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Question 1 (10 Pts)

a) Define the notion of a coherent risk measure, and give a financial interpretation of each
axiom of coherence. (4 Pts)

b) Let X ⇠ Par(✓,) with cdf

F (x) = 1�
✓



+ x

◆✓

, x � 0,

for parameters  > 0 and ✓ > 1. Calculate VaR↵ (X) and AVaR↵ (X). (3 Pts)

c) Let L be a d-dimensional random vector whose components L1, . . . , Ld are normally dis-
tributed with means µ1, . . . , µd 2 R and variances �21, . . . ,�

2
d > 0. Fix a level ↵ 2 (1/2, 1).

Is VaR↵ (L1 + · · ·+ Ld) larger if the copula of the random vector L is the independence
copula or the comonotonicity copula? (3 Pts)

Solution 1

a) A risk measure ⇢ : L ! R is called coherent if it satisfies the following set of axioms:

· monotonicity : ⇢(L1)  ⇢(L2) for L1

a.s.
 L2;

· translation invariance: ⇢(L+m) = ⇢(L) +m for m 2 R;
· subadditivity : ⇢(L1 + L2)  ⇢(L1) + ⇢(L2);

· positive homogeneity : ⇢(�L) = �⇢(L) for � 2 R+.

They admit the following interpretation:

· monotonicity : Portfolios that have higher losses in every possible scenario are regarded
as more risky.

· translation invariance: By adding capital worth m, the total risk decreases/increases
by the by the same amount. Note that if m = �⇢(L), then we have that

⇢(L+m) = ⇢(L� ⇢(L)) = ⇢(L)� ⇢(L) = 0

(L is a loss random variable so �⇢(L) would constitute a capital injection).

· subadditivity : Diversification does not lead to an increase in risk.

· positive homogeneity : Scaling a position (leveraging) up or down increases or decreases
the risk by the same factor. Note that if � 2 N then we have

⇢(�L) = ⇢

 
�X

i=1

L

!
.

Subadditivity gives us that this should be less or equal to �⇢(L), but since there is no
diversification, we require equality.

b) In order to compute AVaR, we first compute VaR. This can be done by simple inversion of
the cdf. We obtain

VaR↵ (X) =


(1� ↵)
1
✓

�  = 

⇣
(1� ↵)�

1
✓ � 1

⌘
.
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Then we have that

AVaR↵ (X) =
1

1� ↵

Z 1

↵
VaRu (X) du =

1

1� ↵

Z 1

↵



(1� u)
1
✓

du� 

= 
1

1� ↵

✓

✓ � 1
(1� ↵)1�

1
✓ �  = 

✓
✓

✓ � 1
(1� ↵)�

1
✓ � 1

◆
.

c) When the copula of L is the independence copula, then L is jointly normal with mean vector
µ = (µ1, . . . , µd)> and a diagonal covariance matrix ⌃ whose i-th diagonal entry is equal to
�
2
i . Therefore,

dX

i=1

Li ⇠ N

 
dX

i=1

µi,

dX

i=1

�
2
i

!
.

Let us denote

m =
dX

i=1

µi and s
2 =

dX

i=1

�
2
i

Using the formula for VaR of a normally distributed random variable derived in the class,
it follows that

VaR↵

 
dX

i=1

Li

!
= m+ s��1(↵),

where ��1(↵) denotes the ↵-quantile of N(0, 1).

In case the copula of L is the comonotonicity copula, we can use the fact that VaR is a
comonotone additive risk measure, which gives us that

VaR↵

 
dX

i=1

Li

!
=

dX

i=1

VaR↵ (Li) =
dX

i=1

�
µi + �i�

�1(↵)
�
= m+

 
dX

i=1

�i

!
��1(↵).

