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Question 1 (10 Pts)
Let L be a random loss of the form L = Y Z, where Y is a Bernoulli random variable with
mean p ∈ (0, 1) and Z an independent random variable with cdf

FZ(x) =

{
1− x−β if x ≥ 1

0 if x < 1

for a parameter β > 2.

a) Compute the mean and the variance of L. (2 Pts)

b) Derive the cdf of L. (1 Pt)

c) Does L have a density? If yes, can you derive it? (1 Pt)

d) Compute VaRα(L) for α ∈ (0, 1). (2 Pts)

e) Compute ESα(L) for α ∈ (0, 1). (2 Pts)

f) For which α ∈ (0, 1) is AVaRα(L) equal to ESα(L)? (2 Pts)

Solution 1

a) Since Y and Z are independent, we have E [Y Z] = E [Y ]E [Z] and Var(Y Z) = E
[
Y 2
]
E
[
Z2
]
−

E [Y ]2 E [Z]2. Notice that the density function of Z is

fZ(x) =

{
βx−β−1 if x ≥ 1

0 if x < 1.

Therefore, we can calculate the expectation as follows:

E [Z] =

∫ ∞
1

x · βx−β−1dx =

∫ ∞
1

βx−βdx =
β

−β + 1
x−β+1

∣∣∣∣∞
1

=
β

β − 1

since limx→∞ x
−β+1 = 0 when β > 2. By using the definition of expectation, we

immediately get
E[Y 2] = 12 · P[Y = 1] = p.

Similarly, we have

E
[
Z2
]

=

∫ ∞
1

x2 · βx−β−1dx =

∫ ∞
1

βx−β+1dx =
β

−β + 2
x−β+2

∣∣∣∣∞
1

=
β

β − 2

since limx→∞ x
−β+2 = 0 when β > 2. Hence, we obtain that

E [L] =
pβ

β − 1
and Var(L) =

pβ

β − 2
− p2β2

(β − 1)2
.

b) We have

L = Y Z =

{
Z if Y = 1,

0 if Y = 0.
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So, the cdf of L is given by

FL(x) = P[L ≤ x] = P[Y Z ≤ x] = P[Y Z ≤ x | Y = 1]P[Y = 1] + P[Y Z ≤ x | Y = 0]P[Y = 0]

= P[Z ≤ x]P[Y = 1] + P[0 ≤ x]P[Y = 0] = p · P[Z ≤ x] + (1− p) · P[0 ≤ x]

=

{
p · P[Z ≤ x] + (1− p) if x ≥ 0,

0 if x < 0,

=


p(1− x−β) + (1− p) if x ≥ 1,

1− p if 0 ≤ x < 1,

0 if x < 0,

=


1− px−β if x ≥ 1,

1− p if 0 ≤ x < 1,

0 if x < 0.

c) L cannot have a density because its cdf FL jumps at 0. (Note that the jump size 1− p
equals the probability that L is equal to 0.)

d) If 1 − p < α < 1, VaRα(L) is equal to the unique x > 1 satisfying 1 − px−β = α,
whereas for 0 < α ≤ 1− p, one has VaRα(L) = 0. Therefore,

VaRα(L) =


(

p
1−α

)1/β
if α ∈ (1− p, 1)

0 if α ∈ (0, 1− p].

e) If 1− p < α < 1, VaRα(L) =
(

p
1−α

)1/β
> 1. So, since

1{x≥1}βx
−β−1

is the density of Z, we obtain

ESα(L) = E [L | L ≥ VaRα(L)] =
1

P[L ≥ VaRα(L)]

∫ ∞
VaRα(L)

x dFL(x)

=
1

1− α

∫ ∞
VaRα(L)

x · pβx−β−1dx =
1

1− α

∫ ∞
VaRα(L)

pβx−βdx

=
1

1− α
· pβ

−β + 1
x−β+1

∣∣∣∣∞
VaRα(L)

=
1

1− α
· pβ

β − 1
VaRα(L)−β+1

=
β

β − 1

(
p

1− α

)1/β

because limx→∞ x
−β+1 = 0 when β > 2.

