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1 Basics of claim reserving 1I._1 Introduction a_nd motivation
1.1.1 General insurance (1/2)

All starts with:

An insured (policyholder) pays some premium to an insurer in order to transfer the (more or less
directly related) significant monetary consequences (loss) of a randomly incurring future
event (risk).

v

Examples 1.1
insurance insured loss
Motor Liability (MTPL) | loss to a 3™ person caused by a self-inflicted car accident
General Liability (GL) loss to a 3™ person caused by the policyholder, except car accidents
Fire (Property) policyholders loss to household and property caused by fire
Health policyholders loss caused by illness
Pension policyholders loss, because of a long life
Life ‘another persons loss' caused by the death of the insured

Life insurance
The insured risk depends directly on the life of the insured.

General (or Non-Life or P&C for property and casualty) insurance

The insured risk does not depends directly on the life of the insured.
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Important words of the definition:

e transfer: therefore no self-insurance

e random future: not (completely) known, random in timing or amount
e loss: no lotteries and no betting

e significant loss: therefore no service contract



1 Basics of claim reserving 1I._1 Introduction a_nd motivation
1.1.1 General insurance (2/2)

Reinsurance, Health and Accident
There are types of insurances which have components of both, Life and

General insurance.
The classification depends on the regulator, the company and the
accounting standard.

Switzerland
Life (and Pensions), Non-Life (General insurance or P&C), Health and
Reinsurance )

IFRS 17

An insurance contract is

‘a contract under which one party (the issuer) accepts significant insurance
risk from another party (the policyholder) by agreeing to compensate the
policyholder if a specified uncertain future event (the insured event)
adversely affects the policyholder’

v
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1 Basics of claim reserving 1I._1 Introduct_ion and motivation
1.1.2 Claim reserves (1/2)

Problem 1.2
At the end of a business year an insurer usually knows all its contracts
but not all the corresponding claims and ultimate losses. Reasons may

be:
1. Not yet materialised or detected claims. For instance, product
liability insurance.
2. Not yet reported claims. For instance, time delay, because of
holidays.
3. Unknown future payments for not yet finally settled claims.

..payments

] 3T 4 1T 7T - Tt n TntIl Years
“ accident reported closed reopened finally closed
contract signed
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e Strictly taken: From the point in time where the insurance contract is in force (or the
insurance company has send a binding offer), the insurer has to account for all potential
claims. The precise rules for this depend on regulation and accounting standard.



1 Basics of claim reserving 1I._1 Introduct_ion and motivation
1.1.2 Claim reserves (2/2)

A exapmles of the development of payments in percent of the ultimate

100 %

Payment pattern

depend strongly on the underlying risk (exposure). Therefore, in practice an
actuary not only have to look at number based statistics, but also have to

understand the type of the underlying exposure.
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e red may be Motor Hull

o blue is typical for Garantie DA©cennale in France or Spain

e gray may be madatory accident insurance in Switzerland



1 Basics of claim reserving 1I._1 Introduction and motiyation
1.1.3 Relevance of claim reserves (1/2)

Claim reserves are often the most important part of the balance sheet of a
general insurer. Moreover, a small changes in the estimate of claim reserves
may make the difference between an annual profit or loss.

balance sheet Some examples*:
equity insurer equity | gain | reserves %rices
other liabilities Zurich $210| $3.0 $ 827 3.6%
Allianz €314 | €35 € 78.0 45%
assets ] Swiss Re $ 11.7 $ 3.0 $ 495 61%
claimreserves | Munich Re | €14.1 | €26 | €450 | 58%

*Amounts (in billion) representing only the general insurance part of the
company and are taken from the annual reports of 2012. The amounts are
not entirely comparable, because the separation of the general insurance
business from the other parts may be different from company to company.
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1 Basics of claim reserving 1I._1 Introduction and motiyation
1.1.3 Relevance of claim reserves (2/2)

Example: Converium AG

Converium AG was one of the largest reinsurers in the world. At
20t July 2004 the company issued a profit warning caused by a
strengthening of the claim reserves of the US general liability portfolio by
$ 400 million.
Consequences:

o loss of 35% of equity

« an immediate deep plunge of over 50 % (about 70 % until

October 2004) of the stock price
« rating downgrade from A to BBB+ by Standard & Poors

« unfriendly takeover by SCOR in 2007 (although Converium did make
profit again and got its A rating back)
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1 Basics of claim reserving 1.1 Introduction and motivation
L 1.1.4 Purposes of (stochastic) loss reserving

Loss reserving

is an integral part of many processes. For instance:
o annual closings
e pricing
o forecasts

« measuring risks, like under IFRS 17, Solvency Il and the Swiss Solvency
Test (SST)

« modelling the value of customers
[ ]

The resulting estimates for claim reserves depend on its purpose. For instance,
loss reserving in the context of annual closings deals with the past, whereas
in the context of pricing we are interested in the future. Moreover, in pricing
one usually looks at a more detailed split in subportfolios than during cIosings.)
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+ modeling the value of customers

