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Neuroscience meets finance and economics.

Prof. Dr. Kerstin Preuschoff
Geneva Finance Research Institute, Center for Affective Sciences

Geneva School of Economics and Management, University of Geneva
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Psychologist:
“How Is the investor’s decision affected by his mental
. f?”
states and QKNS éntist:
“What are the underlying neural circuits and
computational mechanisms?”

Economist:
“What is the simplest theory that
can explain observed choice?”

A
SRt

Biologist:
How does this contribute to the
evolution and fithess of the
organism?”

Financial economist:
"How do individual investments lead to the formation
of market prices?”



e Goal:

Understand decision making processes In risky and uncertain situations as well as
what happens in our body and brain.

* Approach:

Study the decision making process using behavioural experiments in lab, neural
imaging technigues as well as real life observations
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The 13.8 billion year history of the universe scaled down to a single year, where
the Big Bang i1s January 1 at midnight, and nght now I1s midnight 1 year |ater
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The problem with evolution

 The human brain has not evolved to trade in financial markets but to
forage and survive in the wild
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The problem with evolution

* The human brain has not evolved to trade in financial markets but to forage and
survive in the wild
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* Fight-or-flight
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make decisions?




Playing roulette vs. playing the market

Dow Jones Industrial Average

(INDU) Index, thousands
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‘I knew it.” ‘I kKnew it.”



A quick detour Into neuroscience ...









Visual judgements

OOO O
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Which of the two inner circles is larger?



Visual judgements

)

Which of the two inner circles is larger?



What did you answer?

A) The circle on the left.

B) They are equally large.



Three lessons

1. The way you perceive things is influenced by other things, in this case
surrounding circles.

2. Knowing this you can consciously adjust for the difference.

3. This doesn’'t necessarily change your actual perception.






Types of cognitive biases

social biases memory biases

decision-making biases

slideshare



Lessons from Neuroscience

* Your brain has a limited capacity to store, process and access information.

» Your brain is a predictive machine. It constantly fills in missing information to
create a coherent picture.

* Your mind hates being wrong! (Tends to try and prove it's right rather than wrong,
opposite to scientific process).

* Your brain constantly learns, whether you notice it or not. (To repeat or not to
repeat?)



Does the price of wine change your taste?
And your brain?

Plassmann, H., O’Doherty, J., Shiv, B., & Rangel, A. (2008). Marketing actions can modulate neural representations of experienced pleasantness. Proceedings of the
National Academy of Sciences of the United States of America, 105(3), 1050—1054. https://doi.org/10.1073/pnas.0706929105



https://doi.org/10.1073/pnas.0706929105

Wine tasting in the scanner ...
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Plassmann, H., O’Doherty, J., Shiv, B., & Rangel, A. (2008). Marketing actions can modulate neural representations of experienced pleasantness. Proceedings of the
National Academy of Sciences of the United States of America, 105(3), 1050—1054. https://doi.org/10.1073/pnas.0706929105



https://doi.org/10.1073/pnas.0706929105
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Plassmann, H., O’Doherty, J., Shiv, B., & Rangel, A. (2008). Marketing actions can modulate neural representations of experienced pleasantness. Proceedings of the
National Academy of Sciences of the United States of America, 105(3), 1050—1054. https://do1.org/10.1073/pnas.0706929103
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https://doi.org/10.1073/pnas.0706929105

Finance fundamentals & the brain
Neural and physiological representations of reward,
rIsk, ambiguity, volatility
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Mean Variance Utility -> The Risk Return Trade-Oft

U(z) = p17] + p25

U(z) = B,Mean(x) + B,V ariance(x) + B,,Skewness(x)




: J=
-In.nl’.

Ol
il

o
o =]

o
L I

|
of
5 ]
: =
de 3o \Jo

=

<L,

Preuschoff et al, 2006, 2008, 2011
Bruguier et al, 2008
Rudorf et al, 2012



to =0
Will the second card revealed be higher
or lower than the first?