On the other hand, if 0 < α ≤ 1− p, then VaRα(L) = 0 and

P[L ≥ VaRα(L)] = P[L ≥ 0] = 1.

Therefore, we have

ESα(L) =
1

P[L ≥ VaRα(L)]

∫ ∞
VaRα(L)

x dFL(x) =

∫ ∞
0

x dFL(x) = E [L] =
pβ

β − 1
.
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So,

ESα (L) =

 β
β−1

(
p

1−α

)1/β
if α ∈ (1− p, 1)

pβ
β−1 if α ∈ (0, 1− p].

f) We know from the lecture notes that AVaRα(L) = ESα(L) if and only if P[L ≥
VaRα(L)] = 1− α.

Since

P[L ≥ VaRα(L)] =

{
1− α if α ∈ (1− p, 1)

1 if α ∈ (0, 1− p],

we have AVaRα(L) = ESα(L) if and only if α ∈ (1− p, 1).

Alternatively, with the definition of AVaRα(L) = 1
1−α

∫ 1
α VaRu(L)du, we can compute

AVaRα(L) and then compare its value with ESα(L) in e). If 1− p < α < 1, we obtain
from the change of variable y = 1− u,

AVaRα(L) =
1

1− α

∫ 1

α

(
p

1− u

)1/β

du

=
1

1− α

∫ 1−α

0

(
p

y

)1/β

dy =
p1/β

1− α
· y
−1/β+1

−1/β + 1

∣∣∣∣1−α
0

=
β

β − 1

(
p

1− α

)1/β

= ESα (L) .

If 0 < α ≤ 1− p, with the change of variable y = 1− u again, we have

AVaRα(L) =
1

1− α

(∫ 1−p

α
VaRu(L)du+

∫ 1

1−p
VaRu(L)du

)
=

1

1− α

(∫ 1−p

α
0 du+

∫ 1

1−p

(
p

1− u

)1/β

du

)

=
1

1− α

∫ p

0

(
p

y

)1/β

dy =
p1/β

1− α
· y
−1/β+1

−1/β + 1

∣∣∣∣p
0

=
1

1− α
· pβ

β − 1
> ESα (L) .

Therefore, we conclude that AVaRα(L) = ESα(L) if and only if α ∈ (1− p, 1).
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Question 2 (10 Pts)

a) Consider a d-dimensional random vector X = (X1, . . . , Xd) ∼ Nd(µ,Σ) such that
X1 ≡ 1. Denote by L the set of random losses {vTX : v ∈ Rd} and let α ∈ [1/2, 1).
Which properties of a coherent risk measure does the mapping VaRα : L → R have?
Explain your answers. (5 Pts)

b) Assume d financial returns are described by the components of a d-dimensional random
vector X = (X1, . . . , Xd) with an elliptical distribution such that E[X2

i ] < ∞ for all
i = 1, . . . , d. Let v, w ∈ Rd be two portfolio vectors such that vTµ = wTµ, where
µ ∈ Rd is the mean vector of X. Show that, for all α ∈ [1/2, 1), one has

ESα
(
−vTX

)
≤ ESα

(
−wTX

)
if and only if Var

(
vTX

)
≤ Var

(
wTX

)
.

(5 Pts)

Solution 2

a) Known from the lecture, VaRα satisfies monotonicity (M), translation property (T)
and positive homogeneity (P), hence we only need to check subadditivity (S), that
is VaRα(L1 + L2) ≤ VaRα(L1) + VaRα(L2). For j ∈ {1, 2}, let Lj = vTj X ∈ L
denote two losses from L. As a linear combination of normal distribution, we know
Lj ∼ Nd(µLj , σ

2
Lj

) where µLj = vTj µ and σ2Lj = vTj Σvj = Var(vTj X) = Var(Lj).

