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Actuarial Models

Examples of widely applied actuarial models

» Pricing models for pure premium and profitability D 2022 22

9 20
1222018

» Reserving models for the ultimate claim costs
» Life tables

» NatCat models for annual losses

| 4

Risk models for loss distribution of the company

Decisions are based on actuarial predictions.

Pursuit of Excellence Possible use case

» Find and use the best model among many. Use an XGBoost model
instead of a GLM.
» Assess if fit for production, e.g., bias under control.

» Explain your model.
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Predictive models

Predictive model performance

Model calibration



Picture of Machine Learning

real world
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Goal of a model
» inference—on observations/seen data

> prediction—on new, unseen data




Predictive Models

Remark = features X

Y is random, there is no deterministic function Y = g(X). = response variable Y

Prediction goals of model m(X)
> Probabilistic predictions aim for Fyx.

> Point predictions aim for a property / (target) functional T(Fy/x).
Convention: T(Fyx) = T(Y|X)

Example
> expectation T(Y|X)=E[Y|X]
> median
> value at risk or a-quantile T(Y[X) = go(Y|X) = inf{t € R | Fyx(t) > a}
> expected shortfall



Workers Compensation Data Set

Histogram of UltimatelncurredClaimCost
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Workers Compensation data set https://www.openml.org/d/42876

y = UltimatelncurredClaimCost InitialCaseEstimate Age Gender WeeklyPay

102 9500 45 M 500
493 1000 18 F 373



https://www.openml.org/d/42876

Measuring Predictive Model Performance

Time




Measuring Predictive Model Performance

m1(x) better than my(x)?




Measuring Predictive Model Performance

Stricly Consistent

Scoring Function S m(x) better than m;(x)?




Measuring Predictive Performance

Scoring Functions
Measurement goal
Given a model m(X) that predicts T(Y|X) and observed input-output data D =
{(xi,yi),i =1...n}, how well does m perform?

Scoring (or loss) function

A scoring function S measures the deviation of the model prediction m(X)
from T using observations Y by S(m(X), Y).

» Convention: The smaller S, the better.

» For model training as well as model comparison.

Example lterative Optimisation (boosting, GD)

> squared error S(z,y) = (z — y)? > S(m) =13 S(m(x;), )
> absolute error S(z,y) = |z — y| > mji1 ~ argmin,c e S(m) — S(m;)
—_—

model comparison



Scores

Expected score / Statistical risk
We are interested in the expected score of model m (under distribution Fy x):

R(m) = E[S(m(X), Y)] (1)
|deal model / Bayes rule
m* = a;;germn R(m) (2)

Empirical score / risk
We estimate R(m) by its empirical mean

R(mD)=3(mD)="> 3 S(m(x).») ()
(xi,yi)eD

Data Split: Use a sound train-validation-test data split for reliable results.



Why Consistency Matters?

How to align the scoring function S with the model goal T(Y|X)?
Consistency

» It ensures that we get what we want: m* = T(Y|X).
(at least in the large sample limit by a Law of Large Numbers argument)

» Imagine a repeated game where each forecaster gets penalty / loss S(z,y).

Counter example: Use absolute error |z — y| when we aim for the expectation T = E.
Elicitability
P Tells us if there exists a consistent scoring function for the functional T.

» Model comparison and (partially) backtesting is pointless for non-elicitable T.

Counter examples: Variance (alone) and expected shortfall (alone) are not elicitable.

Note: The pairs (mean, variance) and (a-quantile, a-ES) are elicitable!



Which One to Choose?
Use a strictly consistent scoring function!
Result: There are infinitely many ones (for elicitable T).
Example: deviances of exponential dispersion family (squared error, Poisson, Gamma
and Tweedie deviance) for T(Y|X) = E[Y|X].
Further criteria
» Domain / Range of target Y.
» Degree of homogeneity: S(tz,ty) = t"S(z,y) forall t >0 and for all z,y
> Efficiency: How fast is the large sample convergence?

» Forecast dominance: Is one model dominating for many/all scoring functions?
Assess with Murphy diagrams.

Squared error: h =2

Gamma deviance:
Degree of homogeneity is h = 0 = It only cares about relative differences:
5(1,10) = 5(10,100) = 5(100,1000) = 13.39



Model Comparison

Compare empiricial mean scores: S(m) = 137, S(m(x;), vi)

~n
Gamma deviance for workers compensation

Mean Gamma deviance (test set)

Models:

50- 1. Trivial model always
predicts mean(y) of
the training set.

