize 21_1_ (w )2R1T1)2_ + A (1 — Z{:Ol_k w:’}k)
RM™ A (R )2 I-1—k (R )2 1
G ® =W s A = Wl = o and A =2 e
6wi,k ' (R’i,lc) ' 2 R} i=0 R’i,k
SiZg TR e =t
X My Fmge _ Fmy mn
e uncorrelated: E f,c1 fkr =E|E f,c1 Dk,

~r M1 _[n
=E|f T e[ |

~m Mg
{f 1 ”‘fk "

- ]

Dkl]fmr _ _ fml fmr




4 Linear-Stochastic-Reserving methods gr2iiutnteiceveiopmens
L 4.2.1 Projection of the future development (2/5)

Definition 4.8 (Diagonal by diagonal projection)

Since the exposures R} depend linearly on claim properties, there exist linear operators
', which generate these exposures. We now want to formalise the diagonal by diagonal
projection. Therefore, we denote by

#=H#{(m,i,k): 0<m <M, 0<i<I,0<k<J-1,0<i+k<n}
the number of claim properties below or on the diagonal n and define

itk
Fli(g): R S R: F(g):= gliTT,
xZLkv |f ’L +4 ,IC S n,
F_1(g)x, otherwise,

2611 (o) . R#F #r2th, 2411 () s F2(g)o---0F"(g), if ng >mny,
FHe): R o R PFETe): {H#WH, otherwise,

Fig): R 5 R (Fr(g)x)l= {

m

FMg): R 5 R Fg)x = (FHe)x)

where II#" denotes the projection onto R#" and g is any large enough vector with co-
ordinates g

4
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Since the operators ', and F]% (g) only depend on coordinates (I, h, j) with
0<m<M, 0<h<i 0<j<k
they could be defined on a smaller domain, but than concatenation would not be

possible.

We added the parameter g in order to denote which development factors are used, for
instance the real, but unknown, development vectors f;™* or their estimates f;™.

Often we will use parameters g, which do not depend on the accident period i. Then we
will skip the index i in g™ .



4 Linear-Stochastic-Reserving methods gr2iiutnteiceveiopmens
L 4.2.1 Projection of the future development (3/5)

Lemma 4.9 (multi-linear structure of F)

For all i +k > n and for all Y € D" there exist random variables

ka";lfl fwl’ . € Dix N D", which depend linearly on the coordinates
of Y, such that for all g
k+i+1-—n
‘Fﬁ;n(g) Y = Z Z gﬁllhjl ' ghr,JrX;an;lﬁ7 hl:,j17~~~,jr'
=L o<ty <M
0<hi,oshy <i

n—i<j1<--<jr<k

Remark 4.10

That means we have a multi-linear structure in the development factors as
well as in the claims properties, like in the Chain-Ladder case.
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If i+ k < n then
F" (@)Y =Y, € Dy N D"

If i+ k=mn we get
f;jlk’n(g)Y =g, kY
——

€D; ,NDitk

because T']", 'Y depends only on coordinates of Y which are D; ;, N D**t* measurable.
Now assume that the statement is fulfilled for all n, h, j with n < h 4+ j < i+ k. Then we get

V(@)Y = Fli(g) o FIHFTI N (@) Y = gl I o FUHET I (g) Y

By assumption the statement is fulfilled for each coordinate of (.’F”k’lgn(g) Y)lh j and since
™. depends only on coordinates h < i and j < k, only development factors gh S with n — ¢ <

J < k are involved, which by induction proves our statement.



4 Linear-Stochastic-Reserving methods gr2iiutnteiceveiopmens
L 4.2.1 Projection of the future development (4/5)
Remark 4.11

o The mapping F"(g) fills the (n + 1)-th diagonal of all claim property
triangles based on all diagonals up to the n-th diagonal.

o The functional E”}C(g) does depend on coordinates up to accident period %
and development period k, only.

o Fli(g)x= ('7:l+k<g) x)i,k-i—l'

o R} =T SHF,

- E[Sms D”’“} Fr(6) 7,

° E[Sn1+n2+1}'Dn1] _ ];'n1+n2<—n1 (f) Snl,

m 7 m,i+k i
° E[ i,k+n+1‘D N Dk} = E{ i k+n+1’Dk+k} = }—m:;l (f)S™F,

where f := (f,?)gézanM denotes the vector of the real (but unknown) develop-
ment factors and
S” .— ( m)ongM
T \Pik/0<i<], 0<k<J, 0<i+k<n

is the vector of all claim properties below or on the diagonal n.

©R. Dahms (ETH Zurich, Spring 2021) S1Ye EETN EETV I S R ITNCGN 31 March 2021 109 / 240



2021-04-26

Stochastic Reserving

Linear-Stochastic-Reserving methods

Future development

E[Sn1+n2+1 |Dn1] —

E[SZLH”H‘D?k] _ (]:i+k+n<—i+k( )Sz+k)

— Fritnz (FE [S"l +ng |’D"1] =

E[E [S"l +n2+1 |Dn1 +n2]|Dn1] —

I3 k+n+1

E [_7:"1 +n2 (f)s™ +n2 |D"1]
= ]:nl +ng<—ny (f) Sn1

k
Flii (£)S™h



4 Linear-Stochastic-Reserving methods gr2iiutnteiceveiopmens
L 4.2.1 Projection of the future development (5/5)

Estimator 4.12 (of the future development)
Let ST, satisfy Assumption 4.A. Then

Sm = f"“() I—i<k<J

are Df_i—conditiona/ unbiased estimators of E [S;”,’€ H‘DI ]

Moreover, we define ST = v m., fori+k <1, and

= F?fksi*’“ and R = TSR

where le’

™2 denotes the operator that generates R based on S"TF.
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where 1} denotes the operator that generates R} based on S+
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We will even prove that §Z”k+1 is an Dj_j-conditionally unbiased estimator of E[S{”kJrl |DI] for all h > i. We
will do that by induction. If i + k = I we get for all h > i

E{A%H‘Duh} = E[E[§r31k+1|Dk]|DI—h} = E[E[W’Rzlk Dk]|DI—h} = E[E mﬁ" Dk}RZlk‘DI—h]
= E[fIZnR«Tk|DI—h} = EI:]:‘L’nk (f) SI‘DI—h} = E{E [SZI,LA-,+1|DI]|DI—%L}<
N
Estimator 4.7 Remark 4.11

Now assume that the statement is fulfilled for all i + k < n. Then we get for i + k =n and all h > i

E[%H\Dz_h] = E{]:Zlk (f) §Hk‘DI—”J = E{E[}-m&‘ (?)|D’“}§Hk‘DI—h}

= E[F.(6) 87T Dy ] = F(6) E[STHF Dy ]

Since ]-'{”k (f) depends only on accident periods h1 < 4, all coordinates E{§£}1 i |‘DI—h} of E[gH'k ‘Dl—h] with

hi1 > © will not be taken into account. For all others we can apply the induction hypotheses and proceed with

= F(8) E[STF|Dr | = E[E[8Th 4 | DL ]| D1 o] = E[E[STra [P7]|Pr o]

m|

induction hypothesis Remark 4.11
Note, since R,’:nkl’ma is Ditk measureable, there always extists an operator F;nkl'mQ
RM1M2 F’."’lY’"’Q githk. ’
ik ik

such that



4 Linear-Stochastic-Reserving methods 22 (T Gl tepmma
L 4.2.2 Examples (1/4)

Example 4.13 (Swiss mandatory accident portfolio: part 1 of 3, see
LSRM _Accident ActiveX.xlsx)
We have the following three main types of (non annuity) payments:

o Medical expenses (ME) will be estimated by CLM, because it worked fine in the
past.

« Payments for incapacitation for work (IW) are by law proportional to the
insured salary P;, which is limited to a maximum amount. Moreover, during
accident period 7 the maximum insured salary has been increased by about 20%,
valid for all claims happening afterwards. Therefore, we would like to take CLRM
with the insured salary as external exposure.

On the other side, we know from the past that the claim frequency is influenced by
the economic situation, which is better reflected by CLM than by CLRM.
Combining both we take a mixture of the exposures of both methods, whereas the
weight of the insured salary is k"1,

« Subrogation (Sub) possibilities are huge, because many claims are caused by car
accidents and by law the accident insurer of the insured persons has to pay first and
may take subrogation against the motor liability insurer afterwards.

Therefore, we assume that the amount of possible subrogation is proportional to
the total amount that already has been paid, i.e. to ME4+IW-Sub.
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We bavethe folloing o s of (nom snovity) payments:
- il s (ME) il it by CU. s e ke

it sk hat e coim fruency i fnced by
his b efcid by CLM by LM,
mehods, wheress o

+ Subrogat s b, bcause mar s e cued by
scidents and by v th scidnt rre prsos b oy 308
may take subecgation against themotr et s

Theefore, e sesume tht the amaunt Subogaton s proporions 10

he ot s hat sy b e p .10 ME LW 14




4 Linear-Stochastic-Reserving methods 22 (T Gl tepmma
L 4.2.2 Examples (2/4)

Mathematical that means:
We have four claim properties with exposures
. po _ p00 _ <k 0
ME: R}, = RiJc = Zj:O Si,j

Z?

1,1 k j j
IW: Rl,k =R = Zj=0 (/{J“Sij +(1- 51+1)S,»17j)

7
P2 p22 _k 0 1 2
Subs Ry = Ry =250 (Si,j +5i+ Si,j)
Salary: Sf’,o =P, Sij =0, for j >0, and
3 p30 - p03 _ p3l_ pl3_ p32 _ p23_ p33
Ry =Ry = Rj = By = Ry = Ry = Ry = Ry =0
For the not yet defined exposures we take the total payments up to now, i.e.

0,1 _ pl0 _ p02 _ 20 _ pl,2 _ p2,1 _ —k 0 1 2
Ri,k = Ri,k = Ri,k = Ri,k = Rz‘,k - Rz’,k - Zj=0 (Si,j + Si,j + Si,j)'

Resulting Best Estimate reserves

o Depend almost linear on «, because it practically influences only the first
development period, that means the most recent accident period 7 = 8.

o Are much higher than the CLM on total payments (small circle on the left), if
k = 1. The main difference is in the most recent accident period i = 8.

o Are slightly smaller than CLM, if x = 0. This may be a consequence of the more
detailed modelling of subrogation.
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4 Linear-Stochastic-Reserving methods 22 (T Gl tepmma
L 4.2.2 Examples (3/4)

Example 4.13: Best Estimate reserves in dependence of x

157'000

152'000

147°000 -

CLM -~

142’000 o T T T T T T T T T 1
0 01 02 03 04 05 06 0.7 08 09 1.0 g

v
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The estimated covariance parameters Eznl’mQ together with the estimated exposures
ﬁzzkl,mz lead to covariance matrices which are slightly non-positive definite for
development periods k € {5,6,7}. Since the corresponding negative eigenvalues are
almost zero, we believe that it is not a model but an estimation problem. We could
change the estimated covariance parameters slightly in order to get non-negative
covariance matrices without changing uncertainties a lot.




4 Linear-Stochastic-Reserving methods

4.2 Future development
L 4.2.2 Examples

Example 4.14 (ECLRM vs. CLM, see Examples 2.7 and 2.8: part 1 of 3, see
LSRM Examples ActiveX.xlsx)

We have seen that the Chain-Ladder method leaves a gap between the Best Estimate
reserves based on payments and the one based on incurred losses. Moreover, we have

closed this gap by a credibility like weighting.

Now we want to look at the corresponding results, if we take the case reserves as exposure

(4/4)

(ECLRM):
Best Estimate reserves

AP | CLM paid | CLM incurred | CLM weighting | ECLRM | Case Reserve
0 - - - - -

1 114086 337984 228182 314902 352899

2 394121 31884 203653 66 994 75316

3 608 749 331436 458 946 359384 410496

4 697 742 1018350 877247 981 883 1148647

5 1234157 1103928 1157520 1115768 1317088

6 1138623 1868 664 1587838 1786947 2216 536

7 1638793 1997651 1862 844 1942518 2923692

8 | 2359939 1418779 1750635 1569 657 2756633

9 1979401 2556612 2412410 2590718 2203446
Total | 10165612 10665 287 10539276 | 10728771 13404753
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CLM on incurred, CLM weighting and ECLRM lead to similar results, whereas the later
reflects the information contained in the case reserves at best (see third accident period
i=2).

In total the results of CLM on payments are in the same range like the others, but the
estimated reserves for individual accident periods are quit different.
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4 Linear-Stochastic-Reserving methods 4.2 Future development
L 4.2.2 Examples

4 Linear-Stochastic-Reserving methods
4.1 How do Linear-Stochastic-Reserving methods (LSRM) work
4.1.1 LSRM without stochastic

4.1.2 Stochastic behind LSRMs

4.2 Future development

4.2.1 Projection of the future development

4.2.2 Examples

4.3 Ultimate uncertainty

4.3.1 Mixing of claim properties

4.3.2 Ultimate uncertainty

4.3.3 Estimation of the covariance parameters

4.3.4 Examples

4.4 Solvency uncertainty

4.4.1 Estimation at time [ + 1

4.4.2 Solvency uncertainty

4.4.3 Uncertainties of further CDR's

4.5 Examples

4.6 Estimation of correlation of reserving Risks
4.6.1 Avoiding correlation matrices for the reserving risks
4.6.2 Using LSRMs to estimate a correlation matrix
4.7 Literature
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4 Linear-Stochastic-Reserving methods 4.3 Ultimate uncertainty
L 4.3.1 Mixing of claim properties

Mixing weights

In the last lecture we derived unbiased estimators for the future development of Linear-
Stochastic-Reserving methods. Now we want to look at the corresponding ultimate

uncertainty.

We have seen in Estimator 2.15 and Examples 4.13 that we are often interested in
a linear combination of claim properties. Since claim reserves are expectations such
mixing can be transferred to the corresponding Best Estimate reserves. But, because
of diversification and dependencies, the mixing of claim properties has an influence on
the estimated uncertainties. Therefore, we will look at the ultimate uncertainty of

M J—1
m m
Q; Si,k+1
m=0 k=

~

—1

where a7 are D!-measurable real numbers.

That means we want to estimate

M J-1
m m
msepr E Q; E i,k-+1
m=0

k=I—1

and

and

M I J-1

M T J—1
m m
msepr E E o, E ik+1|-
m=0 i=0 k=I—i

y

©R. Dahms (ETH Zurich, Spring 2021) Stochastic Reserving: Lecture 7 [ENN.T7|B-lophk

115 / 240



Stochastic Reserving

Linear-Stochastic-Reserving methods

Ultimate uncertainty

2021-04-26

Exapmles for mixing:

Combination of two portfolios (weights are equal to one).

e Combination of two Chain-Ladder projections, one for payments and one for incurred
losses (weights sum up to one for each 7).

e Adding dependent payments, for instance subrogation and normal payments, which are
projected separately (weights are equal to one).



4 Linear-Stochastic-Reserving methods gespiltipateflncertanty
L 4.3.2 Ultimate uncertainty 1/7)

Decomposition of the ultimate uncertainty
M oI J—1 M
msepr ZZ@T §Z}’C+1 = Var ZZ a;’ Z Sik+1|D
m=0 =0 k=I—1i m=0 i=0 k=I—i
random error
M oI J-1 2
(Y Y e[St Si|D]
m=0i=0  k=I—i
parameter error )
Remark 4.15
The ultimate uncertainty of a single accident period or a single claim property
can easily be obtained from the general formula by setting some of the o}"

to zero. )

©R. Dahms (ETH Zurich, Spring 2021) Stochastic Reserving: Lecture 7 [ENN.T7|B-lophk 116 / 240




2021-04-26

Stochastic Reserving
Linear-Stochastic-Reserving methods

Ultimate uncertainty

Decomposition of the ultimate uncertainty

Remark 4.15
The ultimate uncertanty of a single accident period ora single chim proper
can easly be obtained from the general formula by seting some of the o
to zeo




4 Linear-Stochastic-Reserving methods gespiltipateflncertanty
L 4.3.2 Ultimate uncertainty (2/7)

Taylor approximation
Like in the Chain-Ladder case we will look at the functional

Ug)x:=»_ > a (Zxk+ Z )

m=0 i=0 k=I—1
Then we get:

. U(g)x — U(g) ;lo)x
ah,jU (8)x = = -
g=g n,j

oU(g)x
hd

= U(gh,jll)x - U(géz,j‘())X?

where glhj|a denotes the vector g with exchanged coordinate géj =a.
Moreover, we have

M T J
ue)s’=> ) ar ZE [sm.|D'],

;\32 (I) J M I J
u(F)s’ - yary UE)S = 3 S o S s
m=0 i=0 =0 m=0 i=0 k=0
M I J
S ar > (Sn-sm) ~ ZZ Z oh,U(E)s" (Fi, - 1)
m=0 =0 k=0 =0 h=0j=I—h

where we used a first order Taylor approximation and F and f denote the vector of all link ratios
EJ »= STk1/R7, and the vector of all estimated development factors f;", respectively.

D
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Because of Lemma 4.9 U(g)is an afine operator in each coordinate g;", of g. This implies the formula for its partial

derivative.
Moreover, the representations of the expected, estimated and real ultimate are a direct consequence of the definitions

of U and F.



4 Linear-Stochastic-Reserving methods 43 Ultlmate.uncertamty )
4.3.2 Ultimate uncertainty (3/7)

Comparison with Chain-Ladder
Except for some additional summations (and the mixing parameters o) we
have the same form like in the Chain-Ladder case:
I J I
ZZ( Zk>:Z<C’i,J_CZ'7J)
i=0 k=0 i=0
I J-1 A
~ — (FhJ' — f]> .
h=0 j=I—i 1
——
:8;1,]-0(1?)81
LSRM case:
M I J o I
Sy (f-sn) < Y Y () (- )
m=0 =0 k=0 =0 h=0j=I—h
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The partial derivative of the ultimate is a bit simpler in the Chain-Ladder case, because if we

set some development factor fj to zero we get U(?J\O) =0.