Since

s
2 =

dX

i=1

�
2
i <

dX

i=1

�
2
i + 2

dX

i=1

dX

j=i+1

�i�j =

 
dX

i=1

�i

!2

implies that

s =

vuut
dX

i=1

�
2
i <

dX

i=1

�i,

it is clear that VaR↵ (L1 + · · ·+ Ld) is greater under comonotonicity than it is under inde-
pendence for all d � 2 and ↵ 2 (1/2, 1) (because in this case we have that ��1(↵) > 0).

Question 2 (8 Pts)

a) Is every normal variance mixture distribution elliptical? Explain your answer. (4 Pts)

b) Let d financial returns be modeled by the components X1, . . . , Xd of a d-dimensional random
vector X. Assume X has an elliptical distribution such that E[X2

i ] < 1 for all i = 1, . . . , d,
and E[X1] = · · · = E[Xd]. We want to show that the minimum variance portfolio also
minimizes Value-at-Risk. More precisely, denote

� :=

(
w 2 Rd :

dX

i=1

wi = 1

)
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and fix a level ↵ 2 (1/2, 1). Then show that the two minimization problems

min
w2�

Var

 
dX

i=1

wiXi

!
and min

w2�
VaR↵

 
�

dX

i=1

wiXi

!

have the same minimizer w⇤ 2 �. (4 Pts)

Solution 2

a) Let’s assume that a random vectorX 2 Rd is a normal variance mixture. Then, by definition,
X admits a stochastic representation as

X
(d)
= µ+

p
WAZ

for a random vector Z ⇠ Nk(0, Ik), a random variable W � 0, µ 2 Rd and A 2 Rd⇥k. By
definition, X is also elliptically distributed if we have that

X
(d)
= m+BY

for some m 2 Rd, B 2 Rd⇥l and Y ⇠ Sl( ). We can obviously set l = k, m = µ and B = A.
If we can prove that

p
WZ is spherical, we can also set Y =

p
WZ and we are done.

One way to conclude quickly is to realize that
p
WZ ⇠ Mk(0, Ik, F̂W ) and to recall that

we have seen in the lectures that this distribution is indeed spherical. More precisely, let
U 2 Rk⇥k be an arbitrary orthogonal matrix. Then

U

p
WZ

(d)
=

p
WUZ

(d)
=

p
WZ

because UZ ⇠ Nk(0, UU
>) () UZ ⇠ Nk(0, Ik), which shows that

p
WZ is spherical.

b) Let X ⇠ Ed(m,⌃, ) for an m = (µ, . . . , µ)> 2 Rd with µ = E [X1], a matrix ⌃ 2 Rd⇥d and
a characteristic generator  . Note that since elliptical distributions are closed under a�ne
transformations and since we have that

Pd
i=1wi = 1,

w
>
X ⇠ E1(µ,w

>⌃w, ).

By the definition of an elliptical distribution, w>
X admits a stochastic representation as

w
>
X

(d)
= µ+

p
w>⌃wY,

for some Y ⇠ S1( ). We therefore obtain by the properties of variance and the positive
homogeneity and translation invariance of VaR that

Var
⇣
w

>
X

⌘
= Var

⇣
µ+

p
w>⌃wY

⌘
=
�
w

>⌃w
�
Var (Y ) ,

VaR↵

⇣
�w

>
X

⌘
= VaR↵

⇣
�µ�

p
w>⌃wY

⌘
= �µ+

p
w>⌃wVaR↵ (�Y ) .

Note that since �Y
(d)
= Y (because -1 can be interpreted as an orthogonal matrix in R1⇥1),

Y is symmetric and with zero mean, so

VaR↵ (�Y ) = VaR↵ (Y ) > 0 for ↵ 2 (1/2, 1).

