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Abstract

Future payments particularly of long-tailed P&C business, are subject to inflation. While
reserves are built based on inflation expectations, unexpected future inflation challenges
initially built reserves. The impact of unexpected inflation on unexpected payment de-
pends on the contract and the line of business. In this sense we say that each contract has
a particular sensitivity with respect to unexpected inflation. Sensitivtity defined as the
elasticity of claims payment with respect to inflation can be regarded as a rate of claims
inflation. This note aims to develop a unifying picture about contracts, their risk and
risk mitigation by contract structure for an excess-of-loss contract with finite retention
and cover subject to an European stabilisation clause.
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1 Introduction

An insurer’s exposure to inflation risk is distinctive in that an insurance contract trans-
lates into an obligation to compensate for the value of a claim by paying adequate goods
and services at some point in future. Since economic inflation changes the value of a
liability or an asset, economic inflation induces claims inflation. Obviously inflation has
a cumulative effect and thus affects business stronger the more longer-tailed this busi-
ness is. In this note we do not consider this cumulative effect unfolding over time since
we focus on the exposure.

While expected inflation is captured in the best estimates of ultimate payments in the
pricing of contracts, unexpected inflation, i.e. deviations from expected inflation, is a
risk factor challenging the adequacy of expected payments and hence finally reserves.
In real business, the exposure is an aggregate of a variety of contracts in different Lines
of Business. Payment rules and legal conditions of these contracts are highly diverse
while portfolios are large. This makes a strict bottom-up derivation of properties of the
exposure map difficult in general. Consequently we are left to modeling characteristic
features of these contracts to get a reasonable representation of the exposure map.

Non-proportional contracts typically are excess-of-loss contracts with finite retention,
a cover to limit maximal payment and index clauses. When modeling P&C exposure
we have to consider these features. We start with considering single Excess-of-Loss
contracts and derive explicit formulas for excess-of-loss contracts with finite retention
for a wide class of loss distributions, Observation 1. The sensitivity of a portfolio is
shown to be the weighted average of the sensitivity’ of the single contracts within this
portfolio, Observation 2. Contract structures decreasing sensitivity are finite covers and
stabilisation clauses. Their interplay is described in Observation 3. This is our central
result to discuss risk mitigation by contract structure.

2 Sensitivity and claims inflation

While reserves are built according to our best estimates of future payments, reserves in-
clude expectations about inflation. If the actual inflation deviates from our expectation,
then reserves have to be adjusted. What is the corresponding extent of this adjustment?
Typically the question is phrased as follow: Given that at the end of the year inflation
deviates from what is expected by n base points, how much does actual payment then
deviate from the expected?’
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The framework for the following is a 1-year view. At present time 0 we have some
expectation ĵ about future inflation rate at time 1. If the finally realised inflation rate
at time 1 is j, then the relative deviation of the realised inflation rate from the initially
expected one is

δ j :=
j− ĵ

ĵ
. (1)

We may call δ r the rate of unexpected inflation. Analogously, at the beginning of the
year the expected payment is ẑ, while at the end of the year the realised payment is z.
We define the unexpected payment rate as

δ z :=
z− ẑ

ẑ
(2)

The question is about the relative change in payment caused by unexpected inflation.
This is a question about how changing one variable affects an other. It is therefore natu-

ral to define it as an elasticity and to quantify it as the ratio of the relative change in one
variable, e.g. unexpected inflation, to the relative change in the other, e.g. unexpected
payment.

The sensitivity of an exposure is defined as

R :=
δ z
δ j

∣∣∣
δ z=0

(3)
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Note that according to this definition z = ẑ(1+Rδ j) so that Rδ j might be regarded
as the rate of claims inflation. The following ranges of values are commonly used in
the insurance business to characterise the loss potential of particular Lines of Business
[6].

loss potential sensitivity
earthquake 0.5 - 0.8 (1)
European Windstorm 1.3
fire 1.5 - 2.5 (2)1

motor liability 1.5 - 3.0 (2.5)
general liability 1.0 - 2.0 (1.8)
occupational injury (2)

3 The sensitivity of a XL contract

We start our discussion by investigating a single Excess-of-Loss contract with finite re-
tention r > 0 and infinite cover κ = ∞ without stabilisation clause. Such contracts are
strongly exposed to inflation and serve as an upper bond for inflation sensitivity since
finite covers as well as stabilisation clauses would reduce sensitivity.