Sy (o) = 8 S s (-



4.3 Ultimate uncertainty
L 4.3.2 Ultimate uncertainty

4 Linear-Stochastic-Reserving methods

(4/7)

Preparation for the derivation of the ultimate uncertainty
Like in the Chain-Ladder case we need some expectations and covariances of ﬁm
and
E[F4 D) = E[ [ D] = s itk>1
_ O'mhmszth a\ml,mQle,mz
Cov[ﬂnilaﬂ?p]:E% ! ”’% itk=1
. RZ i R
R R _ I-1-k m1,Mm2
Cov[;c"l, i Dk_: otm2 Z w lkRZkR
Cov|F, Fa, [ D] = 0 (i1, ka) # iz, )
Cov [ﬁﬂfl’ﬁgg Dkl =0 k1 < ko
el (e, - i) (P, = 72 P
; N -
= Cov[F1 Ky Z,ij D }4_ (f;’lll _ f]:fltl) (fZZQ _ fkT;LQ)
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S Ultimate uncertainty
I
=)
9%
4 Ep 0]+ (R - ) (R - 1)
I i+k I 7 I 7 In om . .
E[F]7 D] = E[E[F DL ||| = €[5 D] = £ = B[ D4 ] because f1 is Dj-unbiased
mq mo Il _ my i+k 2 itk I my mo i+k I
Cov[F[L, FN2 | D7) = cov[E[F3} | D1 F] B[R] D HD |+ E[cov[FE, 2 DR D]
R L . B SPTTRRLTR| TGy R
= Cov[fk f 7P :|+ E R™1R™M2 D |=0+E R™IRM2 ~ BRI g2
i,k i,k i,k Lk i,k ik

Tmo Tmo

Cov[fi1, Fin2 | Dk, | = Cov [E[ £ |D,€2] E[Fn
E[(r7 - A0 (PG, - 752) (2]
=e[(r - riyt) - (B = a ) (R0, - 152) = (B - 752)) 2]
=e[(F - ) (R0, - 1)t - el - ) (752 - 1))
e[ - ) (g, - et e[ - ) (R - 572

:cov[F’”l Fm2 ‘DI}—O—O-&- (f,’:l - fgl)(mQ - f,:,’;Q)

tmag

Dua o]+ fea( 7 7

‘DkQHDkl]:O

i,k " di,kg
If i9 + k1 < I or ig + ko < I then F:vlkl € D! or FZ;,QICQ € D! and we are done. Otherwise, since
(i1, k1) # (2, k2), either FZ;L},c1 € D£22+k2 or FZ;L,sz € ’D;;11+k1. Lets assume the first:
ol 0] = Ele i o [P+ el ok [ o1, ]

= 0+ Cov [F«:nkll s f:;z

D’]:o



4 Linear-Stochastic-Reserving methods 43 Ult'mate_uncenamty )
4.3.2 Ultimate uncertainty (5/7)

Estimator 4.16 (Linear approximation of the ultimate uncertainty)

J 2
msep [U(?)sf] =E Z Zarz ( m %) Dl = E[U(F)SI - U(?)SI’DI]
=0
M I J-1 A 2
~ |: ZZ Z awa(f)SI (F}”fﬁ) D! (Taylor approximation)
1=0 h=0j=I—h
Mo J-1 : I I n
~ Z Z Z aflllyh < ) Ialz; J2 ( >SI
11,12=0j1,j2=0 h1=I—j1 ha=I—j2
Cov[Ff s Fi2 ||+ Cov [ 11, 2| Do
random error parameter error

1 éll,?z

~ Z Z o U( >SI 812 ( )SI Glilz i
. i ph pl

Y Rhl,thQ,J

random error

M I—j—1 ﬁll-,IZ

I gl T\l all2 Z Iy, 12 h.j
+ D Z Z g ()S %JU(f)S o WhiVhi F gl
11,l2=0 j=0 hy,ho=I—j h=0 h,j~"h,j

parameter error

v
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In the second approximation we used

E[(Fdn = T (R, — T3) [P ] = cov[mil o 1ol [27]+ (7] —f”)(ﬂé 7;2)
zCov[F;llllyjl,F:LzQ’jQ‘DI]+Cov[fJ ‘D_71/\_72}

and from the preparations above we know

plil2
Cov[ ‘DI}N 1.1 Slil2 hi,d1
hi,41° hz j2 J1=jz+h1=h2%;; AT flz
h1.317 "h2,j2
I—j1—1 Rivl2
P gl 1 1 h,j
C°"[fj} ‘Dnﬂm}”lnfm T X whw h212ﬁ-
h=0 By Brga

This leads directly to the stated estimator.
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Chain-Ladder estimator for the ultimate uncertainty
J-1 9 I J—1 ~9 I 21—k-1_ 2
~ N o ~o 1 o ~ Wy, k
msepr |:C7:,J:| ~ ﬁ Z CivJéi + ﬁ Z Ci,J Z C
k=0 Jk i=I—k ik k=0 Tk N\i=I—k h=0 hik
LSRM estimator for the ultimate uncertainty
AT
msepr [U(f)S ]
M J-1 I pli,l2
~ Iy ol ql2 T\ al 2yl h.j
~ D > ah,jU<f)S ahJU(f)S % {h o pk
I1,lo=0 j=0 h=I—j h,j="h,j
M J-1 I I—j—1 plisla
l1 PAYIES T\l Aliyle I, 2 h.j
+ > Oy ;U (f)s O, ;U (f)s oy WhiVh T T
l1,l2=0 j=0 h1,ho=I—j h=0 h,j="h,j

Stochastic Reserving: Lecture 7
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Because we have several claim properties, squared terms for Chain-Ladder are replaced by
products of claim properties and the corresponding double sum.



4 Linear-Stochastic-Reserving methods 4|'_3 Ultlmate.uncertamty )
4.3.2 Ultimate uncertainty (7/7)

Change of the variance exposures in Chain-Ladder

The Chain-Ladder method assumes variances to be proportional to the cumulative pay-

ments, i.e.
i+k| 2
Var[C i [P = 07C

which leads to vanishing coefficient of variation of (ultimate) uncertainties with increas-
ing volume, see Corollary 2.10. This is one of many arguments against Chain-Ladder.
One way to solve this is to change the variance exposure, for instance to C?,. Then we
get

I 2 S og2 Il g
Ve . 2wi=0Yiyg Ok
VaC | X Cus| | = =% >0 4
i=0 (Zi:o Ci,J) k=i Ji

N2
1 I I—k-1_ 2
J lo']% (Zi:pk Ci,J) h=0 Wik
+ § — 2 Y
i I G
k=0 Jk > i=0Ci g

which does not decrease with increasing volume. Nevertheless, you should always add
some model error.

W
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which doss ot decress wid
<ome model eror

In practice, the choice of the variance exposure does not matter so much, because the estimation
of the variance parameters ai will change, too, which compensates some effects.
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4.3 Ultimate uncertainty
L 4.3.3 Estimation of the covariance parameters

(1/2)

Estimator 4.17 (of covariance parameter o,""""*)

If the normalizing constant

I-1-k ,,m I-1-k ,, m1, m2
w R w!’ w
mi,ma | _ § i,k ”C mi,ma § : h,k™hk
Zlc T M1 pme L—w zk _wzk +R 7 M1, M3 >0
o Uikl h=0 = hk
then the covariance parameter ;""" can be estimated by the following Dj,-unbiased
estimator I-1—k , mi, mo my mso
Smuma 1 Z W; kWi g ik+1 Pmy Bkl Pmg
k — pmima m1,m2 mi  Jk my ~ Jk
Z iy R L

i=0

For Z,""™* = 0 and in particular for k = I — 1 one could take the following extra-

polations, (G2
~m,m . k; 1 ~m,m Amm
O = M| = Op 95 Oy | 5
k—2
1
G gma,ma \ 2
~mi1,m2 ,__ ~Mmi,m2 k k
g = Y%k-1 5L ma e ) for my # mo.

k—1 k—1
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1
< 5 q
S Ultimate uncertainty
—
N
o
N
’771.1 ’771.2 ’771.1 7712
ik+1l  zmy i,k+1  zmo _ ik+1l  zmy ik+1  zmo
E R T Rz T Dy, | = Cov my T ’ rrz Tk Dy
i)LSRM .nd Estimator 4.7
g™ gm2 I—k—1 my mo
_ i k41 ikl my Phok+1 Pi k41
= Cov W,W’Dk — Z Cov wh,kW’WDk
ik ik h=0 h,k ik
I—k—1 sm1 sm2 T—k—1 s™m1 s™
i,k+1  mg Zhk+1 my1 Shik+1l  mg Zhgk+1
- Z Cov R™L > Whk Tpma Dy | + Z Cov YhikTpmt 0 Yhok Tpma D
h=0 ik h,k hi,ho=0 hy,k 'ho,k
my,ma my Lmo [_p_1 . m] mppmi,mg
B R; L my ma By o By i Wy e Wh kB
= T Wik T Wik RS R g2
ik h=0 hok " Ch,k
ii)LSRM and Lemma 4.2
mi,mg I—1—k ,,™1, M2 M1 MY 1, M1 M3 M), MY
elgmim2|p, ] = Ty Wik Wik 1 my 'm2+ i,k R'i,k Yhk™h, kK
— E|%% k| = Zmimg Riipm2 |\~ Wik ~ Yik RS RPLRT2
k i=0 ik Uik ik h=0 bk Uk
hange order of ion in the fourth term

my,mo
%k



4 Linear-Stochastic-Reserving methods gespiltipatefincettanty
L 4.3.3 Estimation of the covariance parameters (2/2)

Remark 4.18 (estimation of the covariance parameter o)

o Even if the real covariance parameter o,'""""** lead to positive
semi-defined covariance matrices

mi,m2z pimi,ma
(‘7 PR

)Oéml,ﬂm <M

the estimated values may not. In particular this may be the case if one
eigenvalue of the real covariance matrix is (almost) equal to zero.
Therefore, we always have to check the positive semi-definiteness of
the estimated covariance matrices.

o The first part of the extrapolation goes back to Mack [22]. Roughly
spoken it assumes that the variance parameter decay exponentially for
later development periods.

o Depending on the data we may get better estimators if we introduce
weights or use other extrapolations.
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Remark 4.18 (estimation of the

ovariance parameter 7]

« Even if the rea covariance p
semi-defined covariance matsi
the estimated values may not. In paticular this may be the case if one
eigenvalue of the real covariance matrix is (amost) equal 1o zero
Therefore, we always have to check the positive semi-defniteness of
the estimated covariance matrices

« The fist part of the extrapolation goes back to Mack [22]. Roughly
spoken it assumes that the variance parameter decay exponentiall for
later development periods.

+ Depending on the data we may get better estimators f we introduce
weights or use other extaplations.



4 Linear-Stochastic-Reserving methods 43 Ul mieErEsy
L 4.3.4 Examples (1/3)

Swiss mandatory accident portfolio: part 2 of 3, see Example 4.13
We have four claim properties with exposures

ME: RY, = R} =S5 89,

IW: RL, = Rij = Sohg (w183, + (1 - with)s},)

Sub: B2, = RIE = YN (89, + 81+ 52))
Salary: S}y =P, S}; =0, for j >0, and

R}y = Ry = R)Y =Ry = Ry = Ry = RjY = Ry =0

For the not yet defined exposures we take the total payments up to now, i.e.
Ry = R = BYY = R = R = B2L = S0 (80, + 81,4 82)).

2

Resulting ultimate uncertainty

o The estimated ultimate uncertainty varies much less then the Best Estimate reserves
(5% vs. 11%).

o Although the estimated ultimate uncertainty is minimal for x ~ 0.3 you should never use
this as criteria to chose the reserving method. For this portfolio, | would go for x =1
(at least for the first development periods).

o For k =0 the ultimate uncertainty is slightly smaller than CLM on total payments
(green circle on the left).

y
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4 Linear-Stochastic-Reserving methods gespiltipatelncettanty
L 4.3.4 Examples (2/3)

Example 4.13: Ultimate uncertainty in dependence of x
claim reserves
157'000
CLM
152’000 ultimate uncertainty/ 8600
- 8500
147'000 - 8400
CLM - - 8300
142’000 -+ T ——~—T——r T T T T T - 8200
0 01 0.2 03 04 05 06 0.7 08 0.9 1.0 ¢
We always show the square root of uncertainties. )
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Even if it looks tempting you must not use the estimates of the ultimate uncertainty to evaluate
which model is the best!



4 Linear-Stochastic-Reserving methods

Example 4.19 (ECLRM vs. CLM: part 2 of 3, see Example 4.14)

In the first part we have compared the Best Estimate reserves. Now we want to look

at the ultimate uncertainty.

ments and incurred losses.:

4.3 Ultimate uncertainty
L 4.3.4 Examples

For the weighing of uncertainties we define R?’,: =R

1,0
ik

as arithmetic mean of pay-

Square root of the ultimate uncertainty

(3/3)

CLM ECLRM

AP | payments | incurred | weighting | payments incurred weighting
0 — — — — — -

1 89423 2553 43873 194 14639 7695

2 234666 5186 109257 4557 5538 4825
3 255612 9264 114 052 10569 12619 11170
4 261298 10874 112 326 36 825 38319 37335
5 323899 | 33243 128299 43971 44 889 44284

6 274942 | 55884 100 542 65091 65971 65477

7 373634 | 165086 187 882 176720 176 999 176 835

8 492894 | 209163 249463 197790 197930 197841

9 468137 | 321566 292510 322922 323076 323017
Total 1517861 | 455802 676 047 467964 472131 469518

vy
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Taking the arithmetic mean

1
mi,m2 ,_ = mi,mq ma,ma
Ri,k =3 (Ri,k + Ri,k )

for the coupling exposures works fine if R;"1"™" and R} 2’2 are similar. In general the
geometric mean !
mi,mz . [pmi,mi pma,ma
Ri,k T Rzk Ri,k
usually works better.

Although the Best Estimate reserves are similar, the ultimate uncertainties are not, in
particular CLM on payments leads to a much higher ultimate uncertainty than the others.

Again, you must not use estimates of the ultimate uncertainty to evaluate which model
is the best.
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4 Linear-Stochastic-Reserving methods 4.3 Ultimate uncertainty
L 4.3.4 Examples

4 Linear-Stochastic-Reserving methods
4.1 How do Linear-Stochastic-Reserving methods (LSRM) work
4.1.1 LSRM without stochastic

4.1.2 Stochastic behind LSRMs

4.2 Future development

4.2.1 Projection of the future development

4.2.2 Examples

4.3 Ultimate uncertainty

4.3.1 Mixing of claim properties

4.3.2 Ultimate uncertainty

4.3.3 Estimation of the covariance parameters

4.3.4 Examples

4.4 Solvency uncertainty

4.4.1 Estimation at time [ + 1

4.4.2 Solvency uncertainty

4.4.3 Uncertainties of further CDR's

4.5 Examples

4.6 Estimation of correlation of reserving Risks
4.6.1 Avoiding correlation matrices for the reserving risks
4.6.2 Using LSRMs to estimate a correlation matrix
4.7 Literature
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4 Linear-Stochastic-Reserving methods 4If Solvency.uncertalnty.
4.4.1 Estimation at time I + 1 (1/3)

Consistent estimation over time

In this section we want to look at the solvency uncertainty, i.e. the uncertainty
of the claims development result

CDR/*! = Z Z (Srhy = Sipidt) and COR™! = ZCDRI+1
k=I—i

where the additional upper index represents the time of estimation and a* are
D! -measurable real numbers.
In order to do so, the estimates have to be consistent. That means we do not

change our (relative) believes into the old development periods and only put some

credibility w}"_’ﬁcl to the at time I + 1 newly encountered development:

Assumption 4.B

There exist D! N Dj,-measurable weights 0 < w}n_ﬁj <1 with

m o . . m,I+1
o R" kk—Olmp/lesz Kk =0

0wy = (1—11;7{;3)10 Wfor0<i<I—1-F

V.
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- index represents the time of estimation and i are

Solvency uncertainty

imates have to be consistent. That means we do not
s into the ol development periods nd anly put some
o the at ime I + 1 ney encountered development.

2021-04-26

e We do not allow an estimation time dependence of the mixing weights.
e The variance minimizing weights, defined in Estimator 4.7, fulfil Assumption 4.B.



4 Linear-Stochastic-Reserving methods Aty SREIEY EEET TRy
L 4.4.1 Estimation at time I + 1 (2/3)

Lemma 4.20 (Estimation of development factors at time I + 1)

Let Assumptions 4.A and 4.B be fulfilled. Then the at time I + 1 estimated develop-
ment factors

= Silk1 STk k41
Tm 41 m,[+1"4,k+1 m,[+1y\ pm, I m,[+1 "1k k+1
Tr =) Wiy = (L—wy ) fe T +wroy RM
i=0 ik 1—k,k
satisfy:
m,I+1 Il _ m,[+1 m,I+1 m,I+1 T
L E[f ’D}—E[f ‘Dk] (1 —wp> kk) +w1 e Ji = I
2. For every tuple fml’H e ,:’:“IH with k1 < ko < -+ < k;, we get

A+1 pme 41T A+1 pme I+l 5T £
[fm1 . f]?:r ‘D ] — E|:fm1 fIZ:T ‘Dkl] — f]:'lll

which implies that the estimators are pairwise D'-conditionally uncorrelated.

Remark 4.21
m, I

Because of part 1. of Lemma 4.20, we will use the estimates fk = fi

4
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e ) i

Il
_
|
T3

i

e[z o] = el i)
I—k,

om,T mJI41 g F
:(1_w[7k,k )fk +w[—k,k fz?”—fﬁ”

E[J?k"fl’Hl o JZZ:T’IH‘DI] _ E[fz’lll,l-‘rl . ]”e;'cnr_l,I+IE[/2;'C’ZT,I+1ID,€THDI}

r

_ E[)’Pml,1+l . ”};nr—lxl“rlf;ir DI]

k1

== ML fmr
- k1 f’r

and similar for D7€1 instead of DI.



4 Linear-Stochastic-Reserving methods Aty SREIEY EEET TRy
L 4.4.1 Estimation at time I + 1 (3/3)

Lemma 4.22 (Best Estimate reserves)

Let Assumptions 4.A and 4.B be fulfilled. Then the at time I + 1 estimated claim
properties satisfy
Sy

W}H-l :E[ :r;cflrl’DI} Fm]ﬂ( )'7'-]( )

Hence, we will use the estimates
E[SpT 7] = Sik = F(T) F(F) 8T = A (F1) 7,

i,k+1

which implies E[CDRI +1 |DI ] := 0. That means, we have Best Estimate reserves.

v

Notation
As always we will use §;”k’[+1 =8 fori+k<I+1and

Rm I—I—l _ Fm Sz—i—k I+1 and

; le,mg,f—l-l _ le,mzsz+k I+1
i,

i,k

v
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At estimation time I + 1 we have
am,I[+1 _ m,I4+1 (FI+1 I+1
Si,k+1 7]:1',k (f )S :

Induction: If i + k < I then §::1k:_t1 = S{?k-;—l and therefore

am,I+1 I __ 3 I] __ _ v, I I
E[s;’fk;g |’D ]7 E{s;’fkﬂ‘p }7 PR, = FI(e) s
——
i)LSRM
Now assume that Lemma 4.22 is fulfilled for all i + k < n. Then we get for i + k =n
am I4+1 I e[ 7141 5m,I4+1| T
e[5ri o]~ 7 R o]
FI+1 I pI+1 I
el ot )
D]

= Fy" () E[s" D]

E {fk R

=FE) FIE) F () st

induction hypothesis
T4 T I
=F tE F(e) s’

Note, a proof without induction can be done by a combination of the tower property, the multilinearity of F" (f),
see Lemma 4.9, and the product formula of Lemma 4.20.



4 Linear-Stochastic-Reserving methods Aty Sellvamay wEaREdy
L 4.4.2 Solvency uncertainty (1/5)

Decomposition of the solvency uncertainty

I
mseppr [CDR'™] = Var Z Z Z Z"}Cflrl D!

m=0 i=0 k=I—1

random error

TS S ar (s, - o)

m=0 i=0 k=I—1

parameter error

The solvency uncertainty of a single accident period or a single claim property
can be obtained by choosing corresponding mixing parameters "
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Decomposition of the solvency uncertainty

sy [COR 1] \/‘[Z\_‘Z T

The sobency uncertaintyof  sinle sccident perid o 3 single i property
can be obtained by choosing corresponding miing parameters o



4 Linear-Stochastic-Reserving methods Aty SREIEY EEET TR
L 4.4.2 Solvency uncertainty (2/5)
Taylor approximation of next years estimates
Recall the (multi-linear) functional'
I I—i J—1
I
B)x = ZZ@T Dol D Fi(e)x
m=0 i=0 k=0 k=I—i
Then we have
M I J
I _ m m I
UB)S' =3 > ai" Y E[STID,
m=0 i=0 k=0
M T J M I J
TI\ql _ m aom,I I+1\ql _ m I+1
HGIEEDIPILHD LS UES" =3 > ol > S,
m=0 =0 k=0 m=0 =0 k=0
1 LA
~ ! Nal ((plI+1 P
R =Y 8hjU(f )s (F,w. 7 )
1=0 h=0 j=I—h
M I M I J-1
_ ! el l I ] eI\, LI+1 I nei
= ZZah,fth(f )(Fh,f—h - fl—h) DD ah,jU<f )“’1 i (F,,N- — 5 )
=0 h=0 1=0 h=0j=I—h+1
where FIT1 is the vector with coordinates
mI+1 .F;’C’]z, forl+k:I
ik f,zn’Hl, fori+k>1T
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For k = I — i we get, see Lemma 4.20,
I+1 “m, I
Fm _fl—z :Firyr}fi_fl—i

and for k> 1T —iitis

m,I+1  pm, I _ 7m,I Wit Ni m,I+1 am m, 1
Fi,k _fk f _fk *( Ikk)fk tw Ikkplfk,k_fk
m, I+
= w —k,k (FI k,k )
Note, since
Sm
oI+l _opm P I—il
iI—i —YiI—i = Tom
i, —i

we get
T I+1 JI+1
Fr (F) ST = FIYIRY L = ST
That means, the operator U(FI+1) (re)contructs in the first step the I + 1-th diagonal of the
claim property triangles.