Furthermore, L1 + L2 = (v1 + v2)
TX ∈ L and L1 + L2 ∼ Nd(µL1+L2 , σ

2
L1+L2

) where
µL1+L2 = µL1 + µL2 . Using the Cauchy-Schwarz inequality, we have Cov (L1, L2) ≤√

Var(L1)Var(L2). Therefore, we have

σ2L1+L2
= Var(L1 + L2) = Var(L1) + Var(L2) + 2 Cov (L1, L2)

≤ Var(L1) + Var(L2) + 2
√

Var(L1)Var(L2) = (σL1 + σL2)2.

Hence, σL1+L2 ≤ σL1 + σL2 . Notice that for α ∈ [1/2, 1), Φ−1(α) ≥ 0 where Φ is the
cdf of d-dimensional standard normal distribution. One then has

VaRα(L1 + L2) = µL1+L2 + σL1+L2Φ−1(α) = µL1 + µL2 + σL1+L2Φ−1(α)

≤ µL1 + µL2 + (σL1 + σL2)Φ−1(α)

= µL1 + σL1Φ−1(α) + µL2 + σL2Φ−1(α) = VaRα(L1) + VaRα(L2).

Thus, VaRα also satisfies subadditivity (S) hence satisfies all properties of a coherent
risk measure.

b) Since X has an elliptical distribution with mean vector µ ∈ Rd, we then have X
(d)
=

µ+AY ∼ Ed(µ,Σ, ψ) where A ∈ Rd×k, AAT = Σ and Y ∼ Sk(ψ).Notice that −vTX (d)
=

−vT (µ+AY ) = −vTµ− vTAY , according to the lecture notes, we know that

−vTAY = (−AT v)TY
(d)
= ‖ −AT v‖Y1 = ‖AT v‖Y1.

Since ESα is distribution-based and satisfies translation property (T) and positive
homogeneity (P), we have ESα

(
−vTX

)
= −vTµ+ ‖AT v‖ESα (Y1). Similarly, we have
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ESα
(
−wTX

)
= −wTµ + ‖ATw‖ESα (Y1). We further notice that for all α ∈ [1/2, 1),

ESα (Y1) ≥ 0. Using the fact that vTµ = wTµ, one deduces

ESα
(
−vTX

)
≤ ESα

(
−wTX

)
⇔ ‖AT v‖ESα (Y1) ≤ ‖ATw‖ESα (Y1)

⇔ ‖AT v‖ ≤ ‖ATw‖

⇔ vTAAT v ≤ wTAATw

⇔ vTΣv ≤ wTΣw.

We further notice that

Var
(
vTX

)
= Var

(
vTAY

)
= Var

(
‖AT v‖Y1

)
= ‖AT v‖2Var (Y1) = vTΣvVar (Y1) .

Similarly, we have Var
(
wTX

)
= wTΣwVar (Y1). Since Var (Y1) ≥ 0, one could further

deduce
vTΣv ≤ wTΣw ⇔ Var

(
vTX

)
≤ Var

(
wTX

)
and hence finally conclude that

ESα
(
−vTX

)
≤ ESα

(
−wTX

)
⇔ Var

(
vTX

)
≤ Var

(
wTX

)
.
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Question 3 (10 Pts)
Let X be a non-negative random variable with cdf

F (x) = 1− 1√
1 + 2x

, x ≥ 0.

a) Does X have a density? If yes, can you derive it? (1 Pt)

b) Find all k ∈ {1, 2, . . . } such that E[|X|k] <∞? (1 Pt)

c) Does F belong to the maximum domain of attraction of a standard generalized ex-
treme value distribution Hξ? If yes, determine the shape parameter ξ and a pair of
normalizing sequences. (3 Pts)

d) Calculate the excess distribution function Fu(x) = P[X − u ≤ x | X > u], x ≥ 0, over
a threshold u > 0. (2 Pts)

e) Does there exist a parameter ξ ∈ R and a function β such that

lim
u→∞

sup
x>0
|Fu(x)−Gξ,β(u)(x)| = 0,

for a generalized Pareto distribution Gξ,β(u)? If yes, for which ξ and β(u) does this
hold? (3 Pts)

