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Risk Measures



Risk assessment using risk measures

A risk measure ρ : X → R is a function mapping random variables to real

numbers.

Applications in finance and insurance:

. regulatory capital requirement

. capital allocation

. insurance pricing

. . . .
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VaR, RVAR, ES

For a random variable X ∼ FX and 0 < α < β < 1 we have

Value-at-Risk:

VaRα(X) = F−1X (α).

Range-Value-at-Risk:

RVaRα,β(X) =
1

β − α

∫ β

α

VaRu(X)du.

Expected Shortfall:

ESα(X) =
1

1− α

∫ 1

α

VaRu(X)du.
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Risk assessment through risk measures

Properties for risk assessment:

[Artzner et al., 1999, Föllmer & Schied, 2011]

law-invariant, monotone, convex, sub-additive, coherent, translation

invariant, ...

Statistical properties:

[Gneiting, 2011, Krätschmer et al., 2014, Pesenti et al., 2016]

elicitable, backtestable, robust, ...

Risk assessment under uncertainty:
[Embrechts et al., 2015, Puccetti & Rüschendorf, 2012, Wang & Wang, 2011]

bounds for risk measures, worst-case risk measures, aggregation robustness,

rearrangement algorithm, joint mixability, ...
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Distributional uncertainty



Distributional uncertainty

Risk assessment in the presence of uncertainty:

- distributional uncertainty

- parameter uncertainty

- distributional misspecifications

- data collection

What are the possible values of

ρ(X), if X ∈M,

for an uncertainty set M.

Risk Bounds under Uncertainty and Model Risk Silvana Pesenti 5



Distributional uncertainty

Best-case and worst-case risk measures

ρ(X) = inf
X∈M

ρ(X), ρ(X) = sup
X∈M

ρ(X).

Risk measure bounds:

ρ(X) ∈
(
ρ(X), ρ(X)

)

Risk Bounds under Uncertainty and Model Risk Silvana Pesenti 6



VaR and ES

VaRα V̂aRα VaRα

ESα ÊSα ESα
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Uncertainty set

An uncertainty set M describes the knowledge about the uncertainty in

the distribution of X.

For example: “(nearly) complete uncertainty”

M(µ, σ) =
{
X | E(X) = µ,Var(X) = σ2

}
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Bounds with moment constraints

VaRα(X) bounds[
µ− σ

√
1− α
α

, µ+ σ

√
α

1− α

]

RVaRα,β(X) bounds[
µ− σ

√
1− β
β

, µ+ σ

√
α

1− α

]

ESα(X) bounds [
µ, µ+ σ

√
α

1− α

]

! extremely large ! independent of the distribution of X

! worst-case distribution is a two point distribution.
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Bounds with moment constraints

ρ(X) ρ(X) ρ(X)

Normal Log-Normal

VaR0.975 9.68 13.92 14.46 22.49

RVaR0.95,0.99 9.80 13.82 14.33 18.72

ES0.95 10.00 14.13 14.79 18.72

X has mean 10 and standard deviation 2.

⇒ For any random variable, with mean = 10 and sd = 2, its VaR at level

0.975 belongs to (9.68, 22.49).
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VaR bounds; with mean 10 and sd 2
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% of VaR bounds; with mean 10 and sd 2

Risk Bounds under Uncertainty and Model Risk Silvana Pesenti 12



ES bounds; with mean 10 and sd 2
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% of ES bounds; with mean 10 and sd 2
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Towards better bounds

Towards better bounds:

⇒ Include further knowledge to the uncertainty set M.

I higher moments [Cornilly et al., 2018]

I symmetric distributions [Zhu & Shao, 2018, Li et al., 2018]

I unimodal distributions [Li et al., 2018].

⇒ only marginal improvements

⇒ worst-case distribution is a two point distribution

I Wasserstein ball [Pesenti et al., 2020]
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Wasserstein uncertainty set

Let X0 ∼ F0 be a reference distribution with mean µ and standard

deviation σ > 0.