4 Linear-Stochastic-Reserving methods Aty SREIEY EEET TR
L 4.4.2 Solvency uncertainty

(3/5)
Linear approximation of the CDR
If we replace in the linear approximation of the ultimate, i.e. in
1 M I J-1
I_ ~ ! Nl (1l RN
ZGTZ (5! = sm) = 2% 32 ahu(E)s' (B, - 7).
=0i=0 1=0 h=0j=I—h
the term (F,ij - fjl> by
, R - o
Ryl - 7?}7”: llijl_f 2,1 forg ==
hoj R I“(Il —fj’>7 for j > 1 —h,
1,I+1 T
= ( j=1-h + 1jsr-pw;_ ”) (FIl—j,j_fj )
we get the linear approximation of the CDR, i.e
Mo
NP ! oI l FLI
(DR =~ Z Z ah,lth<f ) (Fh,Ifh - f]—h)
1=0 h=0
M oI J-1
l o\, LI+l (1 I
DD ah,jU(f )wfaa',j (Fl—j,j —f )
1=0 h=0 j=I—h+1
I TES 12
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~ =l,I
The term F:L’g — fp,; depends on the accident period k only via the indicator functions 1;—7_p,
and 1j>I—h-



4 Linear-Stochastic-Reserving methods Aty Sellvamay wEaREdy
L 4.4.2 Solvency uncertainty (4/5)

Estimator 4.23 (Solvency uncertainty of all accident periods)

2

ey [COR| = €[> (3 (317 - 07) ) [

m=0 \i=0 k=0

M I J-1 an )\’
~ | TGl (FLI _ 77 I A
~E Z Z ah,jU(f )S (FhJ —fh’j) D (Taylor approximation)
1=0 h=0j=I—h
J-1 ’R?h,lz I—j—1 pli,l2
~ All,l2 177,] Ltz h.j
- % + Wh,j%h,i S Al
l1,l2=0 j=0 RI*}'ijfjj h=0 R Rh
random error parameter error

I I
LI+1 I\ ol
Z Z (IJ:I*’“ + 1J’>14Uu7 3:d )ahu (f )S

hi=I—j ho=I-j
l2,I+1 1 1
<1j:1—hg + 1j>1,hZUJI i )8}12] (f )S

The red terms indicate the differences to our estimator of the ultimate uncertainty.
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After the Taylor approximation we can exchange expectation and summation to get

mse C/ﬁ{]

O\DI[
M

! = = 19,141 lo,I4+1
_ ) ) ) ) 2,
- Z Z ) Z ) Z (1.71:1—h1 t 1 >1-nw I i1, ;1)(1.72:1—h2 +lo>1—nywrl iz, ;2)
11,l9=0hy,ho=0j1=I—hy jo=I—hg

Oy V()81 018, 5, UE)STE (1 y = T3t T) (P2 5 = 53D [P

and from the estimation of the ultimate uncertainty we know

1 AT\ (ol o, T 19,1 Rll”2 2 Ri}h
s s 1 5 —3J,7 1 2 5J
E{(Fl. o _fh )(F2. _fla )“D]zl SELEY I o I S wl2 i
r—j1.01~ fi 1= j5.d2 ~ fia J1=32%j1 FENE + > Yh,i"h,j "1 pl2
I—5,5 =5, h=0 ki thg

Both together lead to the stated estimator.

Note, if it wasn't for different claim properties (indeces 11 and l3) the last two lines of the estimator would have
been a square of a sum over accident periods.

Moreover, for the random error part we had in the ultimate uncertainty case only one sum over accident periods h
from I — j to I, i.e. we had h1 = hs.
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Chain-Ladder estimator for the solvency uncertainty
2
I J-1 2 1 I—j—-1 (w£j>
mseg|pr ZCDR > + ~—
. ’7 Cr_ Cy,
i=0 j=0 f] —J:J h=0 »J
S 2
+1 \ Al
> (1J=I—h+ 1J>I—h“’1fj,j)ch,f
h=I—j
LSRM estimator for the solvency uncertainty
M J-1 Ell,l'z I—j—1 Alhhlz
PR~ ~ly,l2 I- ]'7]' Iy, 1o \J
ms€o|p! [CDR} ~ DT R pl D Wl Rl Rl
l1,l2=0 j=0 I—j.g7"1—j.j h=0 h,j="h,j
I
h,I+1 I
Z Z (1j=[—h1 + Ljsr-m Wy )8h11 ( )S
h1=I—j ho=1—j
Iy, 141 I
(lj:F’“ + s r-nwr” 3.d ) ahz J ( )S

©R. Dahms (ETH Zurich, Spring 2021) Stochastic Reservin



Stochastic Reserving
Linear-Stochastic-Reserving methods

Solvency uncertainty

2021-04-26

Because we have several claim properties, squared terms for Chain-Ladder are replaced by
products of claim properties and the double sum over them.



4 Linear-Stochastic-Reserving methods Aty SREIEY EERET TR
L 4.4.3 Uncertainties of further CDR's

Estimation at time n
The development factors are estimated by
R n—k—1
P wik Fili
h=0

with consistent future weights w_;", which means there exists D}-measurable weights

0<w " <1, forl—k<i<n-—k—1,with
o R} =0 implies w;}" =0,
m,n m,n—1

. wz;” = (1 — wn—k,k)wi,k ,fori+k <n.
Then the estimate of the ultimate at time n is

with
Fi’j}f,for 1+ k <n,
" for i+ k > n.

(1/4)

4
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Consistent weights mean, that for each future estimation time n we keep our relative believes in the old

weights w:n’;n—l and only choose some weights wzi';c k for the newly observes development.

Note, although if the weights are no longer DI measurable, we will consider them as constant in our
estimations.



4 Linear-Stochastic-Reserving methods Aty Sellvamey wEaRENEy
- 4.4.3 Uncertainties of further CDR's (2/4)

Taylor approximation of the n-th CDR

COR" = ZZ@TZ( S

Y S () af Z 2 u(i)s') (5, - 7).
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Here we used that




4 Linear-Stochastic-Reserving methods 4If Sellvamzy unce.rta.lnty

4.4.3 Uncertainties of further CDR’s

(3/4)
Estimator 4.24 (of the uncertainty between two estimation times n; and ns)
mse[ CDR™ 2]
M J-1 (n2—j—1)AI I
S St Y (ou()s e S (s
l1,l2=0 j=0 h=n1—j i=nz—j
I ~ Rt
o U(E)s! vy Do anu(E)s! | =
i=na—j Ry R
(n1—j—1)AI plile, 1
Sl ~lang _~heg
Y W R R
1 l1,n2 1

Lo\l 2% AT

> %’U(f )S o > %U(f )S

i=n1—j J i=np—j

I la,n2 I

2 AYYS J l2 eI\ ql

> %‘U(f )S T b > %U(f )S :

i=n1—j J i=nz—j

In _ I—j—-1 ~ln
where Q; =3 w;
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The derivation can be obtained from the lecturer (unpublished working paper).



4 Linear-Stochastic-Reserving methods 4If Sellvamay nrEaRErsy
4.4.3 Uncertainties of further CDR's (4/4)

Remark 4.25

If we take n; = I and ny = I + 1 we get the same formula as in
Estimator 4.23 (solvency uncertainty).

If we take n; = I and ny = 0o we get the same formula as in
Estimator 4.16 (ultimate uncertainty).

In the Chain-Ladder case with variance minimizing weights we get the
same formula as in Estimator 2.25.

If the exposures R}, do not depend on other accident periods h # i
then a similar appréach like in the Chain-Ladder case may work to
derive Estimator 4.24.

Estimators for the uncertainty of the CDR between two estimation
times are important for SST and Solvency Il to estimate the MVM.
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Remark 4.25

o IFwe take 1y — [ and ;= 1+ 1 we get the same formula 35 in
Estimator 4.23 (solvency uncertainty)

« I we take iy = 1 and i = % we get the same formula 35 in
Estimator 4.16 (ultimate uncertinty)

+ In the Chain-Ladder case with varsnce minimizing weights we get the
Same formula 35 in Estimtor 2.25

« If the exposures R} do not depend on other accident perods i
then  similar approach like in the Chain-Ladder case may work to
derive Estimator 4.24

« Estimators for the uncertainty of the CDR between two estimation
times are impartant for SST and Solvency I to estimate the MVM.



4 Linear-Stochastic-Reserving methods VRN =EIRS (1/3)

Swiss mandatory accident portfolio: part 3 of 3, see Example 4.13
We have four claim properties with exposures
. p0 _ p00 _ Sk 0
ME: Ri,k = Ri,k = Z]-:O Si,j
IW: RL, = Rij = Sohg (w183, + (1 - with)s},)
2,2 k
Sub: B2, = RIE = YN (89, + 81+ 52))
Salary: S}y =P, S}; =0, for j >0, and
3 530 503 p31 _ pl3_ p32 _ p23 _ 33
Rip =Ry = Ry = Ry = Ry = Ry = Ry = Ry =0
For the not yet defined exposures we take the total payments up to now, i.e.
01 _ 51,0 _ 502 _ p20 _ pl2 _ p2l1 _ <k 0 1 2
Ry =R =) =R =R = Ri,k - Zj:O (Si,j + 55+ Si,j)'

i i,

Resulting solvency uncertainty

o The estimated ultimate and solvency uncertainties behave almost alike, but on a
different level.

o Although the estimated solvency uncertainty is minimal for k &~ 0.35 you should never
use this as criteria to evaluate which model is the best. For this portfolio |, would go for
k =1 (at least for the first development periods).

o For k =0 the solvency uncertainty is slightly smaller than CLM on total payments
(small blue circle on the left).

y
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Example 4.13: Solvency uncertainty in dependence of
CLM - claim reservesg
157'000 r 6400
- 6300
CLM o _ _
152’000 ultimate uncertainty/- 8600 |- 6200
- 8500 r 6100
147'000 - - 8400 r 6000
solvency uncertainty
CLM - - 8300 r 5900
142’000 - w < w w w w w - 8200 + 5800
0 0.1 0.2 03 04 05 06 07 08 09 1.0 ¢
We always show the square root of uncertainties. )
T
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Be aware that each curve has its own scale. So although the curve of the solvency and the
ultimate uncertainty cross each other, we always have that the solvency uncertainty is smaller
than the ultimate uncertainty.

In our example the solvency uncertainty is about 70% of the ultimate uncertainty. In general
this ratio usually lies between 50% (general liability) and 90% (NatCat). One minus this ratio
represents the gain of information over one year in comparission to all unknown information
about the reserves.



4 Linear-Stochastic-Reserving methods VRN =EIRS

Example 4.26 (ECLRM vs. CLM: part 3 of 3, see Example 4.14)

In the first two parts we have compared the Best Estimate reserves and the ultimate

uncertainty. Now we want to look at the solvency uncertainty.

For the weighing of uncertainties we define R?’kl = Rz.l’lg as the arithmetic mean of

payments and incurred losses:

Square root of the solvency uncertainty

(3/3)

CLM ECLRM

AP | payments | incurred | weighting | payments incurred weighting
0 — — — — — -

1 89423 2553 43873 194 14639 7695

2 212847 4561 98690 4557 4679 4588
3 131605 7825 57107 5663 6790 5994

4 161223 6 666 70958 33688 34303 33 896

5 145975 | 31325 54474 30612 31059 30763

6 104800 | 45866 38046 42612 43110 42830

7 230780 | 155175 155764 166 162 166268 166206

8 283765 | 150879 170125 138697 138755 138718

9 229170 | 223154 181603 210928 211012 210980
Total 1004481 | 347709 478785 346 640 350692 348110

vy
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Taking the arithmetic mean

1
mi,m2 ,_ = mi,mq ma,ma
Ri,k =3 (Ri,k + Ri,k )

for the coupling exposures works fine if R;"1"™" and R} 2’2 are similar. In general the
geometric mean !
mi,mz . [pmi,mi pma,ma
Ri,k T Rzk Ri,k
usually works better.

Although the Best Estimate reserves are similar, the solvency uncertainties are not, in
particular CLM on payments leads to a much higher solvency uncertainty than the others.

Again, you must not use estimates of the ultimate uncertainty to evaluate which model
is the best.



CRSLEETESCSLEREEHEELILERCIEEEN 4.6 Estimation of correlation of reserving Risks (1/2)

Measurement of reserving risks under IFRS 17, SST and Solvency |l

o In recent years the reserving risk has got more and more attention, for
instance under IFRS 17, SST and Solvency Il
o Probably, the most common method to estimate reserving risk is the

following:
1. Make assumptions about the distribution family for the reserves for each

portfolio.
2. Estimate the corresponding parameters, for instance mean (Best Estimate

reserves) and variance (mse + model error).
— Calculate the reserving risk for each portfolio, for instance, value at risk

or expected shortfall.
3. Make assumptions on the correlation (or copula) of portfolios.
= Calculate the reserving risk of the aggregation of all portfolios.

o In particular step 3 is usually based mostly on actuarial judgement.

o LSRMs can be used to avoid correlation matrices or to get some
estimates of them. |
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Measurement of reserving risks under IFRS 17, SST and Solvency Il
+ In vecent years the reserving rik has got more and more attention, for
instance under IFRS 17, SST and Solvency Il
+ Probbly, the most common method to estimate reserving rsk s the
folloing:
1 Mske assumptions about th distbution famiy for th reserves for each
porilic
= Estimate the comesponding parameters, fo instance mean (Best Estimte
reserves) and variance (mse + model eor
Caleulate the resening ik for each portolio, fo nstance, vlue t isk

3 Miake asumpions on the corlation (o copul) of portoio.
" Calcust the reseving risk of te aggregation of 3l porfaics.

« In partcular step 3 s usually based mostly on actuarial judgement.

« LSRMs can be used to avoid correlation matrices or to get some.
estimates of them



CARBEETES ST EREC SEEENE N B EEER 4.6 Estimation of correlation of reserving Risks

Part of the correlation matrix of the SST-Standardmodel 2014

MFH MFK Sach ES-Pool Haft UVG

MFH 1.00 0.15 0.15 0.15 0.25 0.50
MFK | 0.15 1.00 0.15 0.15 0.15 0.15
Sach | 0.15 0.15 1.00 0.15 0.15 0.15
ES-Pool | 0.15 0.15 0.15 1.00 0.15 0.15
Haft | 0.25 0.15 0.15 0.15 1.00 0.25
UVG | 050 0.15 0.15 0.25 1.00

0.15

(2/2)

o The entries are based on actuarial judgement.

o The correlation matrix under Solvency |l contains similar entries.
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Part of the correlation matrx of the SST-Standsrdmodel 2014
| MFH_MFK_Sich ESPocl_Hs VG

Linear-Stochastic-Reserving methods T
Estimation of correlation of reserving Risks S| 0m o o o i om

WG| 050 015 015 015 025 100

+ The entres are based on actuarial judgemen.
+ The corrlation matrix under Salvency I contains similar entris



A llinear:Stochastic:Reserving imethods 4.6 Estimation of correlation of reserving Risks
L 4.6.1 Avoiding correlation matrices for the reserving risks

If we use LSRMs we can avoid correlation matrices for the reserve risks:

1. Set up a LSRM for all portfolios together. That means we have to
; ; mi,ma
specify coupling exposures R,"""* for all m; # ma, too. Here,
heuristic arguments can help to do so. For instance, if you use the
same method for claim properties m1 and ms it may be appropriate to
take the geometric mean of le’ml and Rm2’m2.
2. Chose a distribution family for the total reserve of all portfolios.

3. Estimate the corresponding parameter, for instance

mean = Best Estimate reserves and

variance = ultimate or solvency uncertainty + model error.

Here you may have to scale the variance in case that the Best Estimate
reserves are not equal to the reserves estimated by the LSRM, see
slide 56.

— Calculate the reserving risk.

4
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16 we use LSRMs we can avoid corrlation matrice fo the reserve riks:
1 5481  LSRM for ol gt Thik mea v b
specify coupling exposures 2™ for all my # . too. Here,
i e o vl o do . ot e, o e the
same method for claim propetis n, and ay be appropriate to
take the geometric mean of A} " and

Chose a distibution family for the tota reserve of all prtfolis.
3 Estimate the corresponding parameter, for instance.

mean = Best Estimate reserves and

variance = ultimate or salvency uncertainy + model error.

Hre you mayhave sl he varance n cas tht the st Etnate
reserves are not equal to the reserves estimated by th
side 56.

— Calculste the reserving risk




A llinear:Stochastic:Reserving imethods 4.6 Estimation of correlation of reserving Risks
L 4.6.2 Using LSRMs to estimate a correlation matrix (1/2)

The formulas for the ultimate and for the solvency uncertainty have the form:

M

1
mi M2 oM1,Mm2
PRIED DI ALt

m1,m2=011,i2=0

whereas /" are arbitrary D/-measurable real numbers.

Moreover, since the uncertainties are defined as expectation of the square of
. . : <m<

some random variable they are non negative for all collections (a/*)0="SM

i J0<i<I
of D!-measurable real numbers, which means that
0<my,ma<M

I
mi1 . m2 QMi1,Mm2
oo S
Z 11 12 711,12

i1,62=0

is a positive semidefinite matrix. We already take the diagonal elements of
this matrix as variances of the reserving risk of one claim property. Therefore,
it is appropriate to use the whole matrix as covariance matrix.

4
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positive semidefinite: For any vector @ = (zm)o<m<m We get

I

@ | 2

i1,i2=0

Estimation of correlation of reserving Risks

(%

my
i1

[e%

mo
i2

my,m2
11,12

0<my,mo<M

Linear-Stochastic-Reserving methods

xr =

my
ip &

my,mz=011,i2=0

The formuas for the ultimate and for the solvncy uncertainty have the form:

wheress o sre abitrary D'-messurable real numbers.
Mereover, since the uncertaintes are defned s expectation of
some random variable they are non negative for al collctions
of DI-measurable real numbers, which means that

is 3 positve semidefinite matrix. We already take the diagonal lements of|
this matrix 25 variances of the reseving isk of one claim property. Therefoe,
it is appropriate to use the whale matrx 25 covariance matrix.

m2 oMy ,ma

ig Miy,ig m2

I
E oz?l” Ty O 2 Tmg B 172 > 0.

i2 01,12



A llinear:Stochastic:Reserving imethods 4.6 Estimation of correlation of reserving Risks
L 4.6.2 Using LSRMs to estimate a correlation matrix (2/2)
Estimating correlation of reserve risk, see LSRM Cor _ActiveX.xlsx

Based on the example of article [28] by A. Gisler and M. Wiithrich with

Z S Zsmz
j_

Estimated ultimate uncertalnty correlatlon
ml/mg 0 1 2 3 4 5

0| 100 -0.15 0.01 0.23 -0.17 0.26
1]-0.15 100 0.03 0.13 -0.03 -0.00
2| 001 003 100 004 0.06 -0.05
3| 023 0.13 0.04 100 -0.05 0.09
4
5

le’m2 .

-0.17  -0.03 0.06 -0.05 1.00 0.03
0.26 -0.00 -0.05 0.09 0.03 1.00

Estimated solvency uncertainty correlation
my/ma 0 1 2 3 4 5
0 1.00 0.04 0.05 0.30 -0.26 0.31
0.04 1.00 0.04 0.30 -0.10 0.00
0.05 004 100 0.09 0.08 -0.06
0.30 0.30 0.09 100 -0.08 0.16
-0.26 -0.10 0.08 -0.08 1.00 0.03
0.31 0.00 -0.06 0.16 0.03 1.00

Gl A W N

y
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The calculations can be found in the file ‘LSRM_Cor_Dll.xIsx’ (or
‘LSRM _ Cor _ ActiveX.xlsx").

Most of the correlations are negligible, except for the dependence related to
Sf’k vs. S?,k and Sik Vs. Sﬁk, S}JC and Sik
and some diversification related to
S?,k Vs. Sﬁk and maybe S?,k Vs. S}JC and Sﬁk

Strictly taken, the model is not valid, because of some negative eigenvalues of the
covariance matrices (6, "2 R\ mz)ogml,m2§M for k € {6,8,9}. But the results
mainly depend on the development periods k = 0 and k = 1, only. Moreover, except for
k = 6 the negative eigenvalues are almost zero, which means that it is more a problem of
the estimation than a model problem.

The estimated correlations are estimated under the assumption that the claim properties
fulfil Assumptions 4.A and 4.B, which usually is not the case, for instance because of
inflation or other diagonal effects. Therefore, in practice we should always think of
adding some model error in terms of a positive correlation.
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5 Poisson-Model

5.1 Modelling the number of reported claims
5.2 Projection of the future outcome

5.3 Ultimate uncertainty of the Poisson-Model
5.4 Generalised linear models and reserving
5.5 Literature

©R. Dahms (ETH Zurich, Spring 2021) Stochastic Reserving: Lecture 9 RetRVEVAlphl






5 Poisson-Model 5.1 Modelling the number of reported claims (1/3)

Number of occurred claims

o Assume that for each policy a claim occurs during the year with some
probability p € (0, 1), that we have at most one claim per policy and
that claims are independent.

o Then the number of claims N which occurred during the year is
Binomial-distributed with parameter p and R, where the later
represents the number of policies, i.e.