“The resuling estimates forclaimreserves depend on its purpose. For instance,
loss eserving i the context of anmusl closings deals with the past, uhereas
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1 Basics of claim reserving 1.2 Basic terms and definitions
121 Terminology (1/2)

Definition 1.3 (Case reserves or outstanding)

Case reserves are estimates of the (undiscounted) sum of all future payments made by claim
managers on a claim by claim basis.

v

Definition 1.4 (Claim reserves or (technical) provisions)

Claim reserves are the estimates of the (undiscounted) sum of all future payments for claims
(of a portfolio) that have already happened.

claim reserves = case reserves + IBNR

Definition 1.5 (Incurred but not yet reported (IBNyR) reserves)

IBNyR reserves are the part of the claim reserves that corresponds to not yet reported claims.

4

Definition 1.6 (Incurred but not enough reserved (IBNeR) reserves)

IBNeR reserves are the difference between the claim reserves for claims known to the insurer
and the corresponding case reserves.

Definition 1.7 (IBNR or IBN(e/y)R)

IBNR reserves = IBNeR + IBNyR

y
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Provided we take a positive sign for claim reserves IBNyR are non-negative, whereas IBNeR may
be positive or negative.

Usually, we will not look at discounted reserves, because discounting (and inflation) disturbs
the development of claims and is dealt with separately, i.e. first get undiscounted figures and
corresponding payment patterns and then discount.



1 Basics of claim reserving 1.2 Basic terms and definitions
121 Terminology (2/2)

Definition 1.8 (Incurred (losses) or reported amounts)
incurred = payments + case reserves

Definition 1.9 (Ultimate)

ultimate = payments + claim reserves
= incurred + IBNR
IBNyR
. IBNR IBNR
claim reserves IBNeR
ultimate — — | casereserves | — | case reserves [ —
incurred
payments payments payments

Remarks 1.10

o Payments are often called paid (losses).

o The naming is not consistent within the actuarial world. For instance, actuaries often
understand under IBNR only the IBNyR part.

o Precise definitions depend on the accounting standard. For instance, under IFRS 17
one has to discount the cash flows and one has to take the inception date (or the
begin of the coverage period) instead of the accident date.

4

©R. Dahms (ETH Zurich, Spring 2021) Stochastic Reservin 24 Feb 2021 9 / 240



2021-04-26

Stochastic Reserving
I—Basics of claim reserving

Basic terms and definitions

Definition 18 (Incurred (lsss) or reported ameunis)
incurred — payments - case rsees

Defintion 1.9 (Ultmte)

uimate = payments + cim resenves




1 Basics of claim reserving

Main objects

1.2 Basic terms and definitions
122 Triangles (trapezoids) (1/2)

of reserving are claim development triangles (trapezoids), containing the development of pay-
ments (or other claim properties) per accident period for a whole portfolio.

development period

0 k
el
kel
I
[0}
c 5
-
i
5 i,k I
B
(O]
[}
(o]
calendar-
period
I+—

We assume that I > J. If I = J we have a triangle
and otherwise a trapezoid, but for simplicity we will
call it triangle anyway.

rows = accident (or origin) periods

columns = development periods

diagonals = calendar periods

S, ), are the payments during development period &
for claims happened in accident period <.

If more than one portfolio is involved we add an
additional upper index m to indicate the triangle.
Payments could be replaced by other claim
properties like

* changes of reported amounts (= incremental incurred)
* number of newly reported claims

* payments on just getting large claims
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Some actuaries look at those numbers from a different angel:

e accident periods or development periods decreasing instead of increasing
e permutation of accident, development and calendar periods

Moreover, the different kinds of periods have not to be based on the same single unit, like
months, quarters or years. For instance, sometimes one looks at accident years and development
months.



1 Basics of claim reserving 1.2 Basic terms and definitions
L 1.2.2 Triangles (trapezoids)

Reserving means

to project the future of the triangles in order to get full rectangles.

(2/2)

development period

o D" is the o-algebra of all information up to calender

period n:

o D! is the known part of the triangles.
o The unknown future of the triangles is:

D= (S 0<m< M, 0<i<I,0<k<JA(n—1i)

{Sm:0<m<M 0<k<J I-k<i<I}

We assume that there is no development after
development period J. That means we assume that there

is no tail development.

ultimate of accident period i =

0 J
’D’n
el
.2
g n
£ T
B
[}
(9]
(o]
calendar-
period
I

claim reserves of accident period i =

J

> St

k=0

J
m
ik

k=I+1—1i
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Prp—p——

On a diagonlal n we have for all accident and development periods i and k:
n=1i+k,

in particular on the last known diagonal I we have I = k + 4.



1 Basics of claim reserving 1.2 Basic terms and definitions
L 1.2.3 Stochastic reserving and Best Estimate (1/9)

Definition 1.11 (Stochastic loss reserving)

We call a reserving method a stochastic reserving method if it is based on a stochastic
model.