2. Poisson GLM with

45-

é canonical log-link.
407 . o 3. Gamma GLM with
i + log-link.
354 4. XGBoost model with
Gamma deviance and
. | log-link.
train test
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Murphy Diagram

Compare many scoring functions (sliding parameter ) at once.
Forecast dominance: One model is better for all consistent scoring functions.

Murphy diagram (test set)
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Additive Score Decomposition




Score Decomposition

R(m) = E[S(m(X), Y)] = miscalibration — resolution + uncertainty



Score Decomposition

E[S(m(X), Y)] = { E[S(m(X), V)] = EIS(T(Y|m(X)), V)] } (4)
auto-miscalibration>0
—{EIS(T(Y), V)] = E[S(T(Y|m(X)), V)] } + E[S(T(Y), V)]

auto-resolution / auto-discrimination >0 uncertainty / entropy

Note:
Minimising consistent scores amounts to jointly minimising miscalibration and max-

imising resolution!
Squared Error / Brier Score
with T(Y) = E[Y] and T(Y|m(X)) = E[Y|m(X)]

E[(m(X) = Y)’] = E[(m(X) = E[Y|m(X)])*] = Var[E[Y|m(X)]] + Var[Y]  (5)
——

auto-miscalibration auto-resolution uncertainty




Score Decomposition of Gamma Deviance

Auto-miscalibration

Auto-resolution

Uncertainty

Model Mean deviance
Trivial 5.04
GLM Gamma 3.68
GLM Poisson 3.95
XGB 3.54

0
0.190
0.482

0.124

0
1.56
1.57

1.63

5.04
5.04
5.04
5.04




Calibration




Motivation for Calibration

» Is the model fit for its prediction task?
» How well does the predictions align with observations?

» Detect bias and discrimination.

Bias can result in bad news.



Motivation for Calibration
» Is the model fit for its prediction task?
» How well does the predictions align with observations?

» Detect bias and discrimination.

Bias can result in bad news.

Machine Bias

There’s software used across the country to predict future criminals. And it’s biased against blacks.

by Julia Angwin, Jeff Larson, Surya Mattu and Lauren Kirchner, ProPublica
2016

Prediction Fails Differently for Black Defendants

WHITE AFRICAN AMERICAN
Labeled Higher Risk, But Didn’t Re-Offend 23.5% 44.9%
Labeled Lower Risk, Yet Did Re-Offend ‘ 47.7% ‘ 28.0%

Figure: ProPublica article on COMPAS.



Calibration on Portfolio Level

Would we have made profit or loss (on test set)?
Note: ldeally neither loss nor profit, i.e. balanced.
ntest = 20504

%Zi m(x;) — yi p-value of t-test

Trivial —24 9.5 x 1071
GLM Gamma —1207 8.8 x 1074
GLM Poisson 125 7.3x 1071
XGBoost —2044 1.4 x10°8

= unconditional calibration: E[m(X) — Y]~ 0



Calibration on Portfolio Level

Would we have made profit or loss (on test set)?
Note: ldeally neither loss nor profit, i.e. balanced.
ntest = 20504

LS m(x;)) —y; p-value of t-test

n

Trivial —24 9.5 x 1071
GLM Gamma —1207 8.8 x 1074
GLM Poisson 125 7.3x 1071
XGBoost —2044 1.4 x10°8
XGBoost corr 96 7.9x 1071

Recalibrate XGBoost by a multiplicative constant (on training set).

= unconditional calibration: E[m(X) — Y]~ 0



Calibration Conditional on Gender

Is there a gender bias in the models?

Mean bias by Gender (test set)

1
n ZiEsubset m(x),- — Vi

10007 model bias F bias M
°
Trivial —4240 1167
[ e
GLM Gamma —807 —1320
0 _ GLM Poisson 477 26
£ lameannel - XGBoost 3536 1623
S o00- N xgb XGBoost corr  —865 367
-3000 -
o = conditional calibration:
-4000 - E[m(X) = Y’X] ~0
F M

Gender



Auto-Calibration

Are policies with same (actuarial) price self-financing?
Reliability diagram: Estimate E[Y|m(X)] via isotonic regression (PAV) and plot vs
m(X).

Reliability diagrams (test set)

glm_gamma glm_poisson xgh
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= auto-calibration: E[m(X) — Y|m(X)] ~ 0



Measuring Model Calibration

Distance Is m(x) calibrated?




Measuring Model Calibration

Distance Strict Is m(x) calibrated?
Identification Function V (x) '




Assessing Calibration

Canonical identification function for the expectation: V(z,y) =z —y.