R n
P(N=n)= <n>p”(1 —pfrx %e_“, with © = Rp

for small p

o Therefore, we could assume that the number of claims which occurred
during a year is Poisson-distributed.

o Similar arguments can be applied with the number claims that have
been reported during a year.

v
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Modelling the number of reported claims

Number of occurred claims
+ Assume that for eachpolcy 3 clim occurs during the yea with some
probabilty p € (0, 1. that we have at mast one caim per polcy and
tha clsims re independent
+ Then the number of ciims  which occurred during the year i
Binomialdistrbuted vith parameter and [, where the atr
epresents the oumber of polics e
Py == (D)ra-pies

with = Rp

« Therefore, we could assume that the number of claims which occurred
during 3 year s Poisson-distributed.

« Similr arguments can be applied with the number claims that have
been reported during 3 yer.




5 Poisson-Model 5.1 Modelling the number of reported claims (2/3)

Assumption 5.A (Poisson-Model)
Assume that there are parameters pq,...,u; > 0 and g, ...,~v; > 0 such that

)Pe S, ;. are independent Poisson-distributed random variables with

E[Six] = Ve
i) S =1

Remark 5.1

o The restriction on S, to be an integer is not so restrictive at all. Even for
payments we can always argue that they are a multiple of one Rappen or Cent.

o The Poisson-Model cannot deal with negative claim properties .S, , which is
very restrictive, in particular for incurred losses. 7

o The assumption of independent claim properties S; 1, even within the same
accident period is also very restrictive.

o The Poisson-Model can deal with incomplete triangles, for which some upper
left part is missing.

o In the Poisson-Model we always have Var {Si’k] = E{Si’k] = Yl
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Assumption 5. (Peisson

Asume tha thee e v 0 and 7 O such that
%5, ar independent Poisson-distributed random varibles with

E[Si] = un

Remark 5.1

“The retriction on S, to b sn nteger i not 50 restricive at al. Even for
payments we can hays argue that they are 3 mulple ofone Rappen or Cent
The s Sog which i

properties S, even within the same.

camplee tangls, for which some upper




5 Poisson-Model 5.1 Modelling the number of reported claims (3/3)

Parameters of the Poisson-Model

Since
J

J
E[Cis)=Y E[Sis] =D pive = i
k=0

k=0
the parameter:
1; represents the expected ultimate outcome of accident period ¢, and

v represents the expected fraction of the ultimate outcome that have
manifested (or will manifest) itself during development period k
(reporting or cashflow pattern).
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Parameters of the Paisson-Model
Since ,
€0 Y ElS] = Y=
the paramate
1. reprsents th expected uiimate otcome of accident period i, and
{epresntsth expcte fscion ofthe ulimte outcome that have

manfested (or wil manifest) itselfduring developmen period &
(reporting o cashflon pattern)



5 Poisson-Model 5.2 Projection of the future outcome (1/3)

Probability of the observed triangle

H (/‘l’iryk)xi'k e MMk

ik

i+k<I

Maximum likelihood (ML) for the Poisson-Model

The maximum likelihood estimators for the parameters are those fi; and 4; for which the
probability of the observed triangle is maximal.

In order to get shorter formulas we will maximize the logarithm of the probability. Therefore,
we set its partial derivatives with respect to each parameter to zero and try to solve the
resulting system of linear equations:

dlog P ((S; 1)irk<r (=N g (I—i)AJ (I—i)AJT
0= (6u- ) = > lTk = Y w= D Sk =Cig-ins
! k=0 =0 P
0log P ( (S; 1)itr<r I-k g I—k I—k
0= ( ) :Z_’k_p,i <~ ’ykZui:ZSi’k_ (51)
el im0 Tk i=0 i=0

We denote the solution (if it exists) by fi; and .

»
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One can proof that if the observed data are not too strange then there exists an unique solution
of (5.1), which represents a maximum.
An example for ‘too strange’ is S, ;. = 0 for all observed accident and development periods.



5 Poisson-Model 5.2 Projection of the future outcome (2/3)

Estimator 5.2 (for the future outcome within the Poisson-Model)
B[Six) =i

Bl D)= Cuit S &

k=I—i+1

SPOI .

CP0| .

Theorem 5.3 (Poisson-Model vs. Chain-Ladder method)

Assume that there exists an unique positive solution of (5.1). Then
Sri

where SCLM denotes the Chain-Ladder-projection corresponding to the vari-
ance mln/mizing weights.
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© . Sul= i

9V Poisson-Model el ,

< . . Heop)= s 3 S

S Projection of the future outcome . :

N b
Lemma

I—k k

I—k I—k — k—1
chk: ZMZ% and Zci,k_lz Z(ciyk—sh Z i D> A foralli4+k < T
=0 % =0 Jj=0

Proof of the above Iemma (by |nduct|on) Start W|th k = J

I—J J
ZQJ*ZZS =D B -
i=0 j=0 i=0  j=0
——
Now assume that the lemma is true for some k > 0 then we get (5.1)
—(k—1) I—k I— I—k

Z Cik—1=
i=0

Cik—1+Cr_(k-1),k—1 = Z Cik — Z Sikt Z S1_(k—1),j

I—(k— 1) k—l

Z
= Z Ai Y 75— Ak Z HBi+ 01— (k—1) Z A= >, > BiA;-
i=0 =

j=0 i=0 j=0 i=0

[ _ O
Proof of Theorem 5.3: (5.1) J (5.1)
~Poi - N ) ) .
Cig =Cir—i+ii > Ak=Ciri+ > Ak =Cir-i (

k=I—i+1 Vb k=I—i+1
——
Estimator 5.2 (5.1)
15 ~ —(I—i+1 -1
—c i o'Yk c St A Z;{ 0 Tk Z;L E) oy i oo
=CiI-i e o = Y R el OO0 S s ars v
Zk O'Yk Zk:O Tk Ek o Yk E ( i+ Cir— Zh— i,J—1

=Cir i+ F_ - Q+F,_)=CM above lemma abova lemma

O



5 Poisson-Model 5.2 Projection of the future outcome

Corollary 5.4 (Poisson-Model vs. Chain-Ladder method)
Taking CLM as LSRM with the variance minimizing weights we have

SCLM E[ k) = Fer (L4 fro) - 1+ fr)Ciain

Combining this with Estimator 5.2 and Theorem 5.3 we get

Shel o SgM o SEM F (U fuy) (U Fr)Cir

(3/3)

’Yk: — =

i Hi CZ%M (L+frq)- (1+fl )Ci1-i

Theorem 5.3 Theorem 5.3

N S
T+ o) 0+ Fio)

and

7o Yo+l k1
E— -k ~ J ~
j=0"7j 1- Zj:kJrl Vi
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Proof of the last statement: From the proof of Theorem 5.3 we know that

k414
~ Zj:() Vi
I+ == =
Zj:o’Yj
From this we compute
k415 ~ ~
7= 22520 7 . S Vk+1
TSk s T TSk S T S
> 5=07i =07 T 2uj=k+173
N—— —

J s
im0 V=1 g



5 Poisson-Model 5.3 Ultimate uncertainty of the Poisson-Model (1/3)

Ultimate uncertainty

I
mse [Z @-F:f}i] =E
=0

(=
e o e i)
) (g o)

e 5 (s E[Si’k])> ( z (@P,,:i el )

= Var|: E S, | + Var E ng':| 0
i+k>1 i+k>1 independence of past and future
random error parameter error

v

©R. Dahms (ETH Zurich, Spring 2021) Stochastic Reserving: Lecture 9 RetRVEVAlphl 155 / 240




2021-04-26

Stochastic Reserving

Poisson-Model
Ultimate uncertainty of the Poisson-Model




5 Poisson-Model 5.3 Ultimate uncertainty of the Poisson-Model (2/3)

Random error
Since all S; , are independent we get

[Z Sm]— > Var[Si= > i D Akl

i+k>1 i+k>1 i+k>1 i+k>1

Parameter error
In order to analyse the parameter error we use the following Tylor expansion:
1
In(z) ~ In(z9) + —(z — 20) for zo =1 and z ’Yk‘ul

20 Yk p‘z
Therefore, we get

Arii = e (I (i) — In (yep) +1)
Finally, taking the covariance it follows
COVWIQ ﬂil ) :)7162 ﬁzz] A Vhey My Vo Hig Cov[ln (akl ﬁll) ,In (akz ﬁzz)}
R Aoy iy Voo iy CovIn (Y, iy ) 5 In (Rl i )]

The last covariance term can be estimated by the inverse of the Fisher information matrix I

S S~ oSS S -1
COV['YklILLil,’Yk2,LLi2] ~ Vi1 Py Vg Mio (I )(il,kl)v(i27k2) :
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5 Poisson-Model 5.3 Ultimate uncertainty of the Poisson-Model (3/3)

Estimator 5.5 (of the ultimate uncertainty)

I
— APoi | ~ o~ A A T —1
mse Zci,J ~ Z Vebi + Z Yk Fiy Vieo iz (I )(il,k1),(i2,k2)'
=0 i+k>1 i1+k1,i2+ka>1
—_———
random error parameter error
J
Remark 5.6

o The ultimate uncertainty of a single accident period 7 can be estimated by

J J
— | APoi ~ o~ ~N A~~~ —
mse[ ij‘}m Z Vibbi + Z Yoy i Viog Moi (I 1)(i,k1),(i,k2)'
k=I—i+1 k1 ko=I—i+1

random error parameter error

o Using the Fisher information matrix for the estimation of the parameter error is
a standard approach in the theory of generalised linear models (GLMs). An
introduction to generalised linear models can be found in [23].

o The inverse of the Fisher information matrix is a standard output of most
GLM-software.

v
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Estimator 5.5 (ofthe timate uncertinty)

Lo EDSET T )

L softare

A the parameer eror s
d linear models (GLMS). An
23]



5 Poisson-Model 5.4 Generalised linear models and reserving (1/2)

The Poisson-Model as generalised linear model (GLM)

In order to deal with GLMs it is not necessary to know the underlying dis-
tribution exactly. It is enough to assume that it belongs to the ‘exponential
dispersion family’ and that all S, , are independent with

E[S;x] = Var[S; ] = mp-

Overdispersed Poisson-Model
The restriction on the variance to be equal to the expectation can be softened
by taking
E[Si,k] = VkHi and Var[Si,k] = PEVkMis
where ¢ > 0 is called the dispersion parameter. The estimates for the future

development are the same as for the Poisson-Model, but the estimates for
the ultimate uncertainty will change.
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“The Poisson-Model as generalised inear model (GLM)
In order to deal with GLMS it is not necessary to know the underying dis
tribution exactly. I s enough to assume that it belongs to the ‘exponential
ispersion family’ and that al S, are independent with

E[S,4] = Var[S,] = s

Overdispersed Poisson-Model

to the expectation
by taking

E[Sul=m and  Var[S,u] = o
where > 0 s calld the dispersion parameter. The estimates for th future
development are the same 35 fo the Poisson-Model, but the estimates for
the ultimate uncertainty il change.




5.4 Generalised linear models and reserving (2/2)
GLMs in general
In general we could assume that
Pik
E[Six] = zink and Var[SLk} = ==V (@i k),
Wi k
where
o @i > 0 are the dispersion parameters (unknown),
e w; > 0 are known weights in order to compensate for different
volumes and
o V(-) is an appropriate variance function.
v
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GLMs in general

I general we could assume tht

E[Su]=ru  and

where
&> 0 are the dispersion parameters (unknown).

= 0 sre known weghts in crdr to compensate for different
fumes and

« V() is an appropriate variance function.



5 Poisson-Model
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6 Bootstrap for CLM

6.1 Motivation

6.2 Chain-Ladder method and bootstrapping, variant 1
6.3 Bootstrapping Chain-Ladder step by step, variant 1
6.4 Chain-Ladder method and bootstrapping, variant 2
6.5 Bootstrapping Chain-Ladder step by step, variant 2
6.6 Possible problems with bootstrapping

6.7 Parametric vs. non-parametric bootstrap

6.8 Literature
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6 Bootstrap for CLM 6.1 Motivation (1/3)

Approximation by the empirical distribution (resampling)
o Let g(®) be a (bounded) real function depending on the random
vector @ = (Pp,)o<m<M -
o We are interested in the distribution P of g.
o Resampling: Assume we know the distribution of @ then we could
sample an independent sequence (¢™)?<"<N = ( "m)gé;’gL and
approximate P by the empirical distribution

number of " with g(¢") < x

PEP(g < ) := N+1

o Unfortunately, instead of the distribution of @ we often only know a
single realisation (¢ )o<m<n-
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Motivation

Approdmation by the empirical distribution (resampling)
Let 4(4) be a (bounded) real function depending on the random
vector & = (o<

the distibution P of 5.

e we know the distribution of & then we could
sample an independent sequence (")0<"<N = (¢, )}=15Y,
approsimate P by the empirial distribution

- _ number of " with gli") <
e I

« Unfortunatel, instead of the distribution of & we often only know a
single reaisation (¢ Jo<m

If the function g is ‘nice enough’ it is well known that the empirical distribution

converges to P in some sense.

If om are realisations of i.i.d. random variables one could take (¢r,, Jo<m<nr, With
some w € {0,1,..., M}M*1 instead of independent realisations of &, which leads us to

non-parametric bootstrap.



6 Bootstrap for CLM 6.1 Motivation (2/3)

Basic idea behind bootstrapping

o parametric bootstrap:

* make an assumption about the distribution family for &

* use the observation (¢, )o<m<ns to estimate the corresponding parameters
* resample

o non-parametric bootstrap:
Use the empirical distribution Pj; generated by resampling the
observation (¢ )o<m<n, i-e.

Pu(g <)
number of vectors m € {0,1,..., MM+ with g ((¢r, Jo<m<m) <
(M + 1)M+1
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Parametric bootstrap:

e Which distribution family should we take?
e The estimation of the parameters of the underlying distribution of & based on a single
observation is very uncertain.

Non-parametric bootstrap:

e At least we have to assume that the components of & are independent and identical
distributed.

o In most cases the number (M + 1)M+1 is too large. So instead of calculating all
combinations, we use resampling replacement to approximate the emirical distribution.

e In some cases it is possible to prove that P, converges in some sense to P as M goes to
infinity. For instance, if @ has independent identical distributed bounded components and

1
9(Pm)o<m<m) = N Z Prm.



6 Bootstrap for CLM 6.1 Motivation (3/3)

The flying words ‘to bootstrap’ comes from

‘to pull oneself up by one's bootstraps’

In our case we want to get the whole distribution by the observation of one
realisation.

v

How to combine the Chain-Ladder method and bootstrapping
We have to find random variables, which
o can be assumed to be i.i.d. and

o define the reserves.
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It goes back to the fairy tale by Baron Munchausen who claimed to saved himself from being
drowned in a swamp by pulling on his own hair.



6 Bootstrap for CLM 6.2 Chain-Ladder method and bootstrapping, variant 1

Recapitulation

Let C;f == Z?:o S; ;- If we have
i')CLM E [Si’k+1’8i,k] = fkci,k.

i) LM Var[S Bi,k] =0iC;y and

i k+1
iii')cu\/I accident periods are independent.

Then Ik

~ ~ ~ - : 7 Cige  Sikt
Sipi=foo1(L+ fr_o) oo - (L + fr_)Cir—i with fi = — .
K k-1 k-2 I k ; STF Gy Ci

are Dy_;-conditional unbiased estimators of Si ko forI —i< k<.

Therefore, we get S i — £.Cik
S; 1 = f[iCik +1/02Cik Tkl RO

2
JkCi,k
| ——
=P,

where @, ;. have mean zero and variance one.

We can look at S; ; as function of & := (&, ;) and some starting values, for instance

ith<I k<J

(Ci0)o<i<I-

y
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o In the last formula we still have some unknown parameters, i.e. f, and cr]%.
&, ;. are the Pearson residuals.
)

e Some of the Pearson residuals have to be ignored, because they cannot have the same
distribution like all other residuals. For instance:
— @7 ;1 in the case where I = J, because it is equal to zero (deterministically).

- all @, ;, for all development periods k where we know that all claims will be
closed. For those k the residuals are deterministic and equal to zero.



6.3 Bootstrapping Chain-Ladder step by step, variant 1 (1/3)
Step 1: Chain-Ladder method
Sk 0 1 2 3 | ultimate | reserve
lai g 0] 100 100 50 0 250 0
claim property: o 1|30 190 8 0 578 0
. 2| 100 8 37 0 222 37
est!matej dev_elopment factors: fk 31 200 190 70 o 220 20
estimated variance parameters: o7 7 o5 o2 0 1470 257
52 | 667 070 0.09
Step 2: Residuals
Pearson residuals inclusive variance adjustment: o 0 1 3
ik
0] 129 119
S, el fk ik I—k 1|-1.04 -076
Pig = 751 2| 051
A/ U]%Ci,k 3
correction by the empirical mean: ek | 0 ! 3
1 0] 105 0095
* L 1| -128 -1.00
Pik = Pik ~ T1-1) § : Pik 2| o028
2 1 itk<I k<I—1 3
= (pi,k —0.24

y
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N
o
N
e No residuals for development periods k, where & a'k has to be approximated.
e Although &, ; has zero mean and variance equal to one, its estimate ¢, ; doesn’t. The reason for this is
that we do not know the parameters f; and o, and use some estimators instead. Lets assume we know
a% and take the variance minimizing weights w; ;:
Si k41— feCik 1 N R
Var % Dp|= 5~ (Var[si,k:+l‘Dk:| - QC'i,kCOV[Si,k:+1vfk|Dk} + C?,A-,Va"{fk‘Dk])
\VoiCik 7% Ci.k
I—
1 2 Sik+1 2 wj,
= 5 (oRCik - QCiYkCov|:Siyk+l,wiyk LA N e b Var[sh k+1‘Dk]
7 ik ik h,k
C; C; X
:<17 2 I—lsilk + —lsilk >:<17 ' ><1
>h—0 Chk Zh Ch,k > Ch,k
w Cik w Cik
ik~ T—F—1 i,k I—k—1
YT OEhZo Cnk T ZuZo o Ok

Therefore, we could take

as variance adjustment factor. But since we don’t know the variance parameter a'% we take \/ ==
instead. This insures that T—k—1

— : 2
T % Z Var[apiyk‘Dk] =1 provided we know o .




6 Bootstrap for CLM 6.3 Bootstrapping Chain-Ladder step by step, variant 1 (2/3)

Step 3: Resampled residuals (non-parametric bootstrap)

*
i

@

set of residuals:

{-1.28, —1.00, 0.28, 0.95, 1.05}

Step 4a: Resampled triangle and Chain-Ladder method without process variance

x g S¥ 0 1 2 3 ultimate | reserve
40 4,0 0| 100 82 25 4 211 0
T poy . 1| 300 184 114 13 611 13
Siver1=NCip +1/0;CHPie, itk <T 2| 100 100 42 5 247 47
- 3] 20 146 72 9 428 228
=0 i+k>1 =
ir = I G * Jr o7 o021 o002 1497 288

Step 4b: Resampled triangle and Chain-Ladder method with process variance

* G S¥ 0 1 2 3 ultimate | reserve
2,0 " 7,0

0 100 8 2 4 211 0
S RO 320 o i k<I 1| 300 184 114 6 604 6
ih 3= SOl kPR = 2| 100 100 45 -1 244 44
P 3] 20 103 77 15 304 104

S =I1Cr GICF, pr i+k>1 =
i1 7= Fr G + 0ROl Piger T > 073 o021 003 1453 | 244
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In the case of parametric bootstrap we use the residuals in order to fit a distribution and use
this distribution to get the resampled residuals.