W

Remark 1.12

o Some actuaries call reserving methods that are based on simulations stochastic,
even if they are not based on a stochastic model.

 Since we have a stochastic model, we usually expect beside the estimate of
claim reserves some estimate of the corresponding uncertainties.

Types of stochastic reserving methods
We differentiate between

o distribution based reserving methods, which make explicit assumptions on
the distribution of claim properties Tk or related objects.

o distribution free reserving methods, which only makes assumptions on
moments of the distribution of claim properties e or related objects.
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1 Basics of claim reserving 1I._2 Basic terms an_d definit_ions :
1.2.3 Stochastic reserving and Best Estimate (2/9)

Definition 1.13 (Best Estimate)

The Swiss regulator defines (translation)

... Best Estimate reserves are the conditional unbiased estimator of the
conditional expectation of all future (undiscounted) cash flows based on all
at the time of estimation available information . ..

FINMA Rundschreiben 2008/42 Riickstellungen Schadenversicherung
y

Mathematically that could be interpreted like:

J J
E|E|DY_sp|p'| —E)D sm|p™* D] =0.
=0 =0

estimated claims development result

estimated at time [
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A definition of Best Estimate reserves is not easily to find. We will look at the one of the
Swiss regulator.

At the first look this definition looks promising. But if you try to translate the phrase
‘conditional unbiased estimator of a conditional expectation’ into formulas you will get
problems.

One possibility is the following:

First we do not look at future cash flows (or reserves) but at the ultimate payments.
Since we know the already paid amounts, both views are equivalent, but ultimates are
mathematically easier to handle then reserves:

We start with the expectation of the ultimate payments conditioned on all currently
available information.

estimate

One year later we do the same, but of course with more available information.

The difference is the observed claims development result (CDR) at time I + 1.

Taking the expectation conditioned on all currently available information we expect to
get zero. From the business point of view this means, we assume that the CDR is zero
within the planing framework at time I. Or in other words, we don not expect any profit
or loss on already happened claims.



1 Basics of claim reserving 1.2 Basic terms and definitions
L 1.2.3 Stochastic reserving and Best Estimate (3/9)

Uncertainty of the Best Estimate

o The Holy Grail of loss reserving is to estimate the (D!-conditional) distribution of the
reserves. Unfortunately, this would require very restrictive model assumptions.

o At least we would like to estimate beside the Best Estimate the corresponding uncertainty.
Often this is done via the mean squared error of prediction (mse):

Definition 1.14 (mse)

The B-conditional mean square error of prediction of the estimate Y ofa square integrable random
variable Y is defined by R R
mses M = E[(Y - Y)z‘B].

In practice one often fits some distribution to the estimates of the first two centred moments ¥
and msep [Y] In loss reserving one often takes a log-normal distribution.

Lemma 1.15 (Random and parameter error)

The mean squared error of prediction can be split into random the parameter error:

N TN 2
msep [Y] = VarlY|B] + (E[Y - Y‘BD .

random error parameter error

4
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A proof of the split of the mse will be given in Lecture 3.



1 Basics of claim reserving 1.2 Basic terms and definitions
L 1.2.3 Stochastic reserving and Best Estimate (4/9)

Definition 1.16 (Ultimate uncertainty)
The ultimate uncertainty of the estimated ultimate (or reserves) of accident

period i is defined by

7 2

J
mseps (> S| =E[[ D (Six—5ip) | |DF

k=0 k=0

and analogously we define the ultimate uncertainty of the whole ultimate (or
reserves) by
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1 Basics of claim reserving 1 Basic terms and definitions
L 1.2.3 Stochastic reserving and Best Estimate (5/9)

Definition 1.17 (CDR)

The true claims development result (true CDR) of accident period i at time I+ 1 is the difference
of the expected ultimates conditioned on all information at time I and I + 1, i.e.:

J J
CDRI = E LZ Sik Dl} -E LZ Sik D”l} :
=0 =0

The (observed) claims development result (CDR) of accident period i at time I + 1 is the
difference of the two corresponding estimates. If necessary we will denote the time of estimation
by an additional upper index:

J J
—TI+1 ~ ~
COR, =3 (8L, -8t = Z Sl — <ZI+1—i+ > Sff)-

k=0 k=I+1—i k=I+2—i

The true and the observed CDR of the aggregation of all accident periods are defined by:

I
—TI+1 ——TI+1
CDRI*! .= § :CDRI“ and  CDR =Y CDR;

o A negative CDR corresponds to a loss and a positive CDR corresponds to a profit.
o If we have a Best Estimate then the estimate of the D’-conditional expectation of the
observed CDR equals zero.
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For the true CDR we have
J J
E[CDRfH’DI]:E El > S|~ [Sispas+E| DD Sk [P [P =0
k=I+1—3 k=I+2—i
But for the observed CDR it depends on how do we estimate. Best Estimate is implicitly defined

by
——I+1
* } 0.