The factors Var (Y ) and VaR↵ (Y ) are therefore of the same sign and are independent of w,
thus do not a↵ect the value of the minimizer w⇤ 2 �. This means that for all ↵ 2 (1/2, 1)

argmin
w2�

Var
⇣
w

>
X

⌘
= argmin

w2�
w

>⌃w and argmin
w2�

VaR↵

⇣
�w

>
X

⌘
= argmin

w2�

p
w>⌃w.
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Since x 7!
p
x is an increasing function, it also does not a↵ect the value of the minimizer

w
⇤ and we can drop the square root in the last expression. Since we have reduced both

optimization problems to the same one, we are done.

Question 3 (10 Pts)

a) Let (X,Y ) be a two-dimensional random vector with Exp(1)-marginals and copula

C(u, v) = uv + (1� u)(1� v)uv.

Does (X,Y ) have a density? If yes, can you compute it? (3 Pts)

b) Calculate Spearman’s rank correlation between X and Y given in a). (2 Pts)

c) Calculate the coe�cient of upper tail dependence �u between X and Y given in a). (2 Pts)

d) Let (X,Y ) be a two dimensional random vector with cdf

1� e
�x � e

�y + e
�x�y

1� e�x�y

on R2
+. What are the marginal distributions and copula of (X,Y )? (3 Pts)

Solution 3

a) Using Sklar’s theorem, the cdf FX,Y of (X,Y ) is given by

FX,Y (x, y) = C(FX(x), FY (y)),

where FX and FY are the ’ of X and Y , respectively. Using the fact that the margins are
Exp(1)-distributed, the above gives

FX,Y (x, y) = (1� e
�x)(1� e

�y) + e
�x�y(1� e

�x)(1� e
�y) = (1� e

�x)(1� e
�y)(1 + e

�x�y)

= 1� e
�y � e

�x + 2e�x�y � e
�x�2y � e

�2x�y + e
�2x�2y

for (x, y) 2 R2
+. We have that FX,Y 2 C

1(R2
+) so the density fX,Y does exist and is given

by

fX,Y (x, y) =
@
2
F

@x@y
(x, y) = 2e�x�y � 2e�x�2y � 2e�2x�y + 4e�2x�2y

for (x, y) 2 R2
+.

b) Spearman’s rank correlation ⇢S between two random variables X and Y with continuous
marginal distributions given by cdfs FX and FY is defined as

⇢S(X,Y ) = ⇢(FX(X), FY (Y )),

where ⇢ denotes the standard Pearson’s linear correlation coe�cient. We know from the
lecture that ⇢S is independent of the marginal distributions and can be computed as

⇢S(X,Y ) = 12

ZZ

[0,1]2

�
C(u, v)� uv

�
dudv = 12

ZZ

[0,1]2
uv(1� u)(1� v)dudv

= 12

✓Z 1

0
u(1� u)du

◆2

= 12

✓
1

2
� 1

3

◆2

=
1

3
,

where C denotes the copula of (X,Y ).
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c) The coe�cient of upper tail dependence is defined as

�u = lim
↵"1

P [X > qX(↵) |Y > qY (↵)] .

We have seen in the lecture that it is independent of the marginal distributions and can be
computed as

�u = lim
↵"1

1� 2↵+ C(↵,↵)

1� ↵
.

Since
C(↵,↵) = ↵

2 + (1� ↵)2↵2 = 2↵2 � 2↵3 + ↵
4

is, as a function of one variable ↵, di↵erentiable in ↵, l’Hospital’s rule gives

�u = 2� lim
↵"1

d

d↵
C(↵,↵) = 2� lim

↵"1
4↵� 6↵2 + 4↵3 = 0.

d) The marginal distributions are easily computed as

FX(x) = F (x,1) = 1� e
�x and FY (y) = F (1, y) = 1� e

�y
.

We now want to use Sklar’s theorem, which states that we can compute the copula of X
as C(u, v) = F (qX(u), qY (v)). We thus need to compute the quantile function of X (the
margins are identical). By inverting FX , we get that qX(u) = qY (u) = � log(1 � u). The
copula is therefore given by

C(u, v) =
uv

1� (1� u)(1� v)
=

uv

v + u� uv
=

1

u�1 + v�1 � 1
,

which is the Clayton copula with ✓ = 1.