Observation 1 (sensitivity). Let losses be distributed according to some distribution
ϕ , whose first moment exists. Then the sensitivity of an Excess-of-Loss contract with
retention r ≥ 0 and infinite cover is

R∞
r (ϕ) = 1+

r
E[(X− r|X ≥ r)]

(4)

Proof. Let claim sizes C be distributed according to some ϕ , whose first moment exists.
We assume that j = ĵ + δ j, where |δ j| < 1 is sufficiently small. Further let X = j C
and Y = ĵ C, so that X = (1+ δ j)Y . Expected payment is E(X− r)+ = z(δ j) =: (1+

δ j)E
(

Y − r
1+δ j

)+
. Expanding the expected payment in δ j = 0 yields z(δ j) = z(0)+

z′(0)δ j+ 1
2z′′(0)(δ j)2+O

(
(δ j)3) Note that z′′(0) =

(
rϕ(r)

)2
≥ 0. Respecting z(0) =

ẑ, we obtain δ z = z(δ j)−ẑ
ẑ = z′(0)

z(0) δ j. Thus R∞
r (ϕ) =

z′(0)
z(0) . Using z(δ j) = (1+δ j)

∫
∞

r (y−
r)ϕ(y)dy, we obtain

R∞
r (ϕ) =

∫
∞

r yϕ(y)dy∫
∞

r (y− r)ϕ(y)dy
(5)

from which we deduce eq 4.
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In case of a finite cover κ > r, putting K κ
r := (κ− r)

∫
∞

r ϕ(y)dy, eq 5 becomes

Rκ
r (ϕ) =

∫
κ

r yϕ(y)dy∫
κ

r (y− r)ϕ(y)dy+K κ
r
. (6)

Obviously, Rκ
r (ϕ)↗ R∞

r (ϕ), i.e. a finite cover reduces sensitivity.

Note that the sensitivity is identical to the logarithmic derivative of expected payment,
i.e. R∞

r (ϕ) =
z′(0)
z(0) , i.e. it is the elasticity of the expected excess payment. The sensitivity

of a contract indeed depends on the ’balance’ between retention on the one hand and the
tail behavior on the other: if, for example, the claims distribution were thin-tailed while
the retention is large, the contract would hardly be affected by inflation. Here is a list of
exmples:

• The PARETO DISTRIBUTION ϕα(y) = α
ŷα

y1+α where α > 1 and y≥ ŷ is commonly
used in reinsurance for modeling claims distribution [3]. In this case the sensi-
tivity is constant

R∞
r (ϕ) = α. (7)

This result is due to the scale-invariance of this distribution. Since no characteric
scale exists, sensitivity has to be independent of any finite retention and cover.

• The GENERALISED PARETO DISTRIBUTION provides a smooth cross-over from
the Pareto to the exponential distribution. It is the limiting distribution of the
exceedance of a random variable for a large class of underlying distributions
[4],[7]. Moreover, the Generalised Pareto can be obtained by the mixture of the
exponential with a Gamma distribution. Due to the lack of scale-invariance, sen-
sitivity depends on the retention. Assume that losses are approximately distributed

according to ϕ(y) = 1
σ

(
1+ 1

α

( y
σ

))−(1+α)
with parameters α > 1, σ > 0. Then

the sensitivity of the contract is

R∞
r (ϕ) =

ασ −µ +αr
ασ −µ + r

≤ α, (8)

while equality holds asymptotically, i.e. r→ ∞.

• Let claim’s value Y be EXPONENTIALLY DISTRIBUTED with density ϕ(y)=α e−α y,
α > 0, so that the average claim’s value is E[Y ] is 1/α . A simple calculation re-
veals that R∞

r (ϕ) = 1+α r, i.e. sensitivity increases linearly with the retention.

