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Introduction

As actuaries, we should have a critical look at models that are in use to
quantify the risks to which insurers are exposed.

Market risk is one of the dominant drivers acting on the balance sheet.

We propose a family of random variables apt to deal with heavy tails and
skewness in the financial data.

2 / 32



Recap on FINMA’s SST standard model of market risks

Valuation model with the following basic modules

I Equities (and the likes) with underlying risk factors stock return, FX
return

I Future Cash Flows with underlying risk factors continuous interest
rates, spreads, FX return

Additionally, a module for equity- and FX-forward contracts and a delta
term for all other financial instruments.
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Recap of standard model

Notation
Set of currencies F = {CHF, EUR, USD, GBP, JPY, . . .}.
Set of equity-like instruments denominated in currency f ,
Ef = {Stock, Real Estate, Commodity, . . .} represented by Indices
Set of rating classes for bonds (and bond-like instruments),
Rf = {Govi, AAA, ...,BBB} (specific selection of ratings might depend
on f )
Stochastic one-year change of continuous risk free interest rate in
currency f for tenor t, %ft

Stochastic one-year change of logarithmic conversion rate from currency
f to CHF, ζf (for f = CHF, we have ζf = 0 a.s.)
Stochastic one-year log return of equity-like index i denominated in
currency f , rfi
Stochastic one-year change of spread of rating class p in currency f , sfp

(assumed to be constant for all tenors).
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Recap of standard model

Given initial market values of the equities and the likes Sfi (0) and future
cash flows Cfp(t) of tenors t ∈ {1, 2, . . .}, both converted to CHF, the
stochastic value of the portfolio (assets and liabilities) at the end of the
year reads:

PL =
∑

f∈F,i∈Ef

Kfi ·Sfi (0) · erfi +ζf +
∑
t≥1

∑
f∈F,p∈Rf

Kfpt ·Cfp(t) · e−(%ft +sfp)t+ζf

where the terms

Kfi = 1/E [erfi +ζf ], Kfpt = 1/E [e−(%ft +sfp)t+ζf ].

guarantee a kind of stationarity.

I Omitted are the equity and currency forwards and the Delta term.
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Normality assumption

Standard Model of FINMA: Centered normal distributions of risk factors.

Parameter estimation by standard moment estimators (unbiased vola and
correlation for monthly returns of RF).
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Compare data to modeled returns: Tail plots
Monthly Data: Rising a headache to the quant. risk manager?
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Observations assign a probability of approx.

2 · 10−2 to suffer a monthly loss ≥ 10%

Standard model assigns a probability of

5 · 10−3 to suffer a monthly loss ≥ 10%

Standard model assigns

a probability of 1 · 10−1

to have a monthly
gain > 5%

Observations estimate this
probability at approx.

4 · 10−2

Data source: Bloomberg
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Obtain a better fit
The t-distribution (univariate case)

X = Z√
1
n

∑n
i=1 Y 2

i

, where Z ,Y1, . . . ,Yn ∼ N (0, 1) (i.i.d)

More generally, for ν ∈ R≥1:

X =
Z√

1/ν ·W
,

where W ∼ χ2
ν and Z ,W independent.

Density of X :

fν(x) = Cν ·
(
1 +

x2

ν

)− ν+1
2 , x ∈ R,

with the normalizing constant

Cν =
Γ(ν+1

2 )
√
πν · Γ(ν2 )

.

8 / 32



Comments on the t-distribution

Family that interpolates between the
arctan law (ν = 1) and the normal
law (ν →∞)

L1 if ν > 1, L2 if ν > 2.

Tails are dangerous, Pareto-style

Symmetric densities however,
market data typically are skewed.

For market risk modeling purposes
t-distributed variables X have to be
scaled: For s > 0 the density of sX
is

f (x) =
1

s
fν(

x

s
).
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Obtain a better fit to market data
The branched t-distribution

Profit-Loss-data from financial markets are typically skewed (see the tail
plots later).

Introduce skewness:

Given scalings s1, s2 > 0, degrees of freedom ν1, ν2 > 1, we can treat the
lower and the upper branch of the t-distribution separately to obtain an
asymmetric variable:

X =
s1 · Z√

1/ν1 ·W1

· IZ<0 +
s2 · Z√

1/ν2 ·W2

· IZ≥0,

where Z ∼ N (0, 1), Wj ∼ χ2
νj

, and Wj ,Z independent (j = 1, 2).

By tinkering near zero, it can be made absolutely continuous.
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The branched t-distribution: Multivariate Version

Vector of risk factors (X1, . . . ,Xn) is given by components

Xi =
s1i · Zi√

1/ν1i ·W1i

· IZi<0 +
s2i · Zi√

1/ν2i ·W2i

· IZi≥0,

where

Z := (Z1, . . . ,Zn) ∼ N (0,Σ), with pos. def. correlation matrix Σ.

Wji ∼ χ2
νji

comonotonic for i = 1, . . . , n, j = 1, 2 and

(W11, . . . ,W1n,W21, . . . ,W2n) and Z independent.