Question 4 (12 Pts)

Let X be a non-negative random random variable with cdf

FX(x) =
x

x+ 1
, x � 0.

a) Does X have a density? If yes, can you derive it? (2 Pts)

b) Find all k 2 N such that E[|X|k] < 1. (2 Pts)

c) Does FX belong to MDA(H⇠) for a generalized extreme value distribution H⇠? If yes, what
is H⇠ and what are the normalizing sequences? (3 Pts)

d) Calculate the excess distribution function Fu(x) = P[X � u  x | X > u], x � 0. (2 Pts)

e) Does there exist a parameter ⇠ 2 R and a function � such that

lim
u!1

sup
x>0

|Fu(x)�G⇠,�(u)(x)| = 0

for a generalized Pareto distribution G⇠,�? If yes, for which ⇠ and � does this hold? (3 Pts)

Solution 4

a) The density fX of X exists and is given for all x � 0 by

fX(x) =
d

dx
FX(x) =

x+ 1� x

(x+ 1)2
=

1

(x+ 1)2
.
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b) We can conclude that E
⇥
|X|k

⇤
= 1 for all k 2 N from (c), since there we show that

FX 2 MDA(H1) and we know that if F 2 MDA(H⇠) with ⇠ > 0, then E
⇥
|X|k

⇤
= 1 for

k � 1/⇠.

We can also show this directly. We have that

E
h
|X|k

i
= E

h
X

k
i
=

Z 1

0

x
k

(x+ 1)2
dx.

But at 1, xk

(x+1)2 ⇠ x
k�2 and

R1
a x

k�2
dx, a > 0 is finite if and only if k < 1. This implies

that the entire integral cannot converge for any k 2 N.

c) It will be helpful to rewrite the given cdf as

FX(x) =
x

x+ 1
=

x

x+ 1
� 1 + 1 = 1� 1

x+ 1
.

Since we know from (b) that E
⇥
|X|k

⇤
= 1 for all k 2 N or simply observing that fX exhibits

a power decay, we would expect that FX 2 MDA(H⇠) for ⇠ > 0. This observation helps with
constructing our normalizing sequences for instance as cn = n and dn = n � 1. We then
have that

F
n
X(cnx+ dn) =

✓
1� 1

cnx+ dn + 1

◆n

=

✓
1� 1

n+ nx

◆n

=

✓
1� (1 + x)�1

n

◆n

! e
�(1+x)�1

as n ! 1 for all x � 0, which is the GEV distribution with ⇠ = 1. That is FX 2 MDA(H1).

d) We can easily derive of simply use the formula for Fu from the class:

Fu(x) =
F (x+ u)� F (u)

1� F (u)
.

This gives

Fu(x) =
1� 1

x+u+1 � 1 + 1
u+1

1� 1 + 1
u+1

=
1

u+1 � 1
x+u+1

1
u+1

= 1� u+ 1

x+ u+ 1
.

e) Pickands–Balkema–de Haan theorem gives us that

lim
u!1

sup
x>0

��Fu(x)�G⇠,�(u)(x)
�� = 0 (1)

if and only if FX 2 MDA(H⇠). We have shown in (c) that FX 2 MDA(H1), thus (1) holds
for ⇠ = 1 and for some function �(u) yet to be determined.

We have that

��Fu(x)�G1,�(u)(x)
�� =

�����1�
u+ 1

x+ u+ 1
� 1 +

✓
1 +

x

�(u)

◆�1
����� =

�����

✓
x+ �(u)

�(u)

◆�1

� u+ 1

x+ u+ 1

�����

=

����
�(u)

x+ �(u)
� u+ 1

x+ u+ 1

���� ,

which is equal to 0 for �(u) = u + 1. This choice of beta will also render the limit in (1)
equal to 0, and we are done.