Solution 3

a) Yes. Since the cdf F is smooth on [0,∞) its pdf is given by

f(x) =
dF

dx
(x) =

1

(1 + 2x)3/2

for all x ≥ 0 and otherwise vanishes.

b) Since the support of the distribution is [0,∞), we have E[|X|k] = E[Xk]. With the
density function we obtained in a), we calculate

E[|X|k] = E[Xk] =

∫ ∞
0

xk

(1 + 2x)3/2
dx.

This integral diverges for all k ≥ 1, so there is no k ∈ N = {1, 2, . . .} for which
E[|X|k] <∞.

c) One has

F (x) = 1− F (x) = 1√
1+2x

= x−1/2
√

x
1+2x = x−1/2L(x)

for all x ≥ 0, where L(x) =
√

1/(2 + x−1). The function L(x) satisfies

lim
x→∞

L(tx)
L(x) =

√
2+

1
x√

2+
1
tx

= 1

for all t > 0 and therefore it is a slowly varying function.

6



Hence, by the characterization of the distributions in the maximum domain of attrac-
tion of a Fréchet distribution provided in the lecture, we deduce F ∈ MDA(H2), where
H2 is given by

H2(x) =

{
exp

(
− 1√

1+2x

)
if x > −1/2,

0 if x ≤ −1/2.

Note that
lim
n→∞

(1 + x
n)n = exp(x) for all x ∈ R.

So for cn = n2 and dn = (n2 − 1)/2, one obtains

lim
n→∞

Fn(cnx+ dn) = lim
n→∞

(
1− 1√

1+2(n2x+(n2−1)/2)

)n
= lim

n→∞

(
1− 1

n
√
1+2x

)n
= exp

(
− 1√

1+2x

)
= H2(x)

for x > −1/2, and
lim
n→∞

Fn(cnx+ dn) = 0 = H2(x)

for x ≤ −1/2.

d) We have for x ≥ 0 and u > 0,

Fu(x) =
F (x+ u)− F (u)

1− F (u)
.

It gives

Fu(x) =
[1 + 2u]−1/2 − [1 + 2(x+ u)]−1/2

[1 + 2u]−1/2
= 1−

√
1 + 2u√

1 + 2(x+ u)
.

e) Pickands-Balkema-de Haan theorem gives us that

lim
u→∞

sup
x>0
|Fu(x)−Gξ,β(u)(x)| = 0, (1)

if and only if F ∈ MDA(Hξ). We have shown in (c) that F ∈ MDA(H2), thus (1)
holds for ξ = 2 and for some function β(u) yet to be determined.

We have that

|Fu(x)−G2,β(u)(x)| =

∣∣∣∣∣1−
√

1 + 2u√
1 + 2(x+ u)

− 1 +

(
1 +

2x

β(u)

)−1/2∣∣∣∣∣
=

∣∣∣∣∣
√
β(u)√

2x+ β(u)
−

√
1 + 2u√

2x+ 1 + 2u

∣∣∣∣∣ ,
which is equal to 0 for β(u) = 2u+ 1. This choice of beta will also render the limit in
(1) equal to 0.
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Question 4 (10 Pts)
Let (X,Y ) be a two-dimensional random vector with cdf

FX,Y (x, y) =
(
√

1 + 2x− 1) (1− e−4y2)√
1 + 2x− 1

2e
−4y2 , x, y ≥ 0.

a) What are the marginal distributions of X and Y ? (3 Pts)

b) Compute a copula C of (X,Y ). Is it unique? (3 Pts)

c) Calculate the coefficient of upper tail dependence λu between X and Y . (2 Pts)

d) Calculate the coefficient of lower tail dependence λl between X and Y . (2 Pts)

