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Measurement
Measure the right quantity / Ask the right question
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Measure output?

model m(x) observation y
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Actuarial Models

Examples of widely applied actuarial models
▶ Pricing models for pure premium and profitability
▶ Reserving models for the ultimate claim costs
▶ Life tables
▶ NatCat models for annual losses
▶ Risk models for loss distribution of the company

Decisions are based on actuarial predictions.

Pursuit of Excellence
▶ Find and use the best model among many.
▶ Assess if fit for production, e.g., bias under control.
▶ Explain your model.

Possible use case
Use an XGBoost model
instead of a GLM.
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Outline

Predictive models

Predictive model performance

Model calibration
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Picture of Machine Learning

real world

data 1

data 2

model inference

model prediction

(business) goal

training

apply

Goal of a model
▶ inference—on observations/seen data
▶ prediction—on new, unseen data
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Predictive Models

Remark
Y is random, there is no deterministic function Y = g(X).

• features X
• response variable Y

Prediction goals of model m(X)
▶ Probabilistic predictions aim for FY |X .
▶ Point predictions aim for a property / (target) functional T (FY |X).

Convention: T (FY |X) = T (Y |X)

Example
▶ expectation T (Y |X) = E[Y |X ]
▶ median
▶ value at risk or α-quantile T (Y |X) = qα(Y |X) = inf{t ∈ R | FY |X(t) ≥ α}
▶ expected shortfall
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Workers Compensation Data Set
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Workers Compensation data set https://www.openml.org/d/42876

y = UltimateIncurredClaimCost InitialCaseEstimate Age Gender WeeklyPay

102 9500 45 M 500
493 1000 18 F 373

https://www.openml.org/d/42876
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Measuring Predictive Model Performance

Time

Stricly Consistent
Scoring Function S

m1(x) better than m2(x)?
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Measuring Predictive Performance
Scoring Functions

Measurement goal
Given a model m(X) that predicts T (Y |X) and observed input-output data D =
{(x i , yi), i = 1 . . . n}, how well does m perform?

Scoring (or loss) function

▶ A scoring function S measures the deviation of the model prediction m(X)
from T using observations Y by S(m(X), Y ).

▶ Convention: The smaller S, the better.
▶ For model training as well as model comparison.

Example
▶ squared error S(z , y) = (z − y)2

▶ absolute error S(z , y) = |z − y |

Iterative Optimisation (boosting, GD)
▶ S(m) = 1

n
∑

i S(m(x i), yi)
▶ mj+1 ≈ arg minm∈M S(m) − S(mj)︸ ︷︷ ︸

model comparison
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Scores

Expected score / Statistical risk
We are interested in the expected score of model m (under distribution FY ,X):

R(m) = E [S(m(X), Y )] (1)

Ideal model / Bayes rule
m⋆ = arg min

m∈M
R(m) (2)

Empirical score / risk
We estimate R(m) by its empirical mean

R(m; D) = S(m; D) = 1
n

∑
(x i ,yi )∈D

S(m(x i), yi) (3)

Data Split: Use a sound train-validation-test data split for reliable results.
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Why Consistency Matters?
How to align the scoring function S with the model goal T (Y |X)?
Consistency
▶ It ensures that we get what we want: m⋆ = T (Y |X).

(at least in the large sample limit by a Law of Large Numbers argument)
▶ Imagine a repeated game where each forecaster gets penalty / loss S(z , y).

Counter example: Use absolute error |z − y | when we aim for the expectation T = E.
Elicitability
▶ Tells us if there exists a consistent scoring function for the functional T .
▶ Model comparison and (partially) backtesting is pointless for non-elicitable T .

Counter examples: Variance (alone) and expected shortfall (alone) are not elicitable.

Note: The pairs (mean, variance) and (α-quantile, α-ES) are elicitable!
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Which One to Choose?
Use a strictly consistent scoring function!
Result: There are infinitely many ones (for elicitable T ).
Example: deviances of exponential dispersion family (squared error, Poisson, Gamma
and Tweedie deviance) for T (Y |X) = E[Y |X ].
Further criteria
▶ Domain / Range of target Y .
▶ Degree of homogeneity: S(tz , ty) = thS(z , y) for all t > 0 and for all z , y
▶ Efficiency: How fast is the large sample convergence?
▶ Forecast dominance: Is one model dominating for many/all scoring functions?

Assess with Murphy diagrams.

Squared error: h = 2
Gamma deviance:
Degree of homogeneity is h = 0 ⇒ It only cares about relative differences:
S(1, 10) = S(10, 100) = S(100, 1000) = 13.39
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Model Comparison
Compare empiricial mean scores: S(m) = 1

n
∑

i S(m(x i), yi)
Gamma deviance for workers compensation

trivial

glm_gamma

glm_poisson

xgb3.5
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train test
dataset

S
co

re

Mean Gamma deviance (test set) Models:
1. Trivial model always

predicts mean(y) of
the training set.