Question 5 (10 Pts)
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a) Write down the specification of a GARCH(1,1) model. (2 Pts)

b) Which stylized facts of daily log-returns can a GARCH(1,1) model capture? (2 Pts)

c) Let the distribution of a d-dimensional random vector X be given by univariate marginal
cdfs F1, . . . , Fd and a Gaussian copula C

Ga
P . Describe an algorithm for simulating X. Justify

your approach. (3 Pts)

d) Describe the Peaks-Over-Threshold method. (3 Pts)

Solution 5

a) As seen in the lecture, we say that the process X = (Xt)t2Z follows a GARCH(1,1) process
if it is stationary and we have for all t 2 Z that

Xt = �tZt

�
2
t = ↵0 + ↵1X

2
t�1 + �1�

2
t�1,

for some ↵0,↵1,�1 � 0, where Zt ⇠ SWN(0, 1) for all t 2 Z.

b) GARCH(1,1) model can capture the following stylized facts of daily log-returns:

· Volatility varying over time;

· Large (extreme) movements appearing in clusters (volatility clustering);

· Leptokurtic or heavy-tailed log-returns;

· Low correlation of raw log-returns;

· Profound correlation of absolute or squared log-returns;

· Conditional expected log-returns close/equal to zero.

Of these, the ones related to volatility and heavy tails are the most important since some
of the other ones can obviously captured also by a sequence of i.i.d. normally distributed
random variables with zero mean.

c) Let � denote the cdf of N(0, 1) distribution given by

�(x) =
1p
2⇡

Z x

�1
e
�u2

2 du,

and qi the marginal quantile functions corresponding to Fi and given by

qi(↵) = min{x 2 R |Fi(x) � ↵}

for all i 2 {1, . . . , d}. Simulation of X can be carried out as follows:

(i) Simulate Zi ⇠ N(0, 1), i 2 {1, . . . , d} and define Z = (Z1, . . . , Zd)>;

(ii) Compute the Cholesky decomposition P = AA
> of P ;

(iii) Assign Y = AZ;

(iv) Assign U = (�(Y1), . . . ,�(Yd))>, where Yi is the i-th component of Y ;

(v) Return X = (q1(U1), . . . , qd(Ud))
>, where Ui is the i-th component of U .

The X simulated this way has a distribution with copula C
Ga
P and margins F1, . . . , Fd by

Sklar’s theorem and by the definition of multivariate normal distribution.
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d) Consider the losses X1, . . . , Xn ⇠ F 2 MDA(H⇠) and let Nu denote the number of these
losses that exceed a selected large threshold u. According to the Pickands-Balkema-de Haan
theorem, the excesses Yi = Xi � u, i 2 {1, . . . , Nu} are roughly distributed as G⇠,� . The

estimates ⇠̂ and �̂ can (often) be computed using the MLE, that is by maximizing the
log-likelihood function

`(⇠,�;Y1, . . . , YNu)) =

(
�Nu log � � (1 + 1/⇠)

PNu
i=1 log(1 + ⇠Yi/�) ⇠ 6= 0,

�Nu log � �
PNu

i=1 Yi/� ⇠ = 0

with respect to ⇠ and � such that � > 0 and 1 + ⇠Yi/� > 0 for all i = 1, . . . , Nu.

The only remaining problem is the selection of the threshold u. We have seen in the lecture
that provided that the mean excess function e(v) = E [X � v |X > v] of G⇠,� exits, it is an
a�ne function of a threshold v � u. We can therefore select the threshold u by constructing
a mean excess plot

(X(i), en(X(i))), i 2 {1, . . . , n},

where X(1)  X(2)  · · ·  X(n) are the ordered data and

en(v) =

Pn
i=1(Xi � v)1{Xi>v}Pn

i=1 1{Xi>v}

is the sample mean excess function, and finding a point u
⇤ such that plot grows roughly

linearly above u
⇤.
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