Mδ(µ, σ) =
{
X | E(X) = µ,Var(X) = σ2, d̂W (FX , F0)

2 ≤ δ
}
,

where d̂W is the “suitably” normalised Wasserstein distance of order 2

such that 0 ≤ δ ≤ 1.
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Wasserstein distance

dW (F,G)2 =

∫
R

(
F (x)−G(x)

)2
dx,

=

∫ 1

0

(
F−1(u)−G−1(u)

)2
du,

= inf
{
E
(
(X − Y )2

)
| X ∼ F, Y ∼ G

}
.

Applications: Optimal transport (1781), machine learning, robust

statistics, neural networks, Wasserstein Auto-Encoders, image

recognition...
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Wasserstein distance
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Wasserstein distance
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Wasserstein bound for ES



Wasserstein bound for ES

For a reference distribution X0 ∼ F0 and tolerance distance δ ∈ [0, 1]:

[
inf

X∈Mδ(µ,σ)
ESα(X), sup

X∈Mδ(µ,σ)

ESα(X)

]

with uncertainty set

Mδ(µ, σ) =
{
X | E(X) = µ,Var(X) = σ2, d̂W (FX , F0)

2 ≤ δ
}
.
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Wasserstein bound for ES

ESα(X) bounds with reference X0 and tolerance distance δ:

 µ+ σ cα,λ(X0), µ+ σ
α

1−α + λ(ESα(X0)− µ)√
α

1−α + λ(ESα(X0)− µ) + λ2σ2

 ,

where λ is inverse proportional to δ:

• δ = 0 corresponds to λ = +∞ → [ESα(X0),ESα(X0)].

• δ = 1 corresponds to λ = 0 →
[
µ, µ+ σ

√
α

1−α

]
.
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Upper bound for ES



Wasserstein upper bound for ES
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Wasserstein upper bound for ES
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Wasserstein upper bound for ES
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Wasserstein upper bound for ES
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Wasserstein worst-case quantile for ES

The distribution which attains the upper bound, has quantile function

F−1(u) = a+ b

(
1

1− α
1(α,1] + λF−10 (u)

)
,

where a, b are such that the mean and standard deviation constraint is

fulfilled.

Risk Bounds under Uncertainty and Model Risk Silvana Pesenti 26



Wasserstein worst-case quantile for ES
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Wasserstein worst-case quantile for ES
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Wasserstein worst-case quantile for ES
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Wasserstein worst-case quantile for ES
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Lower and upper bound for ES



Wasserstein lower bound for ES
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Wasserstein best- and worst-case quantiles for ES

The quantile distributions which attain the ES0.8 lower (dashed) and

upper (solid) bounds:
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Wasserstein bounds in practise



Recipe for deriving Wasserstein bounds

1. Choose reference distribution (empirical distribution) with sample

mean and sample sd.

2. Choose tolerance distance δ ∈ [0, 1].

δ � 1: low uncertainty;

δ ≈ 1: high uncertainty

3. Calculate λ (inverse proportional to δ).

4. Calculate bounds of ESα.

5. Calculate distribution which attains the bound.
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Wasserstein tolerance distance

How to choose the Wasserstein tolerance distance?

a) Distributional uncertainty, expert opinion

b) Model uncertainty, data driven uncertainty set
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Wasserstein tolerance distance - distributional uncertainty

a) Distributional uncertainty

Assume we have uncertainty in some quantiles:

{VaR1
α1
, . . . ,VaRK1

α1
, . . . ,VaR1

αM , . . . ,VaRKMαM }

Reason:

parameter uncertainty, expert opinions, additional data sources, ...

⇒ Choose δ such that the uncertainty set Mδ(µ, σ) is the smallest set

containing all quantiles.
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Wasserstein tolerance distance - distributional uncertainty

Reference distribution X0 ∼ N (10, 22).