6 Bootstrap for CLM 6.3 Bootstrapping Chain-Ladder step by step, variant 1

Step 5: Repeat steps 3 and 4 and collect the resulting reserves

Reserves without process variance (sorted):

{145,146, 148, 156, 156, 157, 159, 165, 166, 167,
168, 168, ,345, 346,
347,347,347, 349, 351, 352, 354, 355, 357, 357}

empirical distribution function

1.0
0.8 1
0.6 1
0.4 1
0.2 1

0% = 1724

© =256

100 140 180 220 260 300 340 380 420

empirical density

0.10
0.08 1
0.06 1
0.04 1
0.02 1

0

0% = 1724

100 140 180 220 260 300 340 380 420

Reserves with process variance (sorted):

{ 90,106, 106, 108, 116, 119, 122, 123,124, 124,
129,131, ,375, 375,
375,380, 380, 384, 388, 394, 395, 396, 397, 403}

empirical distribution function

1.0
0.8
0.6
0.4
0.2

o? = 3197

/#:257

100 140 180 220 260 300 340 380 420

empirical density

0.10
0.08 1
0.06 1
0.04 1
0.02 1

0

% = 3197

=257

100 140 180 220 260 300 340 380 420

(3/3)

V.
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I—Bootstrapping Chain-Ladder step by step, variant 1

without process variance: o? represents the squared parameter estimation error

with process variance: o2 represents the sum of the squared parameter estimation error
and the process variance

in this example the mean of the empirical distribution is almost equal to the Best
Estimate of the Chain-Ladder method

Other variants of bootstrap methods are

— other starting values, for instance the last known diagonal,

S kt1 =feCik +/FiCi ke



6 Bootstrap for CLM 6.4 Chain-Ladder method and bootstrapping, variant 2

Recapitulation: (overdispersed) Poisson-Model
If we have

i)' S, , are independent random variables,

ii)P"i the distribution of S; 1, belongs to the exponential dispersion family and

iii) P Var[s. ]:ﬁkE[S ]:ﬁmm.

Then S  °= kHi, where 7 and [i; solve (5.1) and Zk o7k = 1, are unbiased estimators of

S-k,forI—z<k§J.

2

Therefore, we get

Si k= Yk + \/’Ykﬂz

where &, ; have mean zero and variance 9.
We can look at S; , as function of & := (&, ;)
ik i,k

= Vi

V7 N17
—_————

::451’,c

i+k<I,i<I,k<J’
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e In the last formula we still have some unknown parameters, i.e. vx, p; and V.



6 Bootstrap for CLM 6.5 Bootstrapping Chain-Ladder step by step, variant 2 (1/3)

Step 1: Chain-Ladder method (Poisson-Model)
S, & 0 1 2 3 ultimate (72;) | reserve
claim property: Sik 0 100 100 50 0 250 0
timated + battern: A 1|30 190 88 0 578 0
estimated payment pattern. 2| 10 8 37 0 222 37
estimated ultimate: Ji; 3| 200 150 70 0 420 220
3, | 048 036 0.17 0.00 1470 257
Step 2: Residuals
Residuals inclusive variance adjustment: @..| © 1 2 3
R 0]-148 113 118
Sl',k = Vi ki I—-k 1| 126 -1.14 -0.78
Pik = — 2 2| -047 0.64
V Vel Ik (S =Teitn) 3
h=0 Ak lin,
=Dy,
correction by the empirical mean: pi| O 1 23
1 0] -152 100 114
=, — ) 1| 122 -1.19 -0.82
Pik = Pik T T)IED 2 Z Pik 2| -051 060
2 i+k<I, i<l k<I 3
= Lpi,k: —0.04
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No residual for (i, k) = (I, 0), because it is equal to zero (deterministically).
Although &, | has zero mean and variance equal to ¥}, its estimate ¢, ;, doesn’t. The reason for this is

that we do not know the parameters f, and o, and use some estimators instead. The variance adjustment

ensures that the empirical variance equals one, i.e. that

L Ik
2
(pin—07" =1
Tk 2P
i=0




6.5 Bootstrapping Chain-Ladder step by step, variant 2 (2/3)
Step 3: Resampled residuals (non-parametric bootstrap)
) . e, | o 1 2 3
set of residuals: 0] 051 119 -152 1.09
1] 122 109 -119 -0.82
{~1.52,-1.19, —0.82, —0.51,0.60,1.09,1.14,1.22} 2 | -1L52 -051 122 -119
3| 122 -051 100 114
Step 4a: Resampled triangle and Chain-Ladder method without process variance
Sy 0 1 2 3 ult. (@f) | reserve
A . 0] 107 69 22 0 198 0
SE k=l + A\ Ve, ik < 1] 233 235 73 0 541 0
o n ) 2| 2 1 o2 0 164 21
Sk =kl itk>1 3| 237 216 67 0 520 283
5; | 044 036 011 000 1423 304
Step 4b: Resampled triangle and Chain-Ladder method with process variance
STy 0 1 2 3 ultimate | reserve
P 0] 107 69 22 0 198 0
Sik =k + A Ok, ik < 1] 233 235 73 0 541 0
L . 2| 72 71 50 0 193 50
Si g =kts + \ Vb, i+ k>1 3| 237 200 87 0 525 288
5; | 044 036 011 000 1456 337
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In the case of parametric bootstrap we use the residuals in order to fit a distribution and use
this distribution to get the resampled residuals.



6 Bootstrap for CLM 6.5 Bootstrapping Chain-Ladder step by step, variant 2

Step 5: Repeat steps 3 and 4 and collect the resulting reserves

Reserves without process variance (sorted):

{139,153, 154, 155, 157, 157, 161, 162, 164, 165
166, 166, ,378, 380,
381,384, 385, 386, 387, 388, 389, 400, 402, 447}

empirical distribution function

1.0
0.8 1
0.6 1
0.4 1
0.2 1

% = 2488

©=259

80 120 160 200 240 280 320 360 400 440 480

empirical density

0.10
0.08 1
0.06 1

0.04
0.02 =259

% = 2488

80 120 160 200 240 280 320 360 400 440 480

Reserves with process variance (sorted):
{86, 92, 95, 97, 99,101,102,105,109, 111,

1.0

0.8

0.6
0.4
0.2

0.10

0.08 1
0.06 1

0.04
0.02
0

117,117,

,420, 427,

428,430, 432, 449, 451, 459, 460, 466, 472, 481}

empirical distribution function

o2 = 4463

p=257

80 120 160 200 240 280 320 360 400 440 480

empirical density

o = 4463

=257

80 120 160 200 240 280 320 360 400 440 480

(3/3)

V.
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I—Bootstrapping Chain-Ladder step by step, variant 2

without process variance: o? represents the squared parameter estimation error

with process variance: o2 represents the sum of the squared parameter estimation error
and the process variance

in this example the mean of the empirical distribution is almost equal to the Best
Estimate of the Chain-Ladder method
Another version of bootstrapping is to take

STk =Akki + \/W‘P;k’ it+k> I



6 Bootstrap for CLM 6.6 Possible problems with bootstrapping (1/2)

Possible problems with bootstrapping

o Following the bootstrap idea strictly would imply that instead applying
the standard Chain-Ladder method automatically we had to hire some
experienced reserving actuaries and let them estimate the reserves for

each resampled triangle.

o If the mean of the resampled empirical distribution is not equal to the
Best-Estimate we have to rescale
* each resampled outcome individually or
* the resampled empirical distribution

o Exclude non-random areas otherwise the resulting variance will be too
small. For example, if we know that all claims will be settled after 10
years we should exclude all residuals (all deterministic and equal to zero)
after development year 10.

o We may exclude resampled triangles which are not possible. For
instance, if we have payments without subrogation then we know that
all payments will be non-negative. Therefore, we may exclude resampled
triangles with negative entries.

v
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+ Folloving th 2 idea strctly would impy that instead applying

the standard Chin-Ladder method sutomatically we had to hire some.

L Bootstrap for CLM Tl K o o e s o

+ I the mean o the resampled empirca distrbution s not equal to the

I—P055|b|e problems with bootstrapping
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al payments wil be non-negative. Therefore, we may exclude resampled
triangles with negative etrie.

In the case of the last bullet point it could even happen that the cumulative payments get
negative.



6 Bootstrap for CLM 6.6 Possible problems with bootstrapping (2/2)

Bootstrapped probabilities (inclusive process variance) of both variants
Variant 1 (ResQ output) Variant 2 (ResQ output)

Unscaled Reserves Probability Density - 2007 Unscaled Reserves Probability Density - 2007

oo — ProsabityDensty — FrosabityDensty

oot oon.

o = e 20 = e 22
5 000 = 25 pocertie Nuce = 28 pocertie
a & oo
2o I~ weaan 220 z I~ weamn e
2o _ £ oo o
5 7an perartie H 7an perartie
o 21 & =

. 000

oo e

20 0 B o w W @ W @ w0 w0
Reserve. Reserve.

Unscaled Paid Claims Development - 2007 Unscaled Paid Claims Development - 2007
0.
- oo pemartie

E . 255 pocsrtie
£ 10k Pemertie
3
8 e

w

2 05 10 15

2 40 45 80 o 05 10 15 2 40 45 80

20 25 a0 20 25 30
Dovlopmant Yoar Dovelopment Yoar

The bootstrapped distribution using variant 1 looks a bit too symmetric. Therefore,
| would prefer variant 2 in this case.

y
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6 Bootstrap for CLM 6.7 Parametric vs. non-parametric bootstrap

Parametric bootstrap
o We can resample triangles with extreme behaviour even if we only

observe very small residuals.
o We have to make an assumption about the distribution of the

reserves. . )

Non-parametric bootstrap
o If we only observe very small residuals the bootstrapped empirical
distribujcio_n ma‘be too ‘nice’. We may underestimate
uncertainties.
o We do not have to make an assumption about the distribution of the

residuals. © |
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Parametric vs. non-parametric bootstrap =

P ’

+ We do not have to make an assumption about the distrbution of the
resicuals

2021-04-26

Up to now there is no proof that either of the presented bootstrapping variants converge in some
sense to the real distribution of the reserves. On the contrary there are empirical studies, where

e a Poisson distribution was chosen to generate a triangle
e the resulting bootstrap distribution and the real distribution of the reserves has been
compared

The results indicate, that the uncertainty may be underestimated by bootstrapping.



6 Bootstrap for CLM
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7 Mid year reserving

7.1 Problem of mid-year reserving

7.2 Methods for mid-year reserving

7.2.1 Splitting or shifting of development periods
7.2.2 Extrapolation of the last diagonal

7.2.3 Shifting accident periods

7.2.4 Splitting of accident periods

7.2.5 Separating semesters

7.2.6 Separating the youngest semester

7.3 Conclusion

7.4 Literature
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7 Mid year reserving 7.1 Problem of mid-year reserving

Chain-Ladder method at mid-year

Chain-Ladder method at year end

development month (periods)

12000 24(1)  36(2)
fo§2.5 fifl.4
+0/| 100 250 350
o
2
g
4
§ 1| 200 500 700
>
2
S
)
& 2| 260 650 910

Chain-Ladder assumptions (Mack [22]):

o E[Cikr1|Bik]= f[i.Cik
. Var[Ci,k+1|Bi’k] = U]%Ci,k

« independent accident years (periods)

(1/4)

12 24 36
0 100 250 350
1 200 500
2 260

o additional semester of experience

o new cells are incomplete
= years are not comparable

= Chain-Ladder will not work.
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Chain Ladder method st yea end

e —
o 2 we

Chain Ladder method st mid-yesr

59| w400

13

R o

Chand 2

« ECLnilBisl= 0l
« VarCa|Buad = 73Cie
© independant sccident years (periods)

© new cell ae incomplete
< yearsare o comparable
- Chain Ladder wil not work.



7 Mid year reserving 7.1 Problem of mid-year reserving

Problems

o forecast or closing

* If the method produces estimates for a closing the second semester of the

= |If the method produces estimates for a forecast the estimated ultimate for
the latest accident year contains the estimate for the second semester,

latest accident year is missing for a forecast estimate.

which has to be eliminated for a mid-year closing.

o generalisation to other dates during the year

o consistency at year end

o usability:

*

*

*

*

*

discussion of the claims development result
comparability of observed development factors
comparability of estimated development factors
estimation error (ultimate and solvency uncertainties)
additional workload

(2/4)
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If we have estimates for a forecast of the next year end closing then the estimated ultimate for
the latest accident year contains the corresponding second semester. Usually, this has to be
eliminated from the estimates if we want to use it for a mid-year closing (under USGAAP, PAA
under IFRS 17 and many other accounting standards). Such an elimination is not always easy.
Often one looks in the history to get an ‘first to second semester ratio’ which is then applyed at
the forecast estimate of the latest accident year.

But one has to be careful. For instance, assume we expect one large claim per accident year.
What do we do at end of June if

e we already observed one large claim for the latest accident year?

— We should not transfer any part of this large claim into the second semester!
— Should we account for the posibility of another large claim via IBNe/yR?

e we have not observed any large claim for the latest accident year?

— How much of the IBNe/yR for large claims should we take into account for the first semester?



7 Mid year reserving 7.1 Problem of mid-year reserving

Assume we have complete data for each semester

(3/4)

12 24 36
12 24 36 25 75 100 150 | 175 175
100 250 350
25 75 100 150 175
0 100 250 350
50 150 | 200 300
200 500
50 150 200
1| 200 | 500 —
65 195
260
65
2 260
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For the numerical example we took for each accident semester the following non-random
development pattern

development month | 6 12 18 24 30 36 42
cumulative | 25 75 100 150 175 175 175
incremental | 25 50 25 50 25 0 0

and accident semester volumes

accident semester | IHO 2HO 1H1 2H1 1H2 2H2 1HS3
volume | 1 1 2 2 2.6 2.6 3

We take this easy and non-random example in order to illustrate issues and possible solutions. A
more realistic example with random data would make it much harder to understand the effects.
Moreover, we cannot expect that a method will work fine in practice, if it fails (to some degree)
for such an easy example.



Problem 7.1 (Mid-year reserving)

What can we do at the end of the first semester in order to estimate reserves
that correspond to the reserves at year end, which are estimated by Chain-
Ladder on the basis of the 12x12 triangle (12 accident months within on
accident period and the same for development periods)?
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Problem 7.1 (Mid-year reserving)
What can we do a the end of the first semester in order to estimate reserves
that correspond o the reserves at year end, which are estimated by Chain
Ladder on the basis of the 1212 triangle (12 accident months within on|
accident period and the same for development periods)?



q . 7.2 Methods for mid-year reserving
7 Mid year reserving
L 7.2.1 Splitting or shifting of development periods

(1/2)
Step by step
12 24 36 48 6 12 18 24 30 36 42 6 18 30 42
o o0 | o e[| o 2 o] s ] 2| " | | "
1] a0 | o0 a0 1 50 200 350 o0 s0[ 700 00 1[50 | 30 | “eso | 700
2 ﬁ"260““ 4‘;75 2 g5 2‘g0 4.:); 650 845 910 910 2 25 W;QSSM 845 910
3 ﬂ 3 775 300 525 750 975 10501050 3 ;; 525 975 1050
fo 4 s 197 13 1443 1 ho 7 13/7 1415
v
Results
o Ultimate: PY = 1960, CY = 1050, Total = 3010 v for forecasts
o Reserves: PY =505, CY = 975, Total = 1480
o The development factors in the third triangle are the products of two
corresponding development factors of the second, i.e.
T4 7 13 10 13 14 14 1
4’ 7 7 10’ 13 13 )
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From an ultimate point of view, it does not matter if we look at development periods
e 6,12,18,24 ..., or
e 6,18,30...



f . 7.2 Methods for mid-year reserving
7 Mid year reserving L o . )
7.2.1 Splitting or shifting of development periods

(2/2)

Properties
« results in a forecast
o easy to generalise to other dates during the year ©

e it is consistent with the yearly Chain-Ladder at year end, because
shifting and splitting results in the same (estimated) ultimates ©
o usability:

* claims development result can be discussed ©

* observed and estimated development factor can only be compared if we use
split development periods, but this goes along with much larger triangles

* although, in theory the estimated prediction errors are the same for split
and shifted data in practice often less values for split data are
observed

* split data triangles can get very huge, for instance for a forecast at the end
of November @
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Properties

« usabily

I—Methods for mid-year reserving ot e s ©

s
c/ Nw nber @

s 03 et

o to genralse 0 othe dtes during the yeur @

it s content withth ey Chi Laddor a e nd, bcauss
Shiing nd piingresis i he same (ctimased) himates ©

e peods bt i o s withmuch e s
1 the estimated predcton eros are the same for Spit

. data . pracc often e valosfor sp ot

®

ianglescan getvery hug, for instance for 3 forcast at the end

Denote by C; j the cumulative values for accident year i at the end of development semester k and by C7 . the

cumulative values for accident year i at the end of development year k. Moreover, let
Big =0 (Cij, 0<j<k) and Bl :70(0 ogjgk)

the corresponding information of the past. Then we have

i,5°

Cik = Ciakt1 and B C Biokti-
Assume that the semester data C; j satisfies the Chain-Ladder assumptions, i.e.
o E[C; kt1|Bik] = f1,Cik
o Var[C; pi1|Bi k] = 07 Ci
e accident years are independent.

Then C; k satisfies the Chain-Ladder assumptions, too:

* E[Cf ki |Blk] = E[E[Cio0etn) 41| Biconsr ]| B] k] = E[fonp2Fansr Criznra [BY k] = fap2Fanin Ol

. Var{

E[o3k42Ci 2k 42 ‘B?,k] + Va'[f2k+2ci,2k+2‘33,k]

= U§k+2E[E[C'i,2k+2|Bi,2k+1}‘8:,k]

i1 ‘B:k] = E[Var[ci,2(k+1)+1 |B7’,,2k+2:||8:,k} + VEV{E [01,2(k+1)+1 |B7’,,2k+2:||8:,k}

+ F3rgo (Var[E[ci,2k+2|Bi,27€+1”6:,k] + E[Vaf[ci,2k+2|5i,k+11\3?,k])

2 2 2 2 2 2
= 0kt2f2kt1C7 K T Fart2(0+ 03,410 ko) = (‘72k+2f2k+1 + f2k+2‘72k+1) Ci

e accident years are independent.

But in practice one often observes 022 > ng+2f2k+1 + f22k+2‘7§k+1



TMidlyearireserving. 7.2 Methods for mid-year reserving
L 7.2.2 Extrapolation of the last diagonal (1/2)

Step by step
12 24 36 48 6 12 18 24 30 36 42 12 24 36 48
of w0 |20 | "0 f3s0| o 25 |w00furs|2s0sas |30 a0 0| 00 |0 | w0 | 0
1 WZOU‘W MSClOZ(U g56 1 SE) 2‘0(0 3:;6 F:O'(D 6(5)0 700 1 “)200‘ ’ ”(500“” %(700 700
2 “‘260‘% 4’;'5 2 g5 2‘20 4;; 650 2 57260"‘7 >M650 910 910
3 ;5 3 775 300 3 7‘7300 750 1050 1050
i 4 10/7 14/1 I 25 14 1
v
Results
o Ultimate: PY = 1960, CY = 1050, Total = 3010 v for forecasts
e Reserves: PY = 505, CY = 975, Total = 1480
o The estimated development factors in the third triangle are almost the
best predictions of the corresponding estimates of the following year
end closure, based on the information available at end of June.
v
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Resuhs

« Ultimate: PY = 1960, CY = 1050, Total = 3010  for

« Reserves: PY = 505, CY = 075, Tatal = 1480

« The estimated development factors in the thid triangle are almest the
best predictons of the corresponding estimates of the following year
end closure, based on the information available at end of June.