Notion Definition Check
conditional calibration m(X) = T(Y|X) E[V(m(X),Y)|X]=0 a.s.
auto-calibration m(X) = T(Y|m(X)) E[V(m(X),Y)m(X)]=0 as.

unconditional calibration E[V(m(X),Y)]=0 E[V(m(X),Y)]=0

Table: Types of calibration for an identifiable functional T with strict identification function V.

» V(m(x;),yi) acts like a generalised residual.

» Conditional calibration is equivalent to
E[le(X)V(m(X),Y)] =0 for all (measurable) test functions ¢: X — R.

> Choose a ¢ and compute (and plot) V,(m) = 137 o(x;)V(m(x:), yi).



Application

la Mobiliére

Transition from GLMs to modern ML models
» GLM acts as gold standard reference model.
» Ensure at least same predictive performance.

» Inspect calibration / bias.

Outlook
» Jointly model claim size below and above a threshold.?

» Think about long-tail claim reserves.

Personal insight

> Prefer good calibration over pure model performance.
» Don't be content with a single number/measure.

» Added value in bringing together multiple disciplines!

1 T. Fissler, M. Merz, M. V. Wiithrich (2021). Deep Quantile and Deep Composite Model Regression.
ArXiv:2112.03075.



https://arxiv.org/abs/2112.03075

Conclusion

A proper scoring rule is designed such that truth telling [...] is an optimal
strategy in expectation. (Gneiting & Katzfuss, Annu. Rev. Stat. Appl. 2014.
1:125-51)

> What is the model goal, what the prediction target?
» Strict identification functions assess model calibration (detect bias).

» Strictly consistent scoring (or loss) functions act as a “truth serum.

T. Fissler, C. Lorentzen & M. Mayer, (2022). Model Comparison and Calibration
Assessment: User Guide for Consistent Scoring Functions in Machine Learning and
Actuarial Practice. ArXiv:2202.12780.


https://arxiv.org/abs/2202.12780

Appendix



Binary Classification

Y €{0,1}
Probabilistic Classifier
> p=P(Y =1|X) =E[Y|X]
» Point prediction of the expectation is a fully probabilistic prediction.

Further consequences

» Prefer probabilistic classifiers (predict p) over deterministic ones (predict 0 or 1).
= More informative predictions, deliberate choice of a threshold t:
m(X) =~ P(Y = 1|X) > t = decide for class Y = 1.

» Use a strictly consistent scoring function for the expectation.
(and neither AUC nor accuracy)

» Scoring functions and scoring rules (for probabilistic predictions) coincide.



Reliability Diagram and Score Decomposition

Reliability diagrams (test set)
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Consistency & Elicatibility

Definition (Consistency)

Let F be a class of probability distributions where the functional T is defined on. A
scoring function S(z, y) is a function in a forecast z and an observation y. It is
F-consistent for T if

/S(T(F),y)dF(y) < /S(Z,y)dF(y) forall zZER, F e F. (6)

The score is strictly F-consistent for T if it is F-consistent for T and if equality in (6)
implies that z = T(F).

Definition (Elicitability)

A functional T is elicitable on F if there is a strictly F-consistent scoring function for
it.



Identification Functions

Definition

Let F be a class of probability distributions where the functional T is defined on. A
strict F-identification function for T is a function V/(z,y) in a forecast z and an
observation y such that

/V(z,y)dF(y)zO e z—T(F) forallzeR, FEF. (7

If only the implication <= in (7) holds, then V is just called an F-identification
function for T. If T admits a strict F-identification function, it is identifiable on F.

|dentifiability < elicitability (for 1-dim T and technical assumptions)

Canonical strict identification functions

Functional Strict ldentification Function Domain of y, z
expectation E[Y] V(z,y)=z-y R
a-expectile V(z,y)=21{z>y}—al(z—y) R

a-quantile F;l(oz) Vizy)=1{z>y} -« R



|dentification Functions and Calibration
Let V be any strict F-identification function for T.

Conditional calibration

Suppose that F contains the conditional distributions Fy|x— for almost all x € X. Application
of (7) to these conditional distributions yields that m(x) = T(Y|X = x) if and only if

J V(m(x),y)dFy|x—x(y) = 0 . This shows that m is conditionally calibrated for T if and only if

E[V(m(X),Y)|X]=0 almost surely. (8)

Auto-Calibration
Suppose the conditional distributions Fy/|,(x)—; are in F for almost all z € R. Then m is
auto-calibrated for T if and only if

E[V(m(X),Y)m(X)] =0 almost surely. (9)
Note

By the tower property of the conditional calibration, conditional calibration implies
auto-calibration for identifiable functionals with a sufficiently rich class F.
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