• The BENKTANDER-WEIBULL distribution ϕα,b(y) =
d Bα,a(y)

d y is used in liability
business. For motor liability business b = 1/2 has proved useful. Its asymptotic
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behavior lies between the exponential and the Pareto2. Its sensitivity yields

R∞
r (ϕ) = 1+(α−1) rb, 0 < b≤ 1, (9)

which is concave in r. No upper limit exists.

Figure 1: Does the Pareto-α provide an upper bound for sensitivity?

The above examples suggest that α is not an upper bound for loss distributions whose
tails decreases faster than polynomial. If the loss distribution decays (asymptotically)
as a power-law the respective tail parameter serves as an upper bound.

3.1 The sensitivity of a portfolio

Often cashflows come from a portfolio rather than from a single contract. It turns out
that the sensitivity of the portfolio is the weighted avarage of the sensitivity’ of the
collection of constituting contracts. We consider a portfolio of XL contracts in a partic-
ular line of business. In this case the assumption might be reasonable that all contracts
are exposed to the same inflation driver. In this case the individual expected payment

2The Benktander distribution (-Weibull) of second kind is most conveniently defined via its dis-
tribution function Bα,b(y) = 1− yb−1 exp

(
−α−1

b (yb−1)
)

for y > 1, α > 1 and 0 < b ≤ 1. While
ϕα,1 = (α − 1)e−(α−1)(y−1) is an exponential distribution , limb→0 ϕα,b(y) = α

y1+α is a Pareto density
with tail index α .
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of contract i is zi = E(Yi− ri)
+ = (1+ δ j)

(
Yi +

ri
1+δ j

)+
=: zi(δ j). Then the aggre-

gate expected payment yields z = ∑i zi(δ j). Again, expanding around δ j = 0 and re-
specting ẑ := ∑i zi(0) as above, we obtain z = ẑ+∑i z′i(0) δ j+ ′((δ j)2) so that finally

δ z = ∑i
z′i(0)

ẑ δ j. For notational convenience let R(i) := R∞
ri
(ϕi) denote the sensitivity of

contract i and ζi := zi(0)
∑ j z j(0)

its weight in the aggregated payment of the portfolio.

Observation 2. The sensitivity of the portfolio is the convex sum of the individual sen-
sitivity’ of the contracts involved

R = ∑
i

ζiR(i) with weights ζi =
zi(0)

∑ j z j(0)
(10)

3.2 Estimating the sensitivity from data

Figure 2: Within one observation period, 100 events happen, whose sizes are ran-
domly drawn from a Pareto distribution; the corresponding cumulative loss distribution
is shown in the left lower figure.

Given a contract, its sensitivity may be estimated directly from data. Whether this is
possible or not depends on the data available, of course. Based on the theory outlined
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above, there are (at least) two ways to estimate the sensitivity numerically. For the sake
of simplicity we demonstrate both for the case that the loss distribution is Pareto ϕα

some tail index α > 1. In this case the sensitivity is known to be equal to α , independent
of the retention. Thus we can compare the numerical results with the correct theoretical
result. Since for the Pareto retention does not matter, we are free to choose r = 2 ·
median(Y ) in the numerical example. Given the loss distribution ϕα , we draw a random
sample of independent claim sizes Yi ∼ ϕα .

Figure 3: The empirically estimated tail parameter α̂ , while estimated sensitivity’ are
S f itted and Sanalytic in the example above. Recall that only 300 sample points are used.