2. Poisson GLM with
canonical log-link.

3. Gamma GLM with
log-link.

4. XGBoost model with
Gamma deviance and
log-link.
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Murphy Diagram
Compare many scoring functions (sliding parameter θ) at once.
Forecast dominance: One model is better for all consistent scoring functions.

glm_gamma

glm_poisson

xgb

mean(y_train)1500
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1e+04 3e+04 1e+05
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Murphy diagram (test set)

Elementary scoring function for E: Sθ(z , y) = 1
2 |θ − y |1{min(z , y) ≤ θ < max(z , y)}
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Additive Score Decomposition
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Score Decomposition

R(m) = E[S(m(X), Y )] = miscalibration − resolution + uncertainty

Note:
Minimising consistent scores amounts to jointly minimising miscalibration and max-
imising resolution!

Squared Error / Brier Score
with T (Y ) = E[Y ] and T (Y |m(X)) = E[Y |m(X)]

E[(m(X) − Y )2] = E[(m(X) − E[Y |m(X)])2]︸ ︷︷ ︸
auto-miscalibration

− Var[E[Y |m(X)]]︸ ︷︷ ︸
auto-resolution

+ Var[Y ]︸ ︷︷ ︸
uncertainty

(4)
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Score Decomposition

E[S(m(X), Y )] =
{
E[S(m(X), Y )] − E[S(T (Y |m(X)), Y )]︸ ︷︷ ︸

auto-miscalibration≥0

}
(4)

−
{
E[S(T (Y ), Y )] − E[S(T (Y |m(X)), Y )]︸ ︷︷ ︸

auto-resolution / auto-discrimination≥0

}
+ E[S(T (Y ), Y )]︸ ︷︷ ︸

uncertainty / entropy

Note:
Minimising consistent scores amounts to jointly minimising miscalibration and max-
imising resolution!

Squared Error / Brier Score
with T (Y ) = E[Y ] and T (Y |m(X)) = E[Y |m(X)]

E[(m(X) − Y )2] = E[(m(X) − E[Y |m(X)])2]︸ ︷︷ ︸
auto-miscalibration

− Var[E[Y |m(X)]]︸ ︷︷ ︸
auto-resolution

+ Var[Y ]︸ ︷︷ ︸
uncertainty

(5)
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Score Decomposition of Gamma Deviance

Model Mean deviance Auto-miscalibration Auto-resolution Uncertainty
Trivial 5.04 0 0 5.04
GLM Gamma 3.68 0.190 1.56 5.04
GLM Poisson 3.95 0.482 1.57 5.04
XGB 3.54 0.124 1.63 5.04
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Calibration
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Motivation for Calibration
▶ Is the model fit for its prediction task?
▶ How well does the predictions align with observations?
▶ Detect bias and discrimination.

Bias can result in bad news.

Figure: ProPublica article on COMPAS.
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Calibration on Portfolio Level

Would we have made profit or loss (on test set)?
Note: Ideally neither loss nor profit, i.e. balanced.
ntest = 20504

1
n

∑
i m(x i) − yi p-value of t-test

Trivial −24 9.5 × 10−1

GLM Gamma −1207 8.8 × 10−4

GLM Poisson 125 7.3 × 10−1

XGBoost −2044 1.4 × 10−8

XGBoost corr 96 7.9 × 10−1

Recalibrate XGBoost by a multiplicative constant (on training set).

⇒ unconditional calibration: E[m(X) − Y ] ≈ 0
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Calibration Conditional on Gender
Is there a gender bias in the models?

trivial

glm_gamma

glm_poisson

xgb

xgb_corr
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Mean bias by Gender (test set)
1
n

∑
i∈subset m(x)i − yi

model bias F bias M
Trivial −4240 1167
GLM Gamma −807 −1320
GLM Poisson 477 26
XGBoost −3536 −1623
XGBoost corr −865 367

⇒ conditional calibration:
E[m(X) − Y |X ] ≈ 0
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Auto-Calibration
Are policies with same (actuarial) price self-financing?
Reliability diagram: Estimate E[Y |m(X)] via isotonic regression (PAV) and plot vs
m(X).

glm_gamma glm_poisson xgb
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Reliability diagrams (test set)

⇒ auto-calibration: E[m(X) − Y |m(X)] ≈ 0
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Measuring Model Calibration

Distance

Strict
Identification Function V

Is m(x) calibrated?
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Distance Strict
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Assessing Calibration

Canonical identification function for the expectation: V (z , y) = z − y .

Notion Definition Check
conditional calibration m(X) = T (Y |X) E[V (m(X), Y )|X ] = 0 a.s.
auto-calibration m(X) = T (Y |m(X)) E[V (m(X), Y )|m(X)] = 0 a.s.
unconditional calibration E[V (m(X), Y )] = 0 E[V (m(X), Y )] = 0

Table: Types of calibration for an identifiable functional T with strict identification function V .