Solution 4

a) Taking the limits x→∞ and y →∞ we see that the margins are given by

FX(x) = lim
y→∞

FX,Y (x, y) = lim
y→∞

(
√

1 + 2x− 1) (1− e−4y2)√
1 + 2x− 1

2e
−4y2

=

√
1 + 2x− 1√

1 + 2x
= 1− 1√

1 + 2x
, for x ≥ 0

and by using l’Hôpital’s rule

FY (y) = lim
x→∞

FX,Y (x, y) = lim
x→∞

(
√

1 + 2x− 1) (1− e−4y2)√
1 + 2x− 1

2e
−4y2

= lim
x→∞

√
1 + 2x (1− e−4y2)√

1 + 2x
= 1− e−4y2 , for y ≥ 0.

b) Since the marginals are continuous, Sklar’s theorem ensures that the copula of (X,Y )
is unique and given by

C(u, v) = FX,Y (qX(u), qY (v)) for u, v ∈ (0, 1)2.

By inverting FX and FY we obtain the quantile functions as

qX(u) =
u(2− u)

2(1− u)2
.

and

qY (v) =
1

2

(
log

(
1

1− v

))1/2

Therefore, one deduces

C(u, v) = FX,Y

(
u(2− u)

2(1− u)2
,
1

2

(
log

(
1

1− v

))1/2
)

=
uv

1− 1/2(1− u)(1− v)
, for u, v ∈ (0, 1)2.
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c) We have seen in the lecture that the coefficient of upper tail dependence can be com-
puted as

λu = lim
α↑1

1− 2α+ C(α, α)

1− α
.

Using the result from b), one has

C(α, α) =
α2

1− 1
2(1− α)2

.

Therefore,

λu = lim
α↑1

1− 2α+ α2

1− 1
2
(1−α)2

1− α
= lim

α↑1

(1− 2α)
(
1− 1

2(1− α)2
)

+ α2

(1− α)
(
1− 1

2(1− α)2
)

= lim
α↑1

1− 2α+ α2 − 1
2(1− α)2(1− 2α)

(1− α)
(
1− 1

2(1− α)2
) = lim

α↑1

(1− α)2
(
1− 1

2(1− 2α)
)

(1− α)
(
1− 1

2(1− α)2
)

= lim
α↑1

(1− α)
(
1− 1

2(1− 2α)
)(

1− 1
2(1− α)2

) = lim
α↑1

(1− α)
(
1
2 + α

)
1/2 + α− α2/2

= 0.

Alternatively, the coefficient of upper tail dependence can be computed as

λu = 2− lim
α↑1

1− C(α, α)

1− α
.

where

C(α, α) =
α2

1− 1
2(1− α)2

.

By using l’Hôpital’s rule,

lim
α↑1

1− C(α, α)

1− α
= lim

α↑1

d

dα
C(α, α)

= lim
α↑1

2α
(
1− 1/2(1− α)2

)
− α2(1− α)

(1− 1/2(1− α)2)2
=

2− 0

1
= 2.

Hence, λu = 0.

d) We know from the lecture that the coefficient of lower tail dependence can be computed
as

λl = lim
α↓0

C(α, α)

α
.

So using the result from b),

C(α, α) =
α2

1− 1
2(1− α)2

,

one has
λl = lim

α↓0

α

1− 1
2(1− α)2

= 0.
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Question 5 (10 Pts)

a) Why is subadditivity a desirable property of a risk measure? (2 Pts)

b) Why does one usually assume stationarity in time series modelling? (2 Pts)

c) How can a multivariate t-distribution be represented as a normal mixture distribution?
(3 Pts)

d) Name advantages and disadvantages of elliptical distributions in financial modelling.
(3 Pts)

Solution 5

a) There are several properties of subadditivity that make it a desirable property of a risk
measure. For instance:

· Subadditivity is consistent with the concept that diversification reduces risk.