We now estimate the respective sensitivity along two ways: First, we estimate the sen-
sitivity from the respective sample means according to eqn 4 to get Ranalytic. Second
we calculate the sensitivity from scaling the expected payment: For each factor j ≥ 1
expected payment is

z( j) = E
(

jYi− r
)+

= jE
(

Y − r
j

)+

(11)

For some j0 and z( j0), we calculate relative changes with respect to z( j0), i.e. δ z =
z( j)
z( j0)
−1. Then sensitivity R f itted is found by regressing δ z against δ j = j

j0
−1 close to

0. Results are shown in the Figures below.
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4 The sensitivity of an XL contract with stabilisation
clause

In the last section, we restricted ourselves to XL contracts without stability clauses. On
the other hand, clauses are relevant to losses that are of long-tail nature and are com-
monly found in other terms and conditions of Motor Liability (MTPL), General Liability
(GTPL), and Professional Liability TPL Xl reinsurance contracts of European cedants.
Stabilisation Clauses, also called Inflation Clauses or Indexation Clauses, are designed
to distribute inflation-related increases in costs of claims, which would fall on the re-
insurer only, between the ceding insurer and the reinsurer. For thoughtful insights see
[2]. The fundamental assumption is that all payments in the future carry an inflationary
component, which follows the development of an agreed-on index K. This component
now has to be taken out by readjusting the payments (*). The value of an index clause
is apparent in situations where inflation causes the cost of the claim to reach and exceed
the retention amount sooner and more frequently than anticipated.

While European reinsurance contracts began incorporating index clauses heavily in the
1970s, United States-based companies do not appear to have adopted such clauses to
protect against inflation but use different methods. There are two basic types of clauses
currently used: The European Index Clause [EIC] applies the clause index at each date
of payment and therefore distributes the effect of inflation in line with the payout pat-
tern due to the claim; Second, the London Market Indexation Clause [LMIC] which
indexes the total value of the claim at the date of the final settlement. Both have varia-
tions, namely the Franchise Inflation Clause or the Serve Inflation Clause [SIC]. These
variations will be analyzed for the EIS.

4.1 Full Index European Index Clause

In the derivation of the payout pattern over time we follow B.J.J. Alting von Geusau
[1]. Let At be the payment in year t, while Ct and Rt are the amounts of money to be
paid by the ceding company and by the reinsurer, respectively. Obviously At =Ct +Rt .
Both parties agree on the retention d, some real index Kt as well as on the physical years
which serves as time 0. Therefore K0 is determined as a reference. For simplicity of
calculation the index is normalised so that K0 = 1, while also A0 = R0 =C0 = 0. While
At is supposed to carry inflation due to Kt , this component is taken out by readjusting
the payments according to the reference index K. This is done by defining the nominal
(readjusted) payment A(K)

s := As
Ks

. This leads to a distribution of inflation between the
two parties. Accordingly the reinsurer’s share of the claim’s value at time t is ηt =
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(
1− d

∑
t
s=1 A(K)

s

)+
. Denoting the cumulative payment during [0, t] by A(t) := ∑

t
s=1 As and

defining

kt :=
∑

t
s=1 As

∑
t
s=1

As
Ks

=
∑

t
s=1 As

∑
t
s=1 A(K)

s

(12)

we obtain for the reinsurer’s share ηt =
(

1− kt
d

A(t)

)+
. The reinsurer’s payment at time

t finally yields

Rt = ηtA(t)−ηt−1A(t−1) (13)

=
(

A(t)− ktd
)+
−
(

A(t−1)− kt−1d
)+

, t = 1,2, ... (14)

where k0 = 0 and A0 = R0 =C0 = 0. Recall that sensitivity is defined within a One-year

Figure 4: Dynamics of the distribution of payment between cedant (blue) and reinsurer
(red) in the case of a Serve Iinflation Clause [20%].

View, i.e. we are interested in payment at time t = 1, so that

R1 =
(

A1− k1d
)+

(15)

For a Full Index European Index Clause k1 = K1 according to eq 12. Other stabilisation
clauses are described in the following.
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4.2 Franchise and Serve Inflation Clause

In the last section we described the Standard SC which uses the index K as it is. For this
reason this SC is also called a Full Index SC. The two subtypes Franchise SC (called
Corridor in von Geusau) and Severe Inflation Clause [SIC] differ from the Full Index
SC in that not the index K is considered directly but some threshold function of it Kθ . In
both cases the idea is that only in a high-inflation regime the clause becomes operational.