[CDR




1 Basics of claim reserving 1.2 Basic terms and definitions
L 1.2.3 Stochastic reserving and Best Estimate (6/9)

Uncertainty of the CDR

As we have seen in the example of Converium it is very important (in particular for the CFO,
Solvency Il or SST) to have some estimate of the uncertainty of the claims development result.
Often this is done via some kind of mean squared error of prediction:

Definition 1.18 (Solvency uncertainty)

The solvency uncertainty of the estimated ultimate (or reserves) of accident period i is defined

by
2
mseqpr {CDRZH} —E KCDRT.”1 - 0) DI}

and analogously we define the solvency uncertainty of the aggregated ultimate (or reserves) by
11 41 2
mseg|p1 [CDR }:: E (CDR —0) D.
Remark 1.19

Since in practice the deviation of the observed CDR from zero is more important than its deviation
from the true CDR, we take the difference between the observed CDR and zero instead of the
difference between the observed CDR and the true CDR.

v
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e SST means Swiss Solvency Test

e |t is also possible to look at the deviation of the observed CDR from the true CDR. The
corresponding uncertainty will always be less or equal to the one we are looking at.



1 Basics of claim reserving 1.2 Basic terms and definitions
L 1.2.3 Stochastic reserving and Best Estimate (7/9)

Best Estimate reserves, ultimate and solvency uncertainty

will be the main objects of interest for these lectures. When estimating them you
should always keep in mind:

o Best Estimate reserves can be compared with the real world. We only have
to wait some (maybe very long) time. Moreover, observing the CDR and
other statistics we can learn from the past in order to get better estimates
in the future.

o But uncertainties cannot be compared with observations from the real
world. They will always be a result of a model. Therefore, we cannot learn
from the past in order to get better estimates in the future (we even
cannot determine if some estimate is better than another).

» Best Estimate reserves and the corresponding uncertainties are like position
and impulse in physics:

You cannot (should not) measure both simultaneously!

For instance, in order to get a Best Estimate you may apply some expert
judgement, which cannot be reflected in the estimation of uncertainties by
the underlying model.
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and impuls in physics:
You cannot (should not) measure both simultaneously!
For instance, i order to get 2 Best Estimte you may apply some expert
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1 Basics of claim reserving 1.2 Basic terms and definitions
L 1.2.3 Stochastic reserving and Best Estimate

(8/9)
Conditional expectations and intuition
Let assume a mother has two children.
a) What (approximately) is the probability that she has two girls?
1 1 1
0= 0= O -
2 3 4
b) Assume in addition that she has at least one daughter.
What (approximately) is the probability that she has two girls?
1 1 1
(e = -
2 3 4
c) Assume in addition that one daughter was born on a Monday.
What (approximately) is the probability that she has two girls?
1 1 1
O = 0= O -
2 3 4 )
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) Assume in sddtion that one daughter ws borm on 3 Monday
What (apprasimately) s th probabity tha she has two girls?

1 ! '
o3 O3 o1

e In general insurance and in particular in reserving conditional probabilities and
expectations play an important roll. But they are often not easy to understand.

e In order to illustrate this, let have a look at an easy exercise.

e Be careful: The human brain is not build for (conditional) probabilities and expectations.



1 Basics of claim reserving 1.2 Basic terms and definitions
L 1.2.3 Stochastic reserving and Best Estimate (9/9)

Reserving in the real world:

MCL, PIC, CLM CC BF, CLRM
ECLRM
underwriter P

e MCL Munich-Chain-Ladder-Method
marked

PIC Paid-Incurred-Chain-Claims-
news Method
CLM Chain-Ladder-Method
CC Cape-Cod-Method
CLRM Complementary-Loss-Ratio-
Method
ECLRM Extended-Complementary-
Loss-Ratio-Method
BFM Bornhuetter-Ferguson-Method
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Basic terms and definitions

On the one hand there are information. If actuaries speak of reserving they often thinks
in triangles or vectors, containing the usual candidates like payments, reported amounts
and number of reported claims, or more exotic things like payments just before closing a
claim.

But often we forget that there are a lot of other very important sources of information,
which even may not be numerical.

On the other hand there are a lot of reserving methods which may help us to get a Best
Estimate:

Most of them are based on one triangle only, like Chain-Ladder or Cape Code.

Others combine a triangle and a vector, like the Complementary-Loss-Ratio-Method and
the Bornhuetter-Fergueson-Method.

In recent years some methods, which combine several (in most cases two) triangles, have
been propagated. For instance, Munich-Chain-Ladder,
Extended-Complementary-Loss-Ratio-Method and Paid-Incurred-Chain-Claims-Method.
But at the end the actuary has to include all the other information in order to get his or
hers Best Estimate. And to be honest, often this has more to do with fortune telling
than with mathematics or statistics.



1 Basics of claim reserving 1.3 Literature and software (1/2)

Literature

[1] Claims Reserving Manual.
Institute of Actuaries, 2nd revised edition edition, 11 1997.

[2] Heinz Bauer.
Probability theory. Translated from the German by Robert B. Burckel.
Berlin: de Gruyter, 1996.