TMidlyearireserving. 7.2 Methods for mid-year reserving
L 7.2.2 Extrapolation of the last diagonal

(2/2)

Properties
« results in a forecast
o easy to generalise to other dates during the year ©

« it is consistent (end in some way almost optimal) with the yearly Chain
Ladder at year end ©
« usability:
* claims development result can be discussed ©
+ observed and estimated development factor of the third triangle are the
same as at year end ©
* since ultimates are the same as for split or shifted development periods,
the same estimates for prediction errors can be used
* not so easy to implement with standard reserving software ®
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Since utimates ar the same 3 for 5ot or shiftd development perods,
the same estimate fr prediction errors can be used
ot 50 sy to implement with standard reserving software @

Using the same notation like in the case of split development periods we get

I—k 5 I—k—1 hy
Fo= ico Cietr  Zizo  Ciktr + far2Cr—k2k+2
k= T—k - T—k

>izo Ol >i=o Ok

T—k—1 %
Yico  Cik\ Cr—k.2k12 2hy
T—% 2kt2
Xizo Cik Crokakpr FF

1 —

That means the estimated development factors fk are a weighted mean of the estimated development factors
Cr_p
f;‘:c from last year end closing and the newly observed development % multiplied by the estimated
/\hy ”

development of the second half year f2k+2‘
T—k—1 ox

Ok%ﬁ are almost the best weights o, in order to forecast the
ik

estimated development factors fgeﬁ»l of the next year end closing, i.e. o, that minimize (see [27] for details)

Moreover, one can show that the weights

=0

2
~ Cr_ : pe
E|:<(1 - O‘k)f;ge + akw 5L13+2 - }Eeﬁ»l) ‘Ci.j known at end of June|.
Cr—k,2k+1



TMidlyearireserving. 7.2 Methods for mid-year reserving
L 7.2.3 Shifting accident periods (1/2)

Step by step

6 48 12 24 36
25 75 | 100 150 | 175 175 | 175 25 75 (100 150175 175|175
0 100 250 350 350 N I I—
0 ] e i R BV N O
[l N
o 5% | T o
65 1905 | 260 65 | 105 200 [ 805
2 260 455
i 2 DS270Jgs 723 1084
s | 690 980
3| fr 2.68 15
4
Results
« Ultimate: “PY" = 1505, “CY" = 980, Total = 2514 (2485)
o Reserves: "PY" = 245, “"CY" = 710, Total =994 (955)
e correct values in red
o should give estimates for closings, but only if ‘volumes are stable’
4
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esuls
« Ultimate: PY" = 1505, “CY" = 050, Total = 2514 (2153)
+ Reserves: "PY’

C¥ = 710, Total = 901 (

- should give estimates for closings, but only ifvolumes are stable



TMidlyearireserving. 7.2 Methods for mid-year reserving
L 7.2.3 Shifting accident periods (2/2)

Properties

« results in closing figures, but only if ‘volumes are stable’ ®
o easy to generalise to other dates during the year ©

e it is not consistent with the yearly Chain Ladder at year end ®
o usability:

= a discussion of the claims development result is almost impossible Q6

* observed and estimated development factors at mid year and at year end
are not alike ®

* estimation errors can be estimated by the standard formulas ©

* may be useful in a merger and acquisition process at mid year, if no other
information except for triangles are available
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be useul i 3
information except

The method is inconsistent with the yearly Chain-Ladder for the same reasons as the method of split accident years,
see next method (subsection 11.2.4).



7 Mid year reserving

7.2 Methods for mid-year reserving

L 7.2.4 Splitting of accident periods (1/2)
Step by step
12 24 36 48 6 12 18 24 30 36 42
25 75|10 150|175 175 | 175 1H O 25 | 75 [100(150|175(175|175
250 350 350
25| 75 100 | 150 175 | 175 2HO0| 25| 75 |100(150|175(175 (175
50 150 1200 300 350 1H 1| 50 | 150 200 | 300|350|350 350
1 200 650
50 [150 200 | 200 2H 1| 50 | 150 200|300 {350 350 350
65 195 | 260 1H 2| 65 |195[260 (390 455 455 455
2 260 455
65 | 105 2H 2| 65 |195)|260 390 455 455 455
75 1H 3| 75 |225 300 450 525 525 525
3| fo 3 s %2 e o1 1
v
Results
o Ultimate: PY = 1960, CY = 525, Total = 2485 (v for closings)
o Reserves: PY = 505, CY = 450, Total = 955
« should give estimates for closings, but only if ‘volumes are stable’
v
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Step by step

Resuls
« Ultimate: PY = 1960, CY = 525, Total = f &)
« Reserves: PY = 505, CY = 450, Total =

.+ should give estimates for closings, but only if ‘volumes ae stable



g g 7.2 Methods for mid-year reserving
7 Mid year reserving
L 7.2.4 Splitting of accident periods (2/2)

Properties

« results in closing figures, but only if ‘volumes are stable’

easy to generalise to other dates during the year ©

o it is, except for strange situation, not consistent with the yearly Chain
Ladder at year end

o Usability:

* claims development result can be discussed ©

+ observed and estimated development factor can only be compared if we
always use the same split, but this goes along with much larger triangles

* uncertainties can be estimated by standard formulas

= split data triangles can get very huge, for instance for a estimation at the
end of November @
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Denote by C; . the cumulative values for accident semester i at the end of development semester k and by C: k

the cumulative values for accident year i at the end of development year k. Moreover, let
By =0 (Ciy, 0<j<k) and B, ::g(c;j, ogjgk)
the corresponding information of the past. Then we have
Cl g = C2i2k4+1 + Cait1,2k and B} C o (B2i,2k+1 Y Boit1,2k) -
Assume that C; i and C . satisfy the Chain-Ladder assumptions, i.e.

e E[C; kq1]Bik]= 1 Cik . E{CZ,kH‘Bf, |=9nCii

o Var[C; ky1]Bik] = 02 Cik o Var[Cr 4 |Br ] = RO,

e accident semester are independent. e accident years are independent.
Then we get:

9k (C2i 2641 + Caiy1,2k) = 98 Ci ) = E[CQi,Q(k+1)+1 + Cait1,2(k+1) |B:k}
= E[E[C2'i,2(k+1)+1 + Cai11,2(k+1) ‘B2i,2k+1v 821+1,2k]|83,k}
= E[f2k+2f2k+102i,2k+1 + f2k+1f2kczi+1,2k‘l3?,k]< (7.1)

Therefore, it follows
0= (g5 — f2k+2f2k+1)E[C2i,2k+1‘D] + (9 — f2k+1f2k)E[CQi+1,2k‘D]a (7.2)

for each o-algebra D C B} ..
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Moreover, multiplying (7.1) by (C2; 241 + C2441,2k), resorting the terms and using (7.2) we get and
0= (9r — f2k+2f2k+1)var[c2¢.2k+1‘D}JF (9 — f2k,+1f2k)va"[c2i+1.2k‘DL
which is only possible if

. Var[C,iYk} = 0, which means that there is no randomness,
® fopyo = fop, Which in practice implies fy, | o = fop 11 = fop, =1, or
L]

Var[Cy; opy1|P] 9k — fopt1for E[C2i2k4+1|P]  E[Caio]

forVar[Cait1,26|D] ~ fop(gk — foraatfanir)  FarE[C2i41,2k1P]  E[C2it10]

where the last equation is true, because the second term is independent of the o-algebra D and we can
take the trivial o-algebra. This means, first and second semesters are alike (not only in expectation, but
also in expectation conditioned to all information of the past) up to a fixed factor.

All theses cases are very strange circumstances. O
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Properties
« resus in closing figures, but only if ‘volumes ar stable
« easy to generalise to other dates during the year @
« itis, except for strange situation, not consstent with the yearly Chain
Ladder at year end
« Usabily
claims development result can be discussed ©
bserved and estimated development fator can only be compare i we
jth much lager trisngles




7 Mid year reserving

Step by step
12 24 36 48 6 18 30 42 6 18 30 42
25 75 | 100 150 | 175 175 | 175 1HO| 25| 75 100(150 175|175 175 1H 0| 25 |100(175 175|
0 100 250 350 350
25 | 75 100 | 150 175 | 175 1H 1| 50 [150 200300 350 1H 1| 50 |200 | 350|350
50 150 | 200 300 | 350 1H 2| 65 | 195 260 1H 2| 65 | 260 (455 455
1 200 500 650 Ead =
50 | 150 200 | 300 1H3 |75 1H 3| 75 |300 525 525
P — AR
2 260 455
o5 [ 1es 12 24 36 12 24 36
75 2HO| 25 75 (100 150175 175 2HO| 75 (150 175|
3|75
2H 1|50 150(200 300 2H 1 (150 (300|350
2H 2| 65 195 2H 2[195(390 455
o2
Results
o Ultimate: PY = 1960, CY = 525, Total = 2485 v for closings
o Reserves: PY = 505, CY = 450, Total = 955
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TMidlyearireserving. 7.2 Methods for mid-year reserving

L 725 Separating semesters

(2/2)

Properties
o results in closing figures
o easy to generalise to other dates during the year ©

o even at year end you will get different reserves looking at accident year
or accident semesters

o usability:

* claims development result can be discussed ©

* observed and estimated development factors at mid year and at year end
are only comparable if we always use separated data

+ standard formulas for estimating uncertainties will not work, because they
cannot reflect dependencies (which in addition have to be specified)
between the triangles ®

* we may end up with a lot of triangles, for instance at the end of
November ®

©R. Dahms (ETH Zurich, Spring 2021)
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Properties
+ resus in closing figures
« easy to generalise to other dates during the year @

even at year end you will get cifferent reserves looking at accident year
or accident semesters @
« usabilty

claims development result can be discussed ©

bserved and esimated development fators 3t mid year and 3t yer end

Iy comparabe f e always use separated data
Standard formulas for sstimating uncertin
cannr refiec 4

il not work, becauss they
have to be speifd)

nies, for instance at the end of

November @




7 Mid year reserving

Step by step
12 24 36 48 6 18 30 42 6 18 30 42
25 75 | 100 150 | 175 175 | 175 25 | 75 100 | 150 175 | 175 175 1HO| 25 [100|175|175
0 100 250 350 350 0|25 175 325 350
25 | 75 100|150 175 | 175 25 75 | 100 150|175 175 1H 1| 50 [200]350|350
50 150 | 200 300 | 350 50 | 150 200 | 300 350 1H 2| 65 [ 260|455 455
1 200 500 650 =150 350 650 700 =+
50 | 150 200 | 300 50 150 | 200 300 1H 3| 75 |300 525 525
[ P o [ o S a0
2 260 455 2|65 455 845 910
75 fie 13/7 /13
3|75
Results
o Ultimate: PY = 1960, CY = 525, Total = 2485 v for closings
o Reserves: PY =505, CY = 450, Total = 955
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+ Ultimate: PY = 1960, CY — 525, To
« Reserves: PY = 505, CY = 430, Total




g g 7.2 Methods for mid-year reserving
7 Mid year reserving 3
L 726 Separating the youngest semester

(2/2)

Properties
« resulting in closing figures
« easy to generalise for other dates during the year ©
o at year end both triangles are the same and equal to the yearly
triangle
o usability:
* claims development results can be discussed ©
+ observed and estimated development factors for prior years at mid year and
at year end are comparable ©
= standard formulas for estimating uncertainties will not work, because they
cannot reflect dependencies (which in addition have to be specified)
between the triangles ®
* not so easy to implement with standard reserving software
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Properties

« resuing i closing figures

« easy to generalise for other dates during the year ©

« at year end both triangles are the same and equal to the yearly

triangle

« usabity
claims development results can be discussed ©
bserved and estimated deelopment factors fo prioryers at mid yea and
at year end are comparable
Standard formulas for estmating uncertinties wil not work, because they
cannas rfec dependencies (which in additon have to be specifed)
betueen the triangles
ot 50 casy 1o mplement with sandard resening sofvare



7 Mid year reserving 7.3 Conclusion

2 ]
(0] 3 e
N 2| s
(3] hal
128 lel|s5
(0] [ [}
7] = [ >
8 le| 8¢ 0
@ 2 [ s | 2 9]
S |o|2|9 el &
- c | B o |3 =
2 2 - P © 8
= Ko c | © & =
o0 o288l &
B he; o | w| E|E c
38 ©OlZ|5|8 >
—_ c > c —_ (9] Y
o S || S8|O|al|®
. ) o (v = -
P52 |e|3g] ¢
T © o | I N ©
8} o) f S = . €
S s le|2| 2|3 %
method L w | E| 3| | ] workload
splitting development years forecast | (V) | ? | v | v | X | (V) | can get huge
shifting development periods | forecast | v | v | vV |V | X | V v
extrapolating last diagonal forecast | (V) | v | vV |V | V | (V) (V)
shifting accident periods closing | v | X |V | X | X | V v
splitting accident years closing | (V)| X | X | v | X | (V) | can get huge
separation semesters closing | (V)| ? | X | v | X | X | can get huge
separating youngest semesters | closing | (V)| ? | vV | V | V X v
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can et huge
X can g e

e (V') stands for ‘yes, but' and refers to possible huge triangles, cannot be implemented
(easily) in standard reserving software or other reasons

e My favourite for mid-year closings is the separation of the youngest semester, because

— estimated ultimates (and the CDR), estimated development factors as well as
observed development factors are comparable with year end figures based on
yearly triangles

— with some tricks it can be implemented in most standard reserving software

— uncertainties should anyway be estimated separately

e My favourite for forecasts is the shifting of development periods, because

— it can be implemented in most standard reserving software, which is not the
case for the (correct) extrapolation of the last diagonal, which | would prefer if
| had to implement a software
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8 CLM: Bayesian & credibility approach

8.1 A Bayesian approach to the Chain-Ladder method
8.2 A credibility approach to the Chain-Ladder method
8.3 Example

8.4 Literature
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RO B VRN SEVECEL RS ECILHIAAETTIEELLN 8.1 A Bayesian approach to the Chain-Ladder method

Recapitulation of the Chain-Ladder method

Let C;p := Z?:o S; ;- If we have

)M E[C; k1 Bkl = frCik.
ii)CLM Var[C’i’k+1|Bi7k]: U]%Ci’k and

iii)CL'vI accident periods are independent.
Then ai’k+1 = fk o fl_zC,-,]_i with
20 Thoo  Chx Cik

are Dr_;-conditional unbiased estimators of C;x, for I —i < k < J.

(1/6)

But

this is only true if we assume that the development factors f; are fixed. We now want
to look at the Chain-Ladder method where they are assumed to be realisations of random

variables ¢, with E[p,]= f,. We denote by

Y= (5007 KR (PJ—I)
the corresponding collections of all random development factors.
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RO B VRN SEVECEL RS ECILHIAAETTIEELLN 8.1 A Bayesian approach to the Chain-Ladder method (2/6)

Assumption 8.A (Bayesian Chain-Ladder method)

We assume that

D7 EC: kil Bikl = ¢, Cik

i) Var[Ci g1, Bigl = 02 (9)Ci
i) %% conditional given o the accident periods are independent and
V)P For any selection uy € {1, ¢, 7, 07(¢)} we have

E[U() et ILJ_1|D}= E[UO|D] el E[UJ_1|D],

where D is any claim information D", Dy, D} or D™ N Dy,.

Remark 8.1

« We assume that the variance parameters o7 may depend on the random
development factors ¢.

« Conditionally given ¢ we have a standard Chain-Ladder method with
development factors ¢, and variance parameters o (¢).
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RO B VRN SEVECEL RS ECILHIAAETTIEELLN 8.1 A Bayesian approach to the Chain-Ladder method (3/6)

Definition 8.2 (Bayes estimators)

Let Z be a random variable and D some c-algebra (for instance the information
contained in some observations). The Bayes estimator Z5% of Z given D is defined
by

zPw .— E[Z|D).

Corollary 8.3

If Z% is integrable then the Bayes estimator is the D-measurable estimator that
minimizes the conditionally, given D, mean squared error of prediction, i.e.

ZB% = argmin E{(Z - 2)2‘D}
Z

Estimator 8.4 (of the future outcome)

Under Assumption 8.A we get

Cil,?l;l—fl = E[Ci,k+1|DI] = E[(pk“)[] . E[QDI_1|DI] Ci,[—i = (pkBay_. . .~QOIBf?CZ‘7]_i
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The corollary is true, because the conditional expectation is the orthogonal projection
onto the subspace of all D measurable functions (within the space of all square
integrable functions).

Proof of Estimator 8.4:

Cfff}ﬁ - E[Ci,kﬂmf] = E[E [Ci,k+1|<p,pl]‘pf]

E[S% e ‘plfici,f—i|,DI]

standard CLM for fixed development factors

E[cpk\DI] . E[go,_imf]ci,l_i.

iv)Bay



RO B VRN SEVECEL RS ECILHIAAETTIEELLN 8.1 A Bayesian approach to the Chain-Ladder method (4/6)

Ultimate uncertainty in the Bayesian case
For the mean squared error of prediction of the ultimate outcome we get

2
—E|E (i: (C,-,ch;y)> 0. D! ||p!
=0 =0
2
—EH(ZIj (Cis — E[Cisle, D) - i(cBay— [Cisle, D ])) ¢, D'||D!

=0 =0

I

2
Var[Ci,J|¢,D’]+<Z (E[ci,J|go,D1] CB“y)> D!

i=0

I I 2
=3 EVar[Cisle, D]|D']+ E <Z( 27J¢,Df]—cf;y)> D,

=0

random error parameter error
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RO B VRN SEVECEL RS ECILHIAAETTIEELLN 8.1 A Bayesian approach to the Chain-Ladder method (5/6)
Derivation of the random error
J—1 — k—1
I I I
E[Var[ ,J|QP,D ’D Z H (p H (pj D Ci,[—i
k=I— j=k+1 j:I—i
standard CLM, Estimator 2.9
J-1 J- k—1
I I
=% I el @) T Elefo] s,
k=I—1ij=k+1 j=I—i
iv)Bav
Derivation of the parameter error
1 2 1 J-1 J-1
I Ba 1
E Z ( D } Ci,Jy) D= z Cil,ffilcizyffizcov H Pk H o |D
=0 11,i2=0 k=I—iy k=I—is
I I—(i1Nig)—1 — J—1
I ] 172
Z Ci1,1—i Cig 1 —is H E[¢k|D ] H ‘Pk|D H E[‘F’k'D }
11,12=0 k=I—(i1Vi2) k=I—(i1\ig2) k=I—(i1\i2)
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parameter error:

E[(i (E[cimv’}—cf:y)f }—V{g [c1.5le. 2] DI}

=0

eefoi, b 2P0 75

I J—1 J-1
= > C°V|:C¢1,17¢1 Il ¢x:Cigii—in II en ’Dl}

i1,i3=0 k=I—iq k=I—ig
I J—1 J—1
I
= > Ciy,1—iy Cig,1—iy Cov IT ex: II ex|P

i1,i5=0 k=I—i; k=I—ig

= i Ciy,1—i1Cig,1—in (E[ Jﬁl Pr Jﬁl Pr DI:| *E[ Jﬁl Pr DI}E{ Jﬁl Pr DI:|>

i1,ig=0 k=I—i; k=I—ig k=I—i; k=I—ig
I I—(i]Aig)—1 ; J—1 ol J—1 2
= Z Ciy,1—i1Cig, T—ig H E[“Pk‘D } H E{‘Pk|D ]* H E{‘Ple ] :
i1,i=0 k=I—(i1Vig) k=I—(i1Aig) k=I—(i1Aig)
iv)Buy

Note: Although accident periods are independent given DI and « they are usually not independent given pl.



RO B VRN SEVECEL RS ECILHIAAETTIEELLN 8.1 A Bayesian approach to the Chain-Ladder method (6/6)

Problem 8.5

We still have to estimate

ElpelD],  E[¢;|D']  and  E[oi(9)|D'].

Distribution based models

On solution is to make an assumption on the joint distribution of (C; 1.)i+k<r
and ¢ and than calculate the a posteriori distribution of ¢ given D!, which
then can be used to calculate the missing objects.

Credibility approximation

Another way is to look only at estimators ﬁkc”ed, which depends in an affine

. c;
way on the observations F} j, = CL?
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A Bayesian approach to the Chain-Ladder method Sumbr

 disribution of (€ )y cke
n of  given DI. which

Note, we know E[p,]= f,. but usually E[gok|'DI] # [

Even if we have a good model for the joint distribution of (C; 1)i4+r<s and ¢, the
calculation of posteriori distributions is very hard, since we have only very few data.

Looking at the credibility estimator instead of the Bayesian estimator means to look at
the a orthogonal projection onto the affine subspace of D! generated by the link ratios
F; j, instead of the projection onto DI itself.



NGB RN SEVECEL RN ECIHIEAETTIEELLN 8.2 A credibility approach to the Chain-Ladder method

Definition 8.6 (Credibility estimators of the development factors)
SCred N2 1
Fred .= argmin E{((pk —ga) "D }

I— k 1 Cik+1
ap+ —Lhtl
o= Z @i,k Cik

(1/3)

Theorem 8.7 (Credibility estimator for the development factors)
Let Assumption 8.A be fulfilled. Then
o the credibility estimators of the development factors are given by
FEred — akfISLM + (1= ag)fe with Q=
where f, :=E[p,] o7 := E[o} ()], 77 := Var[p,] and
o _ Iil Cik Cikt1
k . 1. .
i=0 Zi:’é ! Chr Cik

o the corresponding mean squared error of prediction is given by

2

msep, [FCred} E{( chd) ‘Dk} = ek (1 - )12,

Yo Cin

I-k—1
Zi:O Ci,k
I—-k—1 o2
Zi:o Ci,k + =2

-
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Conditionally given Dy, the random variables F; j, = C‘c—k:rl 1=0,...,1 —k—1, fulfil
the assumptions of the Biihimann and Straub model (seey[29, Section 4.2]). The first
part of the theorem is the well known credibility estimator of Biihlmann and Straub and

the second part is the corresponding mean square error of prediction (see [29,
Chapter 4]).