Again, let the objective index be denoted by K and define some threshold θ . Then define
Kθ as some threshold function of K as displayed in the table below. Note that in low
inflation regimes, none of the clauses become operational since for Kt ≤ θ , Kθ

t = 1.

Type of SC Kθ
t

without Kθ
t = 1

franchise Kθ
t =

{
1 if Kt ≤ θ

Kt otherwise

SIC Kθ
t =

{
1 if Kt ≤ θ
Kt
θ

otherwise
full Kθ

t = Kt

Table 1: Franchise and SIC are basic non-standard stabilisation clauses. Both react to
super-threshold inflation Kt > θ by adjusting the retention according to some reference
index K.

4.3 Impact of a stabilisation clause on sensitivity

Since we are interested only in payments at time 1, we skip the sup script in eq. 15 to
obtain R = (A− kd), where k = 1+δk is the clause index at time 1.

Observation 3. The sensitivity of a XL contract with retention r, cover κ and a stabili-
sation clause whose clause index k has rate δk is

Rκ
r (δk) = 1+

(
Rκ

r (ϕ)−1
) (

1− δk
δ j

)
. (16)

Equation 16 follows from equation 15 by first substituting k1 = 1+ δk, which leads to
z = z(δ j,δk) = (1+δ j)

∫
κ
(1+δk)d

1+δ j
dyϕ(y)

(
y− (1+δk)d

1+δJ

)
. Second, a first order approxima-
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tion of z(δd,δk) in (0,0) and, third, using eq 4 gives the result. We omit straightfor-
ward details here. The percentage change of sensitivity due to a stabilisation clause with
clause index k is

δRκ
r (δk) =

Rκ
r (δk)−Rκ

r (ϕ)

Rκ
r (ϕ)

(17)

= −δk
δ j

(
Rκ

r (ϕ)−1
Rκ

r (ϕ)

)
. (18)

If the clause index moves in the same direction as the inflation index, responsivness
is decreased, i.e. the exposure with respect to inflation is decreased. This way a well
chosen clause index is said to stabilise a contract. In fact, a stabilisation clause can
make a non-proportional contract behave as a proportional one if the rate of the clause
index equals the rate of unexpected inflation, i.e. if it perfectly matches the inflation the
contract’s payment is subject to. The impact of the stabilisation clause depends on the
sensitivity of the contract: The higher its sensitivity is the more valuable can a ’good’
index clause be for mitigating inflation risk. It follows from the last item that the impact
of a mismatch between clause index and inflation is most severe in contracts with high
sensitivity. As an example from P & C business, Workers compensation has been a
particular case: Seriously injured people lived longer than expected. Since inflation risk
is cumulative this significantly increased inflation exposure. Furthermore, if the clause
index underestimated inflation in medical cost, the base risk was increasing over time!
In summary, policies in workers compensation created huge losses for the insurer.

5 Conclusion

Particularly expected payments of long-tailed business are sensitive to inflation. If in-
flation at the end of the year deviates from inflation as expected at the beginning of
the year, actual reserves may have to be adjusted. Deviations in reserves therefore are
proposed to be some function of unexpected inflation. We considered the elasticity of
claims payment with respect to inflation and called this term the sensitivity of the con-
tract. It furthermore followed from its defintion that the sensitivity equals the rate of
correspondiong.

The sensitivity can be calculated explicitly for arbitrary claim’s value distributions,
whose first moment exists, see Observation 1. While the sensitivity of proportional
contracts is equal to one, the sensitivity of non-proportional contracts generally is larger
than one. Non-proportional contracts thus enhance inflation risk. sensitivity is larger
the more fat-tailed the loss distribution is. Finite covers as well as stabiliation clauses
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reduce sensitivity. Finally, we consider European Index Clauses and show along which
mechanism they tend to stabilize a contract, see Observation 3. Particularly, the im-
pact of an index clause is larger, the larger the sensitivity of the corresponding contract
is.
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