[3] Heinz Bauer.

Measure and integration theory. Transl. from the German by Robert B. Burckel.
Berlin: de Gruyter, 2001.

Schmidt, Klaus D.
A Bibliography on Loss Reserving (permanent update).
url: http://www.math.tu-dresden.de/sto/schmidt/dsvm /reserve.pdf.

[4

[5

Gregory C. Taylor.

Loss reserving : an actuarial perspective.

Huebner international series on risk, insurance, and economic security. Kluwer Academic, Boston
[u.a.], 2000.

Includes bibliographical references and index.

[6] Mario V. Wiithrich and Michael Merz.
Stochastic claims reserving methods in insurance.
Hoboken, NJ: John Wiley & Sons, 2008.
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1 Basics of claim reserving 1.3 Literature and software (2/2)

o Free software:
* R (www.cran.r-project.org), in particular the packages actuar and
ChainLadder.
* LSRM Tools (http://sourceforge.net/projects/Isrmtools/)
o Commercial software:
* IBNRS by Addactis
* CROS by Deloitte (not for sale any more)
* ResQ by Towers Watson (almost no further development)

*
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2.1 How does the Chain-Ladder method work
L 2.1.1 Chain-Ladder method without stochastic (1/2)
Basic idea behind the Chain-Ladder method

The Chain-Ladder method is based on a single triangle. Originally it was
formulated in terms of the cumulative payments

instead of the payments S, J, during the development period k.
The Chain-Ladder method is based on the idea that:

o cumulative payments of the next development period are approximately
proportional to the cumulative payments of the current period, i.e.

Cipr1 = [1Cig; and

(2

o accident period are independent.

In particular that means that all accident periods are comparable with respect
to their development.

4
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Basic idea behind the Chain-Ladder method
The Chain-Ladder method is based on a singl triangle. Originaly ¢ was
formulated in terms of the cumulative payments

instead of the payments ., during the development period k.
The Chan-Ladder method s based on the idea that
« comulative payments of the next development. period sre approximately
proportonal to the cumulative payments o the current period, e

Copor = Oyt and

« accident period are independent

n: accident periods respect
o thei development.



2 Chain-Ladder-Method (CLM) 2.1 How does the Chain-Ladder method work
L 2.1.1 Chain-Ladder method without stochastic

(2/2)
Simple example
Nk 0 1 2 3 4 | ultimate reserves
0 1.9/190f1.6 3041.23801.9380 380 0= 380 — 380
1 2.2065/1.6 4241.25301.0530 530 0= 530 — 530
2 2.0405/1.66481.28101.0810 810 | 162= 810 — 648
3 9280j:.6 4481.25601.0560 560 | 280= 560 — 280
4 | 2002:.9400:.66401.28001.9800 800 | 600= s00 — 200
ﬁ 20 16 12 1.0 3080 1042
I-1
—~ orE e L C, C.
fo = RS — 20 = T =t
im0 2h=0Cho Cio
—— ~~—
f/.\l — 383+§€234+46161§ = 1.6 weight observed development factor
190+265+
n 380+530
fo= 3041424 =12
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2 Chain-Ladder-Method (CLM)

Definition 2.1 (o-algebras)

development period

accident period

calendar-
perio

2.1

L

H
2.

°

Bi ) is the o-algebra of all information of accident period i up

to development period k:

Bij:=0(8,;: 0<j<k)=0(C;;:0<j<k)

D; 1, is the o-algebra containing all information up to accident

ow does the Chain-Ladder method work
1.2 Stochastic behind the Chain-Ladder method

period i and development period k:

D=0 (S,;: 0<h<i, 0<j<k)=0(Bur:0<h<i)
D" is the o-algebra of all information up to calender period n:
D" =0 (9,: 0<i<I,0<k<JA(n—1i))

=0 (Cip: 0<i<I,0<k<JA(n—1))

I JA(n—i)

(U U 5

i=0 k=0

Dy, is the o-algebra of all information up to development

period k:

Dy i=0(8;;: 0<i<I,0<j<k)
=0 (C;;:0<i<I,0<j<k)

(Y]

Dy =0 (D" UDy)

(1/4)

4
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(G

The o-algebra D} is used in order to enable us to separate two arbitrary payments Si1 ks and
S,y ko With (i1, k1) # (i2, k2). That means, for all (i1, k1) # (i2, k2) there exists n and k such
that

(Siy k6, €Dk and Sisks & Dk) or (Siy 6, €Dk and Siy ke € Di).



2 Chain-Ladder-Method (CLM) 2 How does the Chain-Ladder method work
L 2.1.2 Stochastic behind the Chain-Ladder method

Assumption 2.A (Mack's Chain-Ladder method)

There exist development factors f,, and variance parameters o7 such that the

cumulative payments

k
CLk = Z S’L,]
§=0
satisfy
\CLM
i)~ E [Cz k+1|B } e
ii)C"'\/I Var[C’LkH‘Bi,k] = a,%Ci’k and

iii)C"'\/I accident periods are independent.