The case 7—13 — 00, i.e. a =1, is called the non-informative priors. It corresponds to
the standard Chain-Ladder method introduced in Section 2.

Si_nce chre‘_i still depenr.is on the unknown expectation f, = E[apk] we don't mark it
with a hat like other estimatior.



8.2 A credibility approach to the Chain-Ladder method (2/3)
Estimator 8.8 (Credibility estimator of the future development)
Cored .= FEred . FmedC; 1y, forit+ k> 1.
Estimation of the structural parameters f,, o7, and 77, see [29, Section 4.8]
Either ask experts or if we have several similar portfolios C7}, 0 < m < M, we can take
~m,Cred . ~m 7m,CLM A ~Am,Cred . pm,Cred om,Cred .
F, =ay fi + (1 —ap)fy and Cy =R B i with
ZM:O amﬁcnYCLM H M ~m .
= 7WZM 2 it Yy <>0, ot,CLM _ Yokt 1
fi= A”C’L"’\;O k Ji =
7, otherwise, ok
-1
M
ay S (=0, if7 72 ) Ck M “ek i
k= 52 =Y k= ) k= m Z . T e ’
Wil + 1\ 20 Yok Yok
M m ~2
o M+1 Wek (7mCM _ sot,clM\2 (M +1)5%
T, '=max < 0;¢cp | —— Z f — f -
k » Ck M w® k k w® ’
m=0 ek ok
M I—k—1 m 2
52._ 1 Z 1 om ik+1 7 ,CLM
k= . ik m k ’
M414T—k—1 & o
I—k—1 M
Wiy, = Cih and  wlpi= ) Wl
i=0 m=0
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In the case of non-informative priors, i.e. 7—13 — 00, the estimators of the future

development are the same as for the standard Chain-Ladder method introduced in

Section 2. .

fwt LM ;‘.’Hl are the standard estimates of the development factors of the
ok

combined portfolio Z%:() cr.

The factors ¢y, are normalizing factors that makes the estimators 7 unbiased
(conditioned 7} > 0).



NGB RN SEVECEL RN ECIHIEAETTIEELLN 8.2 A credibility approach to the Chain-Ladder method (3/3)

Estimator 8.9 (of the ultimate uncertainty)
Let Assumption 8.A be fulfilled. Then the ultimate uncertainty is given by
I I J-1 J-1 k—1
ACred 2|l 2 I I
mens[S-06%| =32 52 T1 o ebitolo’] T] elo o i
i=0 i=0 k=I—i j=k+1 j=I—i
random error
1 -1 J-1 -1 J-1
+ > CuraCuronE|| I F = T II B9t = I e ||P"
i1,i2=0 k=I—iy k=I—iy k=I—ia k=I—i>
parameter error
I J-1 52 J-1 A 52
(iCred k J J
Y T [
i=0 k=I—i (ch"’d CCT"‘ j=kt1 Zh h.j (FCT@d>
1 J-1 ak 52
ACred ACTed
Z Cn,re szTf H 1+ I=k=1 ~ - 7| —1
i1,i2=0 k=I"(i1Ai2) 2h=o  Chk (ch”d>
Remark 8.10 (conection to the standard CLM)
In the case of non-informative priors, i.e. 77 — oo, the random error is slightly bigger than in the
standard CLM case, whereas the parameter error is the same.
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g. I—A credibility approach to the Chain-Ladder method
I
=)
9%
First, like in the Bayesian_case, we decompose the mse 5

mse, s icfjed :XI:E[Var{CLJ“’:,DI”DI}-‘—E XI:(E{CLJPP,DI}—CE;G‘I) !
i1=0 =0 =0

random error parameter error
The random error is the same like in the Bayesian case and for the second term we take the summation out of the
expectation.
. . 2 I| o .2 Il o pCred
In order to estimate it we take E[ak(ap)‘D } R oj; and E{(pk|D ] R FTeC

Moreover, we estimate
et = [(es - el )’

o (i) =

Theorem 8.7

Finally, we compute

J—1 Cred J—1 J—1 COred J—1 I
re re
E II A= 11 « II r™= 11 er]|?
k=I—iq k=I—iq k=I—ig k=I—iq
J—1 J—1 J—1 J—1 J—1 J—1
B Ba I I
~E II 7%= II « II 77— TII ex]P’|=Cov| Il er: Il wx|?
k=I—iy k=I—iy k=I—io k=I—io k=I—iy k=I—ig
I—(i1Aig)—1 J—1 J—1
I 2 I I12
ST o) el T ]
k=I—(i1Vig) k=I— (i1 Ain) k=I— (i1 Ain)

~ 2 ~ ~
and replace all unknown parameters by they estimates and take the factors (C,L-O";Ed) and C,ﬁrf,dC,grjd out.



8 CLM: Bayesian & credibility approach B¥:3} Example

Pricing of similar subportfolios

« In [28] a example of a portfolio was discussed that consists of six subportfolios, ‘BU

A'...'BU F'. Results and figures are copied from this article.

o For reserving we would usually combine all six of them to get the law of large numbers

more volume to get working.

« But in pricing we need individual premiums for each subportfolio.
o On way to do so is to use the introduced credibility reserving.

BU reserves mse

CLM | Cred | CLM | Cred

A| 486 | 504 | 657 | 498

B | 235 | 244 | 288 | 402

C| 701 517 | 411 | 520

D | 1029 | 899 | 844 | 729

E| 495 | 621 397 | 596

F 40 25 140 | 149

sum | 2987 | 2810

overall CLM | 2746 1418
LSRM | 2987 1353

For LSRM we coupled the individual Chain-Ladder projections by R}}"™* := m

(1/4)
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Example

The total reserves differ only by 6 %, but per subportfolio the differences are much larger
(up to 46 %).

The CLM reserves for the combined portfolio are even smaller.

The mse of the combined portfolios is about 25 % larger than the sum of the individual
ones. This may be a hint that the estimated reserves of the subportfolios are correlated.
The LSRM leads to almost the same results as the overall CLM.

In the file ‘Example Cor_Dll.xlsx' (or ‘Example Cor ActiveX.xlsx'), see Example on
slide 147, the CLM and the LSRM estimates are (re)calculated. The presented figures
for CLM, which are taken from the original article [28], differ slightly from the
recalculated once, because of rounding effects.



8 CLM: Bayesian & credibility approach B¥:3} Example (2/4)

Correlation of the estimated reserves
Estimated ultimate uncertainty correlation

BU A B C D E F
A| 100 -0.15 0.01 0.23 -0.17 0.26
B|-0.15 100 0.03 0.13 -0.03 -0.00
C| 0.01 0.03 100 0.04 0.06 -0.05
D| 0.23 0.13 0.04 1.00 -0.05 0.09
E|-0.17 -0.03 0.06 -0.05 1.00 0.03
F| 0.26 -0.00 -0.06 0.09 0.03 1.00

We see that at least the estimated reserves for subportfolio BU A are correl-
ated to the others.

v
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Correlation of the estimated reserves
Estimated uitimte uncertainty correlstion

We see that at least the estimted reserves for subpertfolo BU A are correl
ated to the others.



8 CLM: Bayesian & credibility approach BE:RH &N (3/4)
Comparison of the estimated development pattern (1/2)
The individual CLM development pattern are smoothed by the credibility approach:
Chain Ladder Development Pattern
14
1.35 O
13
1.25 —5—2 r——— [~o-BUA]|
12 /f —o o0 o ¢ —®BUB
115 | » -o-BUC
11 ' |—e—BUD
105 1/ 44 —e—BUE
] —e-BUF
o 1 2 3 4 5 & 7 8 9
Development Year
Credibility Development Pattern
1.25
e, & o
1.2 5 77}//3;;VF s’“k —5—o—
_$—8—8 ¢
1.15
| 7

14—
1.05

o 1 2 3 4 5 & 7 8 9

Development Year
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8 CLM: Bayesian & credibility approach BE:RH &N

Comparison of the estimated development pattern (2/2)

The credibility approach shifts the individual CLM development pattern into the direction of the

overall CLM pattern:

1.300

1.250

1.200

1.150

1.100 1

1.050

1.000

BUA

[

—e—CL Portfolio
—e—Cred BU
—e—CLBU

3 4 5 6 7 8 9
development year

1.200
1.180
1.160
1.140
1.120
1.100

1.080 +
1.060 +
1.040 +

1.020
1.000

1

2

3 4 5 6 7 8 9
develoopment year

(4/4)
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8 CLM: Bayesian & credibility approach
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9 Separation of small and large claims
9.1 What is the problem with large claims

9.2 How to separate small from large claims

9.2.1 Small and large by latest information

9.2.2 Ever and never large by latest information

9.2.3 Small and large now

9.2.4 Ever and never large up to now

9.2.5 Ever large up to now and never large by latest information
9.2.6 Attritional and excess

9.2.7 Separation methods summary

9.3 Estimation methods for small and large claims
9.4 Modelling the transition from small to large
9.5 Literature
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CRCELETEVELRCIEE IENENETECREETUEN 9.1 What is the problem with large claims (1/2)

Increments of incurred losses with individual Chain-Ladder development factors

included losses of all claims (ever) large claims excluded
i\k| o0 1 2 3 4 i\k|] o 1 2 3 4
0 296 7.5% 22 -3.0% -10-44% -14 -6.1% -18 0 269 44% 12 -38% -11-57% -15-7.9% -20
1 285 16% 5-5.9% -17 -72% -20 1 274 12% 3 -64% -18-75% -19
2 259 4.4% 11 -8.0% -22 2 250 45% 11 -8.0% -21
3 277 5.9% 16 3 254 33% 8
4 268 4 263

We see a huge variability within the individual development factors at the first
development period.

* What are the reasons for this behaviour?

= Are the first two exceptional extremes?

= How often may they occur? Once in four years or once in 40 years?

One possible reason is the behaviour of large claims.

After eliminating all large claims it seems, that only the second observed development
factor of the first development period is still out of line.

Accident period 4 still contains a claim which will become large in three years. But such
claims are excluded for accident periods 0 and 1! Therefore accident periods are not
comparable!

The example is taken from [30], but only the first five calendar periods.

4
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CRCECETEVELRCHEEIRELERET-ERCETUEN 9.1 What is the problem with large claims (2/2)

Aims of separating small and large claims
1. Get a smooth triangle of small claims.

2. Do not transfer too much reserves to the triangle of large claims.

Both aims contradict each other. Therefore, we have to find a good balance.
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Aim 1. could be easily fulfilled by defining all claims as large. And on the other hand aim 2.
could be easily fulfilled by defining all claims as small.



CRCELETEVELRCTEEN RENENET-CREETUEN 9.2 How to separate small from large claims (1/3)

General problems for separating large and small claims

o Should we compare payments or incurred losses with the threshold? In
most cases we should take incurred losses, because payments usually
exceed the threshold much later.

o The relations used, i.e. “< and >" or “< and >".

o Completeness, i.e. no leftovers and no double counting.

o Consistency over time, i.e. are the separate developments of small and
large claims comparable over all accident periods?

» Systematic over- or underestimation. This often goes along with the
consistency over time.

o The choice of the threshold, in particular in cases where the separation
method is not continuous with respect to the threshold.

o Does the separation lead to better estimates of the reserves? Usually, we
would like to take large claims out in order to get a smooth but not trivial
triangle of small claims, which then can be analysed by standard methods.
Not trivial means that still a reasonable amount of reserves belong to small
claims.
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Terms like large and small claims are not consistently used in practice as well

Separation of small and large claims

How to separate small from large claims

For instance, you could find

large claim:

small claims:

large loss
catastrophic claim (or loss)
exceptional claim (or loss)

small losses
normal claims (or losses)
attritional claims (or losses)

- Consisten

General g large and small laims
« Sho

e esses with the threshold? In
most cases we should take incurred losses, because payments usualy
exceed the threshold much lster

« The reations used. e < and
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as in the literature.



CRCELETEVELRCTEEN RENENET-CREETUEN 9.2 How to separate small from large claims (2/3)

Discussion of various separation methods

In this lecture we want to discuss various methods to separate small and large
claims. Moreover, we want to highlight their advantages and drawbacks. In
order to do so we will keep life simple and focus on the following deterministic
portfolio (see Excel file “Large and Small.xIsx"):

o We fix a threshold of 400.
o The portfolio consists of three types of claims:

* 100 claims that never exceed the threshold (small claims).

* One claim that after some time exceeds the threshold, but will be finally
settled below it (large claim 1).

* One claim that exceeds the threshold (large claim 2).

We will illustrate each separation method at the example of large claim 1 and
discuss the advantages and drawbacks of the separation at the example of
Chain-Ladder projections of separate incurred triangles containing small and
large claims. Therefore, we denote by X}, the incurred loss of large claim 1 at
(development) time k.
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I this lecture e want to discuss various methads to separate small and lage
claims. Moreover, we want to highlght their advantages and drawbacks. In
order 10 do s0 we will kee ffe simple and focus on the follving deterministic
portolio (see Excel ile “Large_and_Smallis<’)

+ We ix  threshold of 400.

 The porfolo consists of three types of clims:

b fnally
hat excends the threshold (e

each separation method at th

e of lage claim 1 and
advantages and drawbacks of the separation st the example of
oot oo o sy inared viengls onining small snd
Targe claims. Therefore, we denote by X, the incurred loss of large ciaim 1 3t
(development) time &

Using CLM is adequate, because we deal with a non random portfolio which is constant over

time.



9.2 How to separate small from large claims (3/3)
Deterministic development of the example portfolio
The development of payments and incurred losses are as follows:
incurred losses 0 1 2 3 4
small claim | 10 15 18 18 18
large claim 1 | 300 700 800 350 350
large claim 2 | 500 800 900 950 950
paid to date 0 1 2 3 4
small claim 5 13 18 18 18
large claim 1 | 10 100 500 350 350
large claim 2 0 100 250 950 950
Therefore, we expect the following outcome:
AP | paid incurred ultimate reserves IBN(e/y)R
0| 3100 3100 3100 0 0
1| 3100 3100 3100 0 0
2 | 2550 3500 3100 550 -400
3| 1500 3000 3100 1600 100
4 510 1800 3100 2590 1300
total | 10760 14500 15500 4740 1000
YTy



Stochastic Reserving

8 Separation of small and large claims
g. How to separate small from large claims
—
N
o
N
cumulative incurred losses of 100 small claims cumulative payments for 100 small claims
0 2 0 1 2 3 4
0 1000 1500 1800 1800 1800 0 500 1300 1800 1800 1800
1 1000 1500 1800 1800 1 500 1300 1800 1800
2 1000 1500 1800 2 500 1300 1800
3 1000 1500 3 500 1300
4 1000 4 500
cumulative incurred losses of large claim 1 cumulative payments for large claim 1
0 1 2 3 4 0 1 2 3 4
0 300 700 800 350 350 0 10 100 500 350 350
1 300 700 800 350 1 10 100 500 350
2 300 700 800 2 10 100 500
3 300 700 3 10 100
4 300 4 10
cumulative incurred losses of large claim 2 cumulative payments for large claim 2
0 1 2 3 4 0 1 2 3 4
0 500 800 900 950 950 0 0 100 250 950 950
1 500 800 900 950 1 0 100 250 950
2 500 800 900 2 0 100 250
3 500 800 3 0 100
4 500 4 0
cumulative incurred losses of all claims cumulative payments for all claims
3 4 0 1 2 3 4
0 1800 3000 3500 3100 3100 0 510 1500 2550 3100 3100
1 1800 3000 3500 3100 1 510 1500 2550 3100
2 1800 3000 3500 2 510 1500 2550
3 1800 3000 3 510 1500
4 1800 4 510




q . 9.2 How to separate small from large claims
9 Separation of small and large claims L = )
9.2.1 Small and large by latest information

Small and large by latest information: Classification

claim is large at time k <= X > threshold

Behaviour of large claim 1:

(1/3)

incurred paid Nsmall
800 A 800 A 7 large
600 A 600
400 threshold 400 threshold
200 A § 200 A §
0 T f T T 0 T f T
0 1 2 3 4 0 1 2 4

o We see that there are no leftovers and no double counting (at any point in time each part is

either red or green). ©

o The classification depends on the estimation date (the colour of each block may change if we
look at it one period later). Therefore, accident periods are not comparable, i.e. we don't

have consistency over time. ®e

o The separation is not continuous with respect to the threshold. ®

v
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First idea is to look at the latest information we have about each claim.



q . 9.2 How to separate small from large claims
9 Separation of small and large claims L = )
9.2.1 Small and large by latest information
wl

Small and large by latest information: Projection

large 0 1 2 3

small 0 1 2 3 4 4
0| 1300 900 400 -450 O 0| 500 300 100 50 0
1| 1300 900 400 -450 O 1] 500 300 100 5 0
21000 500 300 -312 0 2| 800 700 200 94 0
3 |1000 500 280 -308 O 31800 700 194 94 0
4| 1300 791 390 -429 0 4|1 500 385 114 55 0
fk 0.61 0.19 -0.17 0.00 fk 0.77 0.13 0.06 0.00

o We see again that accident periods are not comparable, i.e. we don't have
consistency over time.

o We have huge amounts in late development periods within the small triangle,
which usually makes projections less stable. The reason for those amounts is
the reclassification of a large claim as small in development period 3. ® e

v
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Small and large by latest nfor
wal| 0 1 2
of130 w0 aw
1m0 w0
2 300
3[w000 s0 200
af o 7o om0
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3
a0
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ey
000

mation: Projection

.
0
o
o
0
o

bage| 0 1 2 34
ofs0 30 1w w0
10 1w w0 s o0
2|60 700 200 98 o
3|a0 700 198 98 0
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Jilorr oxs 005 00

« Vi see agai tha sccident periods ar ot comparable, . v don't have

- Ve have huge amounts in lte development pariods within the smll iangle

which usully ke prjections lesssable. The resson fr those 1
the reclssficaton of a brge lim 2 small in deveopment percd 3



q . 9.2 How to separate small from large claims
9 Separation of small and large claims L = )
9.2.1 Small and large by latest information

Small and large by latest information: Results

expected results estimated results

AP | ultimate reserves | ultimate reserves small res. large res.
0 3100 0 3100 0 0 0

1 3100 0 3100 0 0 0

2 3100 550 3283 733 -312 1044

3 3100 1600 3259 1759 172 1588

4 3100 2590 3106 2596 1542 1054
total 15500 4740 15848 5088 1402 3686

« Under- and overestimation. @ @
o More than 75% of the reserves belong to the large triangle, which is usually less
stable. @ @ )

Conclusion (pros: 1 © versus cons: 1 @ and 4 @ @)

Do not use the separation method ‘small and large by latest information’ for the estimation
of reserves. J
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q . 9.2 How to separate small from large claims
9 Separation of small and large claims L N )
9.2.2 Ever and never large by latest information

Ever and never large by latest information: Classification

claim is large at time k <= m<a;<(X]-) > threshold
i<

Behaviour of large claim 1:

incurred paid Nsmall
800 800 7 large
600 ZZ 600
400 threshold 400 threshold
200 200 A
0 T f T " 0 ; f T "
0 1 2 3 4 0 1 2 3 4

o We see that there are no leftovers and no double counting (at any point in time each part is

either red or green). ©

o The classification depends on the estimation date (the colour of each block may change if we
look at it one period later). Therefore, accident periods are not comparable, i.e. we don't
have consistency over time. ®e

o The separation is not continuous with respect to the threshold. ®

(1/3)

4
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In order to get smoother triangles we have to avoid the reclassification of large claims as small.
One way to do so is to take all claims as large which have exceeded the threshold at least once.



q . 9.2 How to separate small from large claims
9 Separation of small and large claims L N )
9.2.2 Ever and never large by latest information

Ever and never large by latest information: Projection

large 0 1 2 3

small 0 1 2 3 4 4
0| 1000 500 300 0 0 0| 800 700 200 -400 0
1| 1000 500 300 0 0 1| 800 700 200 -400 O
2| 1000 500 300 0 O 2| 800 700 200 -400 O
3| 1000 500 300 O O 3| 800 700 200 -400 O
411300 650 390 0 O 4500 438 125 -250 O
f. | 05 02 000 000 /. 1088 013 -0.24 0.00

o We see again that accident periods are not comparable, i.e. we don't have
consistency over time.
o The triangle of small claims is much smoother. © O

©R. Dahms (ETH Zurich, Spring 2021) Stochastic Reserving: Lecture 13 [PIV.\.ialipd] 217 / 240



2021-04-26

Stochastic Reserving
Separation of small and large claims

How to separate small from large claims

arge by ltest in

3
o
w0
0
0

oo 00

0
o
o
o
o




q . 9.2 How to separate small from large claims
9 Separation of small and large claims L N )
9.2.2 Ever and never large by latest information

Ever and never large by latest information: Results

expected results estimated results

AP | ultimate reserves | ultimate reserves small res. large res.
0 3100 0 3100 0 0 0

1 3100 0 3100 0 0 0

2 3100 550 3100 550 0 550

3 3100 1600 3100 1600 500 1100

4 3100 2590 3153 2642 1830 813
total 15500 4740 15553 4792 2330 2463

« Under- and overestimation. @ @
o More than 50% of the reserves belong to the large triangle, which is usually less
stable.