The parameters sji , νji and Σ have to be estimated from the data.
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Branched t: Parameter Estimation

Transform Monthly Indices

I Log returns for equities and the likes

I Additive increments of continuous interest rates

I Additive increments of spreads

Shift data so that the median is zero

MML and LS estimation of sji , νji : Lower and upper branch can be
treated separately.

Currently, Σ is estimated by Spearman’s ρ and normalized.
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Example from monthly data

LS-estimators Data source: Bloomberg
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Example from monthly data

LS-estimators Data source: Bloomberg
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Example from monthly data

LS-estimators Data source: Bloomberg
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Example from monthly data

LS-estimators Data source: Bloomberg
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Passage from monthly to yearly data
Brief answer to headache question: It depends.

For a one-year return need to sum up 12 monthly returns under
IID-assumption.
Branched t-variables do not form an infintely divisable family: Any help
from the Berry-Esseen Theorem?
Note that if X is branched t with parameters s1/2, ν1/2, then

E [X ] = s2
ν2

ν2−1Cν2 − s1
ν1

ν1−1Cν1 , if ν1/2 > 1

E [X 2] = 1
2 [(s1)2 ν1

ν1−2 + (s2)2 ν2

ν2−2 ], if ν1/2 > 2

E [X 3] = 2s3
2

ν2
2

(ν2−1)(ν2−3)Cν2 − 2s3
1

ν2
1

(ν1−1)(ν1−3)Cν1 , if ν1/2 > 3.

If the ν’s are high enough, convergence to normal law is fairly good.
However, if they are close to 2 - or less - convergence can be bad.
See the next slides.
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Yearly data: LS-estimators

Data source: SNB
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Yearly data: LS-estimators

Data source: Bloomberg
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Yearly data: LS-estimators

Data source: Bloomberg
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Yearly data: LS-estimators

Data source: SNB
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Yearly data: LS-estimators

Data source: Bloomberg
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Yearly data: LS-estimators

Data source: Bloomberg
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Yearly data: LS-estimators

Data source: Bloomberg
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Yearly data: LS-estimators

Data source: Bloomberg
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Yearly data: LS-estimators

Data source: Bloomberg
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Branched t distributions: Final comments

For some of the risk factors normality assumption OK: EUR IR 10Y, FX
JPY-CHF, Gold (?)

For some it is bad: Equity, PE, HF, ReaL Estate, and spreads.

Degrees of freedom can be very sensitive w.r.t. small variations of
monthly returns.

Estimated parameters from a bootstrap simulation can show considerable
variation.

Bayesian Modeling for parameters to be estimated, apriori assumptions
suggest sj ∼ N (sj0, σ

2
j ), νj ∼ Γ(αj , βj , lj )

Use MCMC to get the posterior distributions.
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Illustrative Example

Purely fictional company

No delta term

No forwards
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Illustrative Example, Results

Market risk of a fictional company

HF-Risk: In SST, estimated vola is doubled.

FX-Risk is important on a stand-alone basis, however it diversifies well.
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Conclusions

Look at the data Compare empirical distributions to modeled
distributions to understand the differences.

Time intervals Understand the passage from monthly to yearly events.

Detect optimistic modeling Normal distributions tend to underestimate
tail events also on a yearly basis.

Try various estimators MML has good asymptotic properties; LS is apt
to accurately estimate tails.

Inform investment committees on risk factors that are particularly
heavy tailed (e.g. Private Equity), or difficult to model.

Think about dependency modeling
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Appendix: MML-Estimators

Let x1 < x2 < . . . xN1 < 0 < xN1+1 < . . . < xN2 : Available observations
(monthly increments)
For j = 1, 2, we denote by fj the density of the sj -scaled t-distribution
with νj degrees of freedom, that is,

fj (νj , sj ; x) = Cνj ·
1

sj
(1 +

1

νj

x2

s2
j

)
−
νj +1

2

, x ∈ R.

Then the Maximum-Likelihood estimator (MML) of (νj , sj ), j = 1, 2, is
given by the solution of the optimization problems

j = 1, lower branch: argminν1,s1
−
∑N1

i=1 ln f1(ν1, s1; xi ),

j = 2, upper branch: argminν2,s2
−
∑N2

i=N1+1 ln f2(ν2, s2; xi ).
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Appendix: LS-Estimators

Let q(νj , . . .) : (0, 1)→ R be the quantile function of the t-distribution
with νj degrees of freedom.

Then the Least-square estimator (LS) of (νj , sj ), j = 1, 2, is given by
the (unique) solution of the optimization problems

j = 1, lower branch: argminν1,s1

∑N1

i=1[s1 · q(ν1, i/N2)− xi ]
2,

j = 2, upper branch: argminν2,s2

∑N2

i=N1+1[s2 · q(ν2, i/N2)− xi ]
2.

Least square optimization taking place on the x-axis (rather than on the
y -axis).
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