(2/4)
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o

If B; ;. are replaced by ’ijk then the last assumption about independence is not necessary, i
it is enough to assume

SCLM E[ zk+l‘DZ ]:fkczk
D Var[C; s D] = 020,

We will see later that we can replace the exposure C, ok on the right side by more arbitrary ex-
posures, which will leads to a wide class of reserving methods called Linear Stochastic Reserving
methods (LSRMs), see section 4.



2 Chain-Ladder-Method (CLM) 2.1 How does the Chain-Ladder method work
L 2.1.2 Stochastic behind the Chain-Ladder method (3/4)

Remark 2.2

Since accident periods are independent, B; ; could be replaced by Dy, D; i
or DitF.

k
Published by Thomas Mack in 1991, see [22]. But other actuaries have
used at least parts of the stochastic model before. The reserving method
itself is much older.
From a statistical point of view the estimation of development factors and
variance parameters is critical, because we have to estimate 2J parameters
by only J(I — Z51) observed development factors. Therefore, in practise
the reserving actuary has to include other information in order to overcome
the lack of observed data (over parametrised model).
The method cannot deal with incomplete triangles, where payments for
early calendar periods are missing and therefore the cumulative payments
for early accident periods are not complete (usually too small).
There are other stochastic models that lead to the same estimates of the
reserves. For instance, the over-dispersed Poisson model, see [11].
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2.1 How does the Chain-Ladder method work
L 2.1.2 Stochastic behind the Chain-Ladder method (4/4)
Corollary 2.3
o The parts i)™ and ii)*"™ of Assumption 2.A can be rewritten in
terms of the incremental payments S, ; :
Ne
i) E|:Si,k+1‘8i7k} =(fr — 1)Ci,k and

i) Var[S, | B = 2C, 1
Therefore, Assumption 2.A means that under the knowledge of B; , the
cumulative payments C, . are a good exposure for next periods

payments Si,k—i—l‘
o lterating part i)cuvI of Assumption 2.A we get
E[C:tn| Bik] = E[E[Cipsn|Bikin]| Bix]
= fk—',—n—lE[Ci,k-i-n—l'B’i,k]

= fk-i—n—l Tt fk:Ci,k:'
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Proof of i")tM.

E[Si,kJrl’Bi,k] = E[CZ-,;C+l - Ci’k‘Bi,k]

=E [Ci,kH ‘sz] - Cik

Ci,k is B;  measurable

= fkci,k _Ci,k
N —r
ii)CLM

Proof of ii")*tM:

Var[S, s |Bik | = Var[Ciigr = Cie[Bi]

Var[ci,kH]Bi,k]
[

C

ik is B;  measurable



2 Chain-Ladder-Method (CLM) 223 (R G e
L 2.2.1 Projection of the future development (1/3)

Lemma 2.4 (Chain-Ladder development factors)

Let Assumption 2.A be fulfilled and take arbitrary D! N Dj-measurable weights 0 < w; . < 1 with
o w;, =0ifC;; =0 and
o ZI 1=k w =1 ifC’z-,kyéO for at least one 0 < i <IT—1—k.

Then:
1. The weighted means Ik Cir
o= Wik (2.1)
i=0 i,k
c, . . .
of the observed development factors —5*=1 are Dy-conditional unbiased estimators of the

deve/opment factors f,. In order to shorten notation, we use here and in the following the

def/mtlon =0.
Moreover, the weights C-,k
Wi g = Iflik (22)
Yh=0  Chi

result in estimators fk with the smallest (Dy-conditional) variance of all estimators of the

form (2.1).
2. For all k and all k,, > ky—1 > ... > ko > 0 we have

Ik 522, L R
var[fi[Di] = Y == £ and E[fi Ty Fio| o] = FinFis oo
i=0 R

4
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e unbiased:

I—1—k c, I-1-k
I i k+1 _ _
E{fk‘Dk]:E ) Wik lv+ D= > Wi 4 =
i=0 ik i=0 ,
measurable with respect to D, j)cLM
e minimal variance: Var{fk} = E[Var{fk |Dkﬂ + Var{E {fk ‘Dkﬂ = E[Var{fk |Dkﬂ +0
I—-1—k —1—k —1—k
R Cinin , Var{CiykJrl‘Dk] , , 1
Var[fk|Dk}:V3r ) Wik TG Dpl= > WikT g2 Yk > Wik o
=0 i,k i=0 i,k i=0 ik
measurable with respect to D, and iii)CLM ii)CLM
Lagrange: minimize E{:(}*k w% & C; 4+ A (l — E{:(}*k w, k)
- ! i,k - !
1 A ’ 2 C.
e=2wip——-A = w =0 and A= p—— = Wi = e ——
Ow; g Cik 2 Yico  Cig 2hoo  Cuk
— ——
I—-1—k
Yico = wik=!