Conclusion (pros: 1 © © and 1 © versus cons: 1 @ and 3 @ @)

Do not use the separation method ‘ever and never large by latest information’ for the
estimation of reserves.

y
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q . 9.2 How to separate small from large claims
9 Separation of small and large claims
L 9.2.3 Small and large now

Small and large now: Classification
claim is large at time k <= X}, > threshold

Behaviour of large claim 1:

incurred paid

Nsmall
800 800 7 large
600 ;2; 600
400 threshold 400 threshold
200 \§ 200 A / \§
0 T f ; " 0 T f T "
0 1 2 3 4 0 1 2 3 4

o We see that there are no leftovers and no double counting (each part is either red or
green). ©

o The classification does not depend on the estimation date (the colour of each block does
not change if we look at it one period later). Therefore, accident periods are comparable,
i.e. we have consistency over time.

« The separation is not continuous with respect to the threshold. ®

(1/3)
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The separation method ‘ever and never large by latest information’ may stabilise the triangles.
But we still have inconsistent accident periods and therefore an under- or overestimation of
reserves. In order to get consistent accident periods we could consider a claim as large at time
k if it exceeds the threshold at this time.



q . 9.2 How to separate small from large claims
9 Separation of small and large claims
L 9.2.3 Small and large now

Small and large now: Projection

small 0 1 2 3 4 large 0 1 2 3 4
01300 200 300 350 O 0| 500 1000 200 -750 O
11300 200 300 350 O 1| 500 1000 200 -750 O
2 (1300 200 300 350 O 2| 500 1000 200 -750 O
31300 200 300 350 O 3| 500 1000 200 -750 O
411300 200 300 350 O 4| 500 1000 200 -750 O
f. | 015 020 019 0.00 f. 1200 013 -0.44 0.00

o We see again that accident periods are comparable, i.e. we have consistency
over time.

o We have huge amounts in late development periods, which usually makes
projections less stable. The reason for those amounts is the reclassification of a
large claim as small.
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q . 9.2 How to separate small from large claims
9 Separation of small and large claims
L 9.2.3 Small and large now

Small and large now: Results

expected results estimated results

AP | ultimate reserves | ultimate reserves small res. large res.
0 3100 0 3100 0 0 0

1 3100 0 3100 0 0 0

2 3100 550 3100 550 350 200

3 3100 1600 3100 1600 850 750

4 3100 2590 3100 2590 1640 950
total 15500 4740 15500 4740 2840 1900

o No systematic under- or overestimation. ©
o Still 40% of the reserves belong to the large triangle, which is usually less
stable.

Conclusion (pros: 3 © versus cons: 2 @ and 1 @ @)

Do not use the separation method ‘small and large now' for the estimation of reserves.

4
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q . 9.2 How to separate small from large claims
9 Separation of small and large claims
L 09.2.4 Ever and never large up to now (1/3)

Ever and never large up to now: Classification

claim is large at time k <= max (X;) > threshold
i<

Behaviour of large claim 1:

incurred paid

Nsmall
800 800 1 7 large
600 A 2; 600 A
400 threshold 400 threshold
200 200 - /
0 T T ¢ T 0 T T ; T
0 1 2 3 4 0 1 2 3 4

o We see that there are no leftovers and no double counting (each part is either red or green).

o The classification does not depend on the estimation date (the colour of each block does not
change if we look at it one period later). Therefore, accident periods are comparable, i.e. we
have consistency over time.

« The separation is not continuous with respect to the threshold. ®

o’
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Taking the separation method ‘large and small now’ we get consistent accident periods, but lose
some stability of the projection. Therefore, lets try to combine the ‘large and small now' with
‘ever and never large by latest information’. That means we consider a claim as large at time k
if it exceeded the threshold at least once up to time k.



q . 9.2 How to separate small from large claims
9 Separation of small and large claims
L 9.2.4 Ever and never large up to now

Ever and never large up to now: Projection

small 0 1 2 3 4  large 0 4
0| 1300 200 300 0 0 0| 500 1000 200 -400 0
11300 200 300 0 0 1| 500 1000 200 -400 O
211300 200 300 0 0 2| 500 1000 200 -400 O
311300 200 300 0 O 3| 500 1000 200 -400 O
4(1300 200 300 0 O 4| 500 1000 200 -400 O
f. 1015 020 000 0.00 f. 1200 013 024 0.00

o We see again that accident periods are comparable, i.e. we have consistency
over time.

o The triangle of small claims is much smoother, in particular for late
development periods. But claims that will become large in the future may have
huge changes in incurred losses or payments during the time where they are still
small.

v
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q . 9.2 How to separate small from large claims
9 Separation of small and large claims
L 9.2.4 Ever and never large up to now

Ever and never large up to now: Results

expected results estimated results

AP | ultimate reserves | ultimate reserves small res. large res.
0 3100 0 3100 0 0 0

1 3100 0 3100 0 0 0

2 3100 550 3100 550 0 550

3 3100 1600 3100 1600 500 1100

4 3100 2590 3100 2590 1290 1300
total 15500 4740 15500 4740 1790 2950

o No systematic under- or overestimation. ©
o More than 60% of the reserves belong to the large triangle, which is usually less
stable.

Conclusion (pros: 4 © versus cons: 2 @ and 1 @ @)

If the threshold is chosen carefully, i.e. if not too much reserves are transferred to the
large triangle, we can use the separation method ‘ever and never large up to now' for the
estimation of reserves.

b
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Claims that will become large in the future may have huge changes in incurred losses or payments
during the time where they are still small. Therefore, the triangle of small claims may not be so
stable as expected.

In order to avoid this behaviour we have to take smaller threshold, which on the other side will
transfer more reserves into the triangle of large claims.



q g 9.2 How to separate small from large claims
9 Separation of small and large claims L . .
9.2.5 Ever large up to now and never large by latest information (1/4)

Ever large up to now and never large by latest information

If a claim has huge changes in payments or incurred losses before it
exceeds the threshold the first time, it can disturb the triangle of small
claims significantly.

Therefore, ‘ever and never large up to now' may not lead to smooth
enough triangles of small claims and we would like to take all claims out
that have exceeded the threshold at least once, i.e. we would like to use
‘never large by latest information’.

But as we have seen ‘ever and never large by latest information’ leads to
not comparable accident periods and over- or underestimation of
reserves.

A compromise could be to put all claim that ‘have never been large by
latest information’ into the triangle of small claims and all claims that
‘were ever large up to now’ into the triangle of large claims.

Although this leads to not comparable accident periods within the
triangle of small claims as well as leftovers, the corresponding
systematic overestimation can often be controlled.

4
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The separation method ‘ever and never large up to now’, which combined the two methods

e ever and never large by latest information
e small and large now

has good properties but may still leave a lot of reserves within the triangle of large claims. On
way to get around this is to take the following method.



q . 9.2 How to separate small from large claims
9 Separation of small and large claims L ) )
9.2.5 Ever large up to now and never large by latest information (2/4)

Ever large up to now and never large by latest information: Classification

claim is large at time k <= m<agc(Xj) > threshold
J<

claim is small at time k < m<a?c(Xj) < threshold
i<

Behaviour of large claim 1:

incurred paid Nsmall
800 + 800 A 7 large
600 - 2; 600 1
400 threshold 400 threshold
200 200 /
0 T T ; T 0 ; T ; T
0 1 2 3 4 0 1 2 3 4

o We have leftovers: Large claims are not counted until they get large for the first time. ®

« The classification of small claims depends on the estimation date (the colour of each block may
change if we look at it one period later). Therefore, accident periods are not comparable, i.e. we
don't have consistency over time. The large triangle is consistent over time. ®

o The separation is not continuous with respect to the threshold.
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q g 9.2 How to separate small from large claims
9 Separation of small and large claims L ) )
9.2.5 Ever large up to now and never large by latest information
o
s
oo w0

Ever large up to now and never large by latest information:

Projection

small 0 1 2 3 4 large 0 1 2 3 4
0| 1000 500 300 0 0 0| 500 1000 200 -400 O
1| 1000 500 300 00 1| 500 1000 200 -400 O
2| 1000 500 300 0 0 2| 500 1000 200 -400 O
3| 1000 500 300 0 0 3| 500 1000 200 -400 O
41300 650 390 0 0 4| 500 1000 200 -400 O
f.| 05 02 000 0.0 f. 1200 013 024 0.0

o We see again that accident periods of small claims are not comparable, i.e. we
don't have consistency over time.

o The inconsistency over time leads to a systematic overestimation, because the
claims that are not yet large are projected within the small triangle as IBNeR and
within the large triangle as IBNyR. Therefore, the overestimation equals

540 = 300 . 1.5-1.2
~ ——

size at time k = 0 cumulative development factors of small claims

o The triangle of small claims is much smoother. © O

y
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q g 9.2 How to separate small from large claims
9 Separation of small and large claims L ) )
9.2.5 Ever large up to now and never large by latest information
800 N 800 e
o

Ever large up to now and never large by latest information:
Results

expected results estimated results

AP | ultimate reserves | ultimate reserves small res. large res.
0 3100 0 3100 0 0 0

1 3100 0 3100 0 0 0

2 3100 550 3100 550 0 550

3 3100 1600 3100 1600 500 1100

4 3100 2590 3640 3130 1830 1300
total 15500 4740 16040 5280 2330 2950

« Systematic overestimation, which often can be controlled. ® O

o More than 60% of the reserves belong to the large triangle, which is usually less stable.
But, since the small triangle is much more stable, we could increase the threshold and
therefore transfer more reserves to the small triangle. ® O

Conclusion (pros: 1 © © and 2 © versus cons: 5 @)

If we control the systematic overestimation the separation method ‘ever large up to now and
never large by latest information’ can be used.
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q . 9.2 How to separate small from large claims
9 Separation of small and large claims o
L 9.2.6 Attritional and excess

Attritional and excess: Classification

(1/3)

attritional part at time k := min(X}, threshold)

excess part at time k := X}, — min(X, threshold)
Behaviour of large claim 1:

incurred paid N attritional
800 A 800 - 7, excess
600 A 22 600 -
400 threshold 45 threshold
200 - 200 A1
0 . T . : 0 : T . ;
0 1 2 3 4 0 1 2 3 4

o We see that there are no leftovers and no double counting (each part is either red or green).

o The classification does not depend on the estimation date (the colour of each block does not
change if we look at it one period later). Therefore, accident periods are comparable, i.e. we
have consistency over time.

o The separation is continuous with respect to the threshold. ©

y
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Another method of separation is to split up large claims into a normal (attritional) and an
exceptional (excess) part.



q . 9.2 How to separate small from large claims
9 Separation of small and large claims o
L 9.2.6 Attritional and excess

Attritional and excess: Projection

excess 0 1 2 7 3

attritional 0 1 2 3 4 4
0]1700 600 300 -50 O 0] 100 600 200 -350 O
11700 600 300 -50 O 1] 100 600 200 -350 O
21700 600 300 -50 O 2| 100 600 200 -350 O
3|1700 600 300 -50 0 3| 100 600 200 -350 O
4|1700 600 300 -50 O 4| 100 600 200 -350 O
/.| 035 013 -002 0.00 f. 1600 029 -039 0.00

o We see again that accident periods are comparable, i.e. we have consistency over time.
The triangle of small claims is much smoother, in particular for late development periods.
But claims that will become large in the future may have huge changes in incurred losses
or payments during the time where they are still small. ©

The triangle of large claims shows huge development. Therefore, most estimation methods
will not work.

One method that often works for the excess part is ECLRM with additional virtual case
reserves R{4? for not yet large claims:

Ry = (Niy = Nix) : (m;,; —threshold)
— ~~

number of claims that will become large after time k' mean ultimate of a large claim
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q . 9.2 How to separate small from large claims
9 Separation of small and large claims o
L 9.2.6 Attritional and excess

Attritional and excess: Results

expected results estimated results

AP | ultimate reserves | ultimate reserves attritional res. excess res.
0 3100 0 3100 0 0 0

1 3100 0 3100 0 0 0

2 3100 550 3100 550 100 450

3 3100 1600 3100 1600 1050 550

4 3100 2590 3100 2590 2040 550
total 15500 4740 15500 4740 3190 1550

o No systematic under- or overestimation. ©
o Less than 33% of the reserves belong to the large triangle, which is usually less
stable.

Conclusion (pros: 6 © versus cons: 2 @)

Usually, | prefer the separation method ‘attritional and excess'. But we have to be very
careful with the projection of the excess part.

y
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9 Separation of small and large claims

9.2 How to separate small from large claims

L 9.2.7 Separation methods summary

name

definition of large
(th:=threshold)

leftovers
or

double

consistent
accident
periods

continuous
in

threshold

stable
projections

under- or
overes-
timation

huge re-
serves for
large claims

large and small
by latest
information

large at time k
< X1 >th

©

ever and never
large by latest

large at time k
&

©0

information max;<7(X;) >th
small and large | large at time &
now < X >th ®e ®
ever and never large at time &
large up to & © @ (XS] (SR
now max;<(X;) >th

ever large up
to now and
never large
by latest
information

large at time k
54
max;<k(X;) >th
small at time k
54
l’!laX]'SI(X]') <th

©e

®©

®©

attritional and
excess

attritional part

:= min(Xy, th)

excess part :=
X, —min(Xg, th)

80 ®

©0
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T

>
[0}

motivation story (from up to down of the table):

first idea is to take latest information

try to get smoother triangles

try to get consistent accident periods

try to combine the last two

try to reduce the amount of reserves within the triangle of large claims
split up each claims in a ‘good’ and a ‘bad’ part

| prefer the last two separation methods. But under special circumstances, for instance lack of
data, it is possible that even the first one is the most suitable method.



[RCTSCETECL WO EY [RET C R ETECNC R BN 9.3 Estimation methods for small and large claims

Estimation methods for small (attritional) claims

o There are no general restrictions to the reserving methods used for small (or
attritional) claims.

o Depending on the separation method it might be better to use the paid triangle
instead of the incurred triangle, in particular if early development periods are
disturbed by future large claims, which usually does not affect the payments as much
as the incurred losses.

4

Estimation methods for large (excess) claims

» Often we have to be very careful with standard methods like CLM and ECLRM, in
particular, if we don't have any large claim in early development periods.

o It is not unusual that the triangles of large claims are so unstable that we have to fall
back on expert judgement in order to estimate the reserves.

Estimate overall uncertainties
« One way to estimate uncertainties is to couple the estimations of small and large
claims, for instance by LSRMs.
o In practice, if we use expert judgement, it is often better to estimate uncertainties on
an aggregated level.

4
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CRCELETEELRCIIEEN IENENETECREETUEN 9.4 Modelling the transition from small to large (1/4)

Bifurcation of large and small losses: Basic idea
The separation methods we have seen up to now do not look at stochastic
transition of claims from the triangle of small claims to the one of large claims.
We now want to try to model these transitions and will follow the notation
of U. Riegel [30]. The basic idea is to look separately at:
o the development of small claims conditioned given they are still small
at the next period.
o the development of large claims without claims that just exceed the
threshold the first time.
o the number of new large claims and their mean expected loss at the
time they get large.
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CRCELETEELRCIIEEN IENENETECREETUEN 9.4 Modelling the transition from small to large (2/4)

Bifurcation of large and small losses: Notations

P; 1, and I; j, denote the total cumulative payments and incurred losses of all
claims of accident period ¢ at development period k.

We call a claim large at time k if its incurred loss did exceed the threshold at
least once up to time & (ever large up to now).

With N; j we denote the number of large claims of accident period ¢ up to
development period k.

We denote by X7 vk and xr ) the incurred loss and the cumulative
payments, respectlvely, of the v-th large claim of accident period i at
development periods k.

LE,le =0 Nig X{Vk denotes the incurred losses at development period k of
all up to time j Iarge claims of accident period 7.

A,(Jk) ik — Z Xl Lk are the cumulative payments at development
period k of all clalms that are still small at time J.

The information of incurred losses and payments of small and large claims as

well as the individual information of already large claims is denoted by

Bi,k::O—{R])I,ij'Ly])X'LIVJ ]<k Z/<N’Ll€}
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9.4 Modelling the transition from small to large (3/4)
Bifurcation of large and small losses: Model (1 of 2)
1. Accident periods as well as individual claims are independent.
2. The number of large claims develop according to CLM, i.e.
E[Ni k+11Bi k] = 1k Ni k.-
3. The cumulative payments of small claims as long as they stay small develop
according to CLM, i.e.
(k+1) (k+1)| _ (k+1)
E{ ik+1 Bi 7Ai,k =apA;)
4. The incurred losses of already large claims develop according to CLM, i.e
%
[ zk+1‘Bl k] z‘,k'
5. Claims that just became large have a mean incurred loss of xiﬂ and had mean
cumulative payments z just before they got large, i.e.
I T P P
E[X{, r1|Bik] ==ty and  E[X], .|Bix]=xr,  for Nip <v < Njjyr.
6. Assumptions on covariances.
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We could use other LSRMs instead of CLM. But if so we may have to adapt the
covariance conditions and the calculations may become even more complicated.

The use of cumulative payments for the small claims is due to the German marked,
where, because of the local statutory regulations (HGB), the history of incurred losses is
often disturbed.

Except for the additional conditioning for small claims and the different upper index for
large claims the formulas are almost the same as for LSRMs.



CRCECEIEVEL R EIIELCRETEEREETUEN 9.4 Modelling the transition from small to large (4/4)

Bifurcation of large and small losses: Model (2 of 2)
We can rewrite the expectations as follows:

2. E[ zk+1|sz]_nszk

(k
3. E|: i ]:1—11 ‘Bz k] =a Az(k) ak(nk — 1)JikPNZ7k

large claims right before becoming large

k
z,k] = lkL;k) + (n — 121 Ni g

claims that just have become large

(k+1)
4 B [Li,k+1

These formulas look like a LSRM but with up to two development factors per
claim property.

Therefore, the same techniques will work and we can derive estimators for
the ultimate outcome and for uncertainties.
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is unchanged.

E[Al ) |Bix] = E[E[alY | Bik, ALV |Bik] = anE AL |y i

i k1 i k1
Ni k41
k
=ar (AT -E] D0 XD uBix
v=N; +1
k
= ak (Az(',k) —E[Nikt1— Ni,k|31',k]E[szvi,kﬂ,k‘ﬁi,k])

= akA(k,c) —ag(ng — l)szNiyk

2,

Nik+1
(k+1) _ (k) I
E[Li,kJrl ‘Blk] =E Li,k+l + Z Xi,u,k+1 Bi,k
v=N; p+1

k
= L) + E[N; g1 — Niyk|Bi,k]E[Xf,Niyk+l,k

Bi,k]
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10 Examples & Trail Exam
10.1 Examples using LSRMTools
10.2 Trail exams
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10 Examples & Trail Exam 10.1 Examples using LSRMTools

Preparation (only if Covid-19 allow for it)
Please bring your laptop with installed LSRMTools. J

If you have problems to get the LSRMTools running ®
be 30 minutes earlier and you will be helped. © (only if Covid-19 allow
for it)
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10 Examples & Trail Exam

Train exam
If someone of you is brave enough we can make a trail
examination.
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