▶ V (m(x i), yi) acts like a generalised residual.
▶ Conditional calibration is equivalent to

E[φ(X)V (m(X), Y )] = 0 for all (measurable) test functions φ : X → R.
▶ Choose a φ and compute (and plot) V φ(m) = 1

n
∑

i φ(x i)V (m(x i), yi).
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Application

Transition from GLMs to modern ML models
▶ GLM acts as gold standard reference model.
▶ Ensure at least same predictive performance.
▶ Inspect calibration / bias.

Outlook
▶ Jointly model claim size below and above a threshold.1
▶ Think about long-tail claim reserves.

Personal insight
▶ Prefer good calibration over pure model performance.
▶ Don’t be content with a single number/measure.
▶ Added value in bringing together multiple disciplines!

1 T. Fissler, M. Merz, M. V. Wüthrich (2021). Deep Quantile and Deep Composite Model Regression.
ArXiv:2112.03075.

https://arxiv.org/abs/2112.03075
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Conclusion

A proper scoring rule is designed such that truth telling [. . .] is an optimal
strategy in expectation. (Gneiting & Katzfuss, Annu. Rev. Stat. Appl. 2014.
1:125-51)

▶ What is the model goal, what the prediction target?
▶ Strict identification functions assess model calibration (detect bias).
▶ Strictly consistent scoring (or loss) functions act as a “truth serum”.

T. Fissler, C. Lorentzen & M. Mayer, (2022). Model Comparison and Calibration
Assessment: User Guide for Consistent Scoring Functions in Machine Learning and
Actuarial Practice. ArXiv:2202.12780.

https://arxiv.org/abs/2202.12780
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Binary Classification

Y ∈ {0, 1}

Probabilistic Classifier
▶ p = P(Y = 1|X) = E[Y |X ]
▶ Point prediction of the expectation is a fully probabilistic prediction.

Further consequences
▶ Prefer probabilistic classifiers (predict p) over deterministic ones (predict 0 or 1).

⇒ More informative predictions, deliberate choice of a threshold t:
m(X) ≈ P(Y = 1|X) ≥ t ⇒ decide for class Y = 1.

▶ Use a strictly consistent scoring function for the expectation.
(and neither AUC nor accuracy)

▶ Scoring functions and scoring rules (for probabilistic predictions) coincide.
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Reliability Diagram and Score Decomposition

MCB = 0.0185
DSC = 0.215
UNC = 0.579
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Figure: telco customer churn data set
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Consistency & Elicatibility

Definition (Consistency)
Let F be a class of probability distributions where the functional T is defined on. A
scoring function S(z , y) is a function in a forecast z and an observation y . It is
F-consistent for T if∫

S(T (F ), y) dF (y) ≤
∫

S(z , y) dF (y) for all z ∈ R, F ∈ F . (6)

The score is strictly F-consistent for T if it is F-consistent for T and if equality in (6)
implies that z = T (F ).

Definition (Elicitability)
A functional T is elicitable on F if there is a strictly F -consistent scoring function for
it.
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Identification Functions
Definition
Let F be a class of probability distributions where the functional T is defined on. A
strict F-identification function for T is a function V (z , y) in a forecast z and an
observation y such that∫

V (z , y) dF (y) = 0 ⇐⇒ z = T (F ) for all z ∈ R, F ∈ F . (7)

If only the implication ⇐= in (7) holds, then V is just called an F-identification
function for T . If T admits a strict F-identification function, it is identifiable on F .
Identifiability ⇔ elicitability (for 1-dim T and technical assumptions)
Canonical strict identification functions
Functional Strict Identification Function Domain of y , z

expectation E[Y ] V (z , y) = z − y R
α-expectile V (z , y) = 2|1{z ≥ y} − α|(z − y) R
α-quantile F −1

Y (α) V (z , y) = 1{z ≥ y} − α R
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Identification Functions and Calibration
Let V be any strict F-identification function for T .
Conditional calibration
Suppose that F contains the conditional distributions FY |X=x for almost all x ∈ X . Application
of (7) to these conditional distributions yields that m(x) = T (Y |X = x) if and only if∫

V (m(x), y) dFY |X=x(y) = 0 . This shows that m is conditionally calibrated for T if and only if

E[V (m(X), Y )|X ] = 0 almost surely. (8)

Auto-Calibration
Suppose the conditional distributions FY |m(X)=z are in F for almost all z ∈ R. Then m is
auto-calibrated for T if and only if

E[V (m(X), Y )|m(X)] = 0 almost surely. (9)

Note
By the tower property of the conditional calibration, conditional calibration implies
auto-calibration for identifiable functionals with a sufficiently rich class F .
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