® uncorrelated: E[fknfkn_l . 'fk0|Dk0} = E{E[fkn Dkn}fkn_l ca 'fk0|Dk0}

= P €[ Fuy o P [PE] = = e g



2 Chain-Ladder-Method (CLM) 223 (R G e
L 2.2.1 Projection of the future development (2/3)

Estimator 2.5 (Chain-Ladder Ultimate)
Let Assumption 2.A be fulfilled. Then the estimates

~

Cig = fo—1 - J1=Ci1—i

are Dr_;-conditional unbiased estimators of C, ., for I —i < k < J.
In order to shorten notation, we define

Ci,k = Ci,k’

for0 <k<I—i.

Theorem 2.6 (Chain-Ladder Best Estimate)

The Estimator 2.5 with the variance minimizing weights (2.2) satisfies the condition
of a Best Estimate, i.e.

glAarer _ A1 |pIl

Elcr - cl|p']=o,

where the additional upper index specifies the time of estimation.
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e Proof of unbiasedness:

E[ai,k|DI—i] = E[fk—l o FriCar

DI—i]

DI—i} = E[E[Ak—1|ka71}fk—2 co FroiCirg

Dlﬂ'}

= E[flc—lflc—2 EEIE S CF3y Ja) = f1—iCar

= E[Ci i |Pr]

s ) C. e} 3
e Best Estimate: f; 71 .=y F zf—’: I;kkk-,i—l
h=0 K,
C C
A1 T _ I—k.k pes T—k.k o
= E[fTYpi]=(1- =k & )fk+ e e L
2h=0Cnk 2h=0Chk
S[pI41] 1] 7T
= E[fTpi]=Fi
AI+1|pIT _ g[fl+1 FI41 I
E[Ci,J ‘D } = E[fJ—l s Frin—iCire1—4|P }
_ 1| T ] FI41 an I
- E[E[fJ71|’DJ71]fJ72 et fI+1—iCi,I+1—i D ]
_ 7 FI+1 FI+1 I
= E[fJ—lfsz s friiCirg1-4|P ]
_ _ s _
= =Fy lefiE[ciYHlf,i D }: Froi o Fraaosfi—iCir s

= E[G:,TJI‘DI} =fya-FliCig =Cf 5 = E[éz’l,J|DI]-
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L 2.2.1 Projection of the future development (3/3)

Chain-Ladder method in practice

o The Chain-Ladder method is probably the most popular reserving
method in general insurance and usually works fine for most of the
standard business, provided we take care of:

* The size of the portfolio (has to be large enough to get the law of large
numbers working).

* The homogeneity of the portfolio (for example exclude extraordinary large
or late claims).

o But it has problems with:

= Inflation or other diagonal effects, because such effects contradict the
assumption of independent accident periods.

* Too large or too small values at the last (known) diagonal. Because the
values of the last diagonal are realisations of random variables, this may
even happen if the portfolio satisfies Assumption 2.A perfectly.
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2 Chain-Ladder-Method (CLM)

2.3 Validation and examples (part 1 of 3)

L 2.3.1 Chain-Ladder method on Payments and on Incurred (1/4)
Example 2.7 (Chain-Ladder method on payments)
o We took the variance minimizing weights (2.2).
o For the calculation of the IBNR we used the corresponding incurred from Example 2.8.
Payments
AP\DP 0 1 2 3 4 5 6 7 8 9 Current  Ultimate  Reserves  IBN(e/y)R
0 1'216'632 1'347'072 1'786'877 2'281'606 2'656'224 2'909'307 3'283'388 3'587'549 3'754'403 3'921'258| 3921258 3'921'258 0 0
1 798'924 1'051'912 1'215'785 1'349'939 1'655'312 1'926'210 2'132'833 2'287'311 2'567°056 2'681'142| 2567056 2'681'142 114'086 -238'813
2 1'115'636 1'387'387 1'930'867 2'177'002 2'513'171 2'931'930 3'047'368 3'182'511 3'424'441 3'576'632| 3182511 3'576'632 394'121 318'805
3 1'052'161 1'321'206 1'700'132 1'971'303 2'298'349 2'645'113 3'003'425 3'214'137 3'458'471 3'612'174| 3003425 3'612'174 608'749 198'253
4 808'864 1'029'523 1'229'626 1'S90'338 1'842'662 2'150'351 2'368'112 2'534'252 2'726'902 2'848'093| 2150351 2'848'093 697'742  -450'905
5 1'016'862 1'251'420 1'698'052 2'105'143 2'385'339 2'732'771 3'009'512 3'220'652 3'465'481 3'619'496| 2385339 3'619'496 1'234'157 -82'931
6 948'312 1'108'791 1'315'524 1'487'577 1'730'732 1'982'819 2'183'614 2'336'811 2'514'452 2'626'200| 1487577 2'626'200 1'138'623 -1'077'913
7 917'530 1'082°426 1'484'405 1'769'095 2'058'267 2'358'060 2'596'855 2'779°043 2'990°302 3'123'198| 1484405 3'123'198 1'638'793 -1'284'899
8 1'001'238 1'376'124 1'775'689 2'116'244 2'462'160 2'820'781 3'106'435 3'324'374 3'577'088 3'736'063| 1376124 3'736'063 2'359'939 -396'694
9 841'930 1'039'196 1'340'932 1'598'106 1'859'328 2'130'146 2'345'860 2'510'439 2'701'279 2'821'331 841930 2'821'331 1'979'401  -224'045
Total| 22399976 32'565'588 10'165'612 -3'239'141
Observed development factors (ratios)
AP\DP 0->1 1->2 2->3 3->4 4->5 5->6 6->7 7->8 8->9
0 1.10721 1.32649 1.27687 1.16419 1.09528 1.12858 1.09264 1.04651 1.04444
1 1.31666 1.15579 1.11034 1.22621 1.16365 1.10727 1.07243 1.12230
2 1.24358 1.39173 1.12747 1.15442 1.16663 1.03937 1.04435
3 1.25571 1.28680 1.15950 1.16590 1.15088 1.13546
4 1.27280 1.19436 1.29335 1.15866 1.16698
5 1.23067 1.35690 1.23974 1.13310
3 1.16923 1.18645 1.13079
7 1.17972 1.37137
8 1.37442
Estimated development factors
0->1 1->2 2->3 3->4 4->5 5->6 6->7 7->8 8->9
1.23430 1.29036 1.19179 1.16346 1.14565 1.10127 1.07016 1.07602 1.04444
cum. 3.351028 2.714917 2.104007 1.765421 1.517393 1.324478 1.202685 1.12384 1.04444
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2 Chain-Ladder-Method (CLM)