· A subadditive risk measure can detect a concentration of risk.

· Subadditivity permits decentralized risk measurement by sub-units of a firm and
removes any incentive to split the firm to reduce capital requirements. For exam-
ple to bound ρ(L1+L2) by a constant c, it suffices to bound ρ(Lj) by cj , j ∈ {1, 2},
for c1 + c2 ≤ c, since, by subadditivity, ρ(L1 +L2) ≤ ρ(L1) + ρ(L2) ≤ c1 + c2 ≤ c.

b) In (univariate) time series modelling, we observe realizations of a discrete-time stochas-
tic process (Xt)t∈Z. It implies that we have only access to an outcome of a single
experiment over time, albeit observations at different time points are typically not
independent of each other. Think of observing realizations of {X1, . . . , Xn}, where
each random variable is from a potentially different distribution. Since it is impossible
to determine a distribution using a single observation, stationarity assumptions are
needed to infer properties of the distribution of future events from historical obser-
vations. Furthermore, stationarity assumptions are required so that statistics such as
expected values, variances and covariances can be estimated using time-averages. For
example, a covariance function at lag one can only be estimated based on observations
from {X1, . . . , Xn} if (X1, X2), (X2, X3), . . . , (Xn−1, Xn) have the same covariance.

c) Let X ∼ td(ν, µ,Σ), where µ ∈ Rd and Σ = AAT ∈ Rd×d. From the lecture notes we
know that X = µ +

√
WAZ ∼ Md(µ,Σ, F̂W ), where Z = (Z1, . . . , Zd) ∼ Nd(0, Id) is

independent of W = 1/G for G ∼ Γ(ν/2, ν/2), or equivalently, W ∼ IG(ν/2, ν/2), or
equivalently, W = ν/V for V ∼ χ2

ν .

d) Advantages:

· Affine transformations of elliptical random vectors remain elliptical with the same
characteristic generator. That is, let X ∼ Ed(µ,Σ, ψ) and take B ∈ Rk×d and
b ∈ Rk. It can be shown that b+BX ∼ Ek(Bµ+ b, BΣBT , ψ).

· Marginal distributions are elliptical with the same characteristic generator. That
is, ifX = (X1, X2) ∼ Ed(µ,Σ, ψ), thenX1 ∼ Ek(µ1,Σ11, ψ) andX2 ∼ Ed−k(µ1,Σ22, ψ),
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where

µ =

µ1
µ2

 , Σ =

Σ11 Σ12

Σ21 Σ22

 .

· Conditional distributions are elliptical, albeit with a different characteristic gen-
erator.

· Quadratic forms are known.

· The sum of two independent elliptical vectors with the same dispersion matrix is
also elliptical. That is, if X ∼ Ed(µ,Σ, ψ) and Y ∼ Ed(µ̃, cΣ, ψ̃) are independent,
then aX + bY is elliptical.

· Subadditivity of VaR in elliptical models.

· Standard estimators of the mean vector and covariance matrix are consistent
under weak assumptions, albeit they are not necessarily the best estimators of
locations and dispersion for a given finite sample of elliptical data.

· Existence of various robust and efficient estimators (e.g., M-estimators) of location
and dispersion.

· Mutual fund separation theorems and the Capital Asset Pricing Model (CAPM)
hold for all elliptical distributions.

· It generalize the multivariate normal distribution, and many of the nice properties
of the multivariate normal are preserved.

· Elliptical distributions allow both lighter-than-normal and heavier-than-normal
tails which are common in financial data.

Disadvantages:

· As normal variance mixtures, elliptical distributions are radially symmetric, which
is not a desirable property in the context of financial modelling.

· Traditional Gaussian methods become invalid for some problems under elliptical
distributions.

· Extending the normal-theory standard procedures to the elliptical case may be
much more difficult.
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