‘LOWER"

t1 = bs
Reveal first card.

to = 10s
Reveal second card.
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Prediction

MaXx

_+Expected reward

expected reward (dashed)/ risk (solid) oo

min |
0 0.5
probability of reward

U=u— BVar

p1v1 + (1 — p1)vg

L4
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second card S nd rd
higher lower

2

| won | lost
$1. $1.

| won | lost
$1. $1.

second card second card
higher lower
4 nd card t jca
higher lower

Os Place a bet ($1 per trial)

~1s Bet placed

~28

~4s See the first card

~556s

~11s See the second card

~ 1258

~ 18 s Indicate win or loss

~19s Response

~18.58

~ 25 s  Start of next trial



End of session

Final score: $19




Ventral tegmental area

(Phasic) Response to
Probability
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Striatum

Risk (Sustained)
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Where and how are decision
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reward probability

reward probability
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Are individual preferences reflected in these

representations?
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Rudorf et al, 2012



Risk

Decision Risk /Anticipation Risk

Thalamus

x=4

@ Decision Risk
@ Anticipation Risk

Conjunction

Decision Risk vs. Anticipation Risk

Thalamus

Thélam us

x=4

x=4

@ Decision Risk > Anticipation Risk
& Anticipation Risk > Decision Risk

Mohr et al, 2010



Into the wild - professional portfolio managers and
experienced traders
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Interoceptive Ability Predicts
Survival on a London Trading Floor

Narayanan Kandasamy'*, Sarah N. Garfinkel%**, Lionel Page**, Ben Hardy"*,
Hugo D. Critchley?, Mark Gurnell* & John M. Coates*
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Heartbeat Detection Score (%)
40

20

Controls Traders

Figure 1. Box plots showing that mean interoceptive accuracy (score on heartbeat counting task) for
traders (N = 18) was significantly higher than for a cohort of non-traders (N =48).



Interoceptive Ability Predicts
Survival on a London Trading Floor

Narayanan Kandasamy'*, Sarah N. Garfinkel%**, Lionel Page**, Ben Hardy"*,

Hugo D. Critchley?, Mark Gurnell* & John M. Coates*
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Interoceptive Ability Predicts
Survival on a London Trading Floor

Narayanan Kandasamy'*, Sarah N. Garfinkel%**, Lionel Page**, Ben Hardy"*,
Hugo D. Critchley?, Mark Gurnell* & John M. Coates*

P&L rank
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| 1
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Heartbeat detection score (%)

Figure 2. Regression line plotting score on the heartbeat counting task against the traders’ rank ordered
P&L, with 1 representing the most profitable trader, 17 the least.
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Risk proneness & loss tolerance based on
Investment behaviour

Risk proneness Loss tolerance

214 19.57
1; 2.00 141 13.57
) 1.75 10 12.71
A 1.58 A 11.82
5 0.82 3 8.50
3 0.78 5 8.41
5 0.74 2 7.72
13 0.69 13 5.81
12 0.59 12 5.66
f 0.48 f 4.10
, 0.32 . 3.12
g 0.09 g 0.81

0.09

0.81




Optimism / pessimism bias based on predictions
and actual prices (1 month prediction)

% E

|| Optimism bias
___----II
L

Pessimism bias II




Trader Insight Questionnaire (TRIQ)

61 questions regarding trading behavior/psychology, 5 questions regarding
strategy, 7 questions regarding demographics

Investors on a social trading platform

1.  vaded moee aggressively afed losing money




Individual investor profiles

nvestment strategies.
Psychological traits.
Behavioral biases.
Portfolio performance.

Strategy consistency Diversification

Loss aversion



What we've learned

The evolutionary mismatch From Lab to Markets: Real-World Validation
* Human brains evolved for survival in small groups, « Controlled experiments reveal how price information
not for modern financial markets iterally changes taste perception
» Our neural systems create systematic biases inrisk  * Professional portfolio managers display measurable
perception and decision-making behavioral/cognitive biases
The Neural Foundations of Financial Decision-Making  Social trading platforms enable large-scale behavioral

 Expected reward and risk are processed In distinct profiling and personalization

brain regions

* |Individual differences in neural responses predict
trading behavior and performance

* Professional traders show enhanced interoceptive
abilities but still exhibit cognitive biases fight-or-
flight response poorly suited for complex financial
decisions




Outlook: The Future of Neurofinance

Personalized Investment Solutions Technological Integration

» Neural and behavioral profiling to match investors » Wearable devices tracking physiological responses
with suitable strategies during financial decisions

 Al-driven portfolio optimization incorporating » Brain-computer interfaces for enhanced decision-
individual cognitive biases making support

» Real-time emotion and stress monitoring for trading * Machine learning algorithms that adapt to individual
decision support neural patterns

Market-Level Applications Challenges Ahead

» Better models of market volatility incorporating  Ethical considerations around neural privacy and
collective psychological states manipulation

» Improved risk management through understanding of » Regulatory frameworks for neurotechnology in
behavioral cascades finance

» Policy interventions informed by neuroscientific * Bridging the gap between laboratory findings and

INsights market complexity
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