% uncertainty

VaR0.8, VaR0.9 δ ES0.9 ES0.9 % bounds

1% 0.013 13.03 14.00 7%

3% 0.030 12.76 14.24 10%

5% 0.061 12.47 14.51 15%

10% 0.209 11.73 15.19 25%
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Wasserstein tolerance distance - distributional uncertainty

Reference distribution X0 ∼ N (10, 22).

1% uncertainty in VaR0.8, VaR0.9.

α δ ESα ESα % bounds

0.9 0.01 13.03 14.00 7%

0.95 0.01 13.36 14.91 11%

0.97 0.01 13.52 15.61 14%

0.975 0.01 13.56 15.87 16%
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Wasserstein tolerance distance - model uncertainty

b) Model uncertainty

• F0 is the true unknown distribution.

• Let FN be the empirical distribution

• Assume the sample mean and sd converge to the mean and sd of F0

Choose δ such that the true distribution lies in the uncertainty set with

probability 1− β. That is

P
(
d̂W (FN , F ) ≤ δ

)
≥ 1− β.
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Wasserstein tolerance distance - model uncertainty

Assume that, for some α > 2,

E(eX
α

) <∞.

Then,

δ ≈
√

log(C/β)

N
,

where N the sample size and C ≈ 2(E(eX
α

) + E(e(X/2)
α

)− 1).
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Wasserstein tolerance distance - model uncertainty

Reference distribution X0 ∼ N (10, 22).

β N δ

1% 106 0.063

5% 106 0.062

10% 106 0.061

β N δ % ES0.9 bounds

5% 105 0.066 15%

5% 106 0.020 8%

5% 107 0.007 5%
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Wasserstein bounds for VaR



RVaR, VaR

Recall that

RVaRα,β(X) =
1

β − α

∫ β

α

VaRu(X)du.

The methodology for the ES Wasserstein bounds also apply to the RVaR.

Moreover, we have

lim
α′↑α

RVaRα′,α = VaRα.

Thus, we obtain Wasserstein bounds for the VAR.

⇒ Future work: assessment of numerical stability of VaR bounds.
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Summary

. Derived bounds for the ES under Wasserstein uncertainty.

. Wasserstein uncertainty includes distribution with same mean and sd

and which are close in the Wasserstein distance.

. Bounds depend on the reference distribution.

. Ways of choosing the Wasserstein tolerance distance, via model and

distributional uncertainty.
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Extension and future work

1. Easily extendable to uncertainty in the mean and standard deviation,

e.g. (µ, σ) ∈ [µ, µ]× [σ, σ]

2. Applicable to any risk measure of the form:

ρ(X) =

∫ 1

0

F−1X (u)γ(u)du,

for a density γ on [0, 1].

⇒ For example to any spectral risk measure.
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Future work and discussion

3. Risk bounds for aggregate risks?

inf
X∈M

ρ

(
d∑
i=i

Xi

)
, sup

X∈M
ρ

(
d∑
i=i

Xi

)
.

a) non-linear aggregation g(X1, . . . , Xn)?

b) choice of M?

c) Incorporating uncertainty in the marginals X1, . . . Xn?

d) Incorporating uncertainty in the dependence (copula)?
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Thank you!
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Equation for λ, upper bound

For δ ∈ [0, 1], set

ε = 2σ2δ

1− ESα(X0)− µ
σ
√

α
1−α


Then, λ ∈ [0,∞) is the solution to

ε

2σ2
= 1− ESα(X0)− µ+ λσ2

σ
√

α
1−α + λ2σ2 + 2λ

(
ESα(X0)− µ

) .
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Wasserstein tolerance distance - distributional uncertainty

The non-normalised Wasserstein tolerance distance is given by

ε = max
i=1,...,M

max
k=1,...,K

∫ 1

αi

(
VaRkαi − F

−1
0 (u)

)2
+
du.
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