2.3 Validation and examples (part 1 of 3)
L 2.3.1 Chain-Ladder method on Payments and on Incurred

Example 2.8 (Chain-Ladder method on incurred losses)

o We took the variance minimizing weights (2.2).
o For the calculation of the reserves we used the corresponding payments from Example 2.7.

(2/4)

Incurred
apop| 0 1 2 3 4 5 3 7 8 9 Current _Ultimate _ Reserves _IBN(e/y)R
0 [ '362'115 5217'243 4'754'000 4'381'677 4'136'883 4'004'140 4'018'736 2'971'591 2'041'391 3'021'258| 3021258 3'921'258 0 0
1 | 2640443 #4'643'860 3'869'054 3'248'558 3'102002 3'010'080 2'076'064 2'046'041 2'910'055 2'905'040| 2019955 2'005'040  337'984  -14'015
2 | 2'879'697 4'785'531 4'045'448 3467'822 3'377'540 3'341'934 3'283'928 3'257'827 3'230'899 3214'395| 3257827 3'214'305  31'884 43432
3 | 2'033'345 5'200'146 4'451'063 3'700'809 3'S53'301 3'469'S05 '413'921 3'379'021 2'351'084 3'334'861| 3413021 3'334'B61 331436 -79'060
4 | 2768181 4'658'933 3'936'455 3'512'735 3385120 3'208'008 3'243'821 3211'515 3'184'970 3'168'701| 3208998 3'168'701 1'018'350 -130'207
5 | 3'228'439 5271'304 4'484'946 3'798'384 3'702'427 3'632'746 3'571'987 3'536'413 3'507'182 3'489'267| 3702427 3'489'267 1'103'928 -213'160
6 | 2'927'033 5'067'768 4'066'526 3704113 3'S61'274 3'494'250 435'807 '401'589 2373473 2'356'241| 3704113 3'356'241 1'868'664 -347'872
7 | 3'083'429 4'790'944 4'408'097 3'842'969 3'694'775 3'625'239 3'S64'605 3'529'104 3'499'934 3'482'056| 4408097 3'482'056 1'997'651 -926'041
8 | 2'761'163 4'132'757 3'538'198 3'084'593 2'965'643 2'909'829 2'861'161 2'832'666 2'809'252 2'794'903| 4132757 2'794'903 1'418'779 -1'337'854
o | 3'045'376 5'025'345 4302373 3750799 3'606'160 3'538'201 3'479'L12 3'444'462 3'415'991 2'308'542| 3045376 3'308'542 2'556'612 353166
Total| 35804729 33'065'263 10'665'287 -2'739'466
Observed development factors (ratios)
AP\DP  0->1 1->2 253 3->4 4->5 5-6 6->7 7->8 8->9
0 155177  0.91138 092151 0.94413 0.98967 0.98158 0.98827 0.99240  0.99489
1 175874  0.83335  0.83943 0.95489 0.97356 098546 0.09021  0.99084
2 1.66182 0.84535 0.85722 0.97397 0.98946 098264  0.99205
3 1.80652 0.84013  0.83128 0.96017 0.97639  0.98398
4 168303 0.84493  0.89236  0.96367  0.97456
5 1.63277 0.85082  0.84692  0.97474
6 1.73137  0.80243  0.91088
7 1.55377  0.92009
8 1.49675
Estimated development factors
0>1 152 2>3 3->4 a->5 526 6>7 7->8 8->9
1.65016 0.85613 0.87180 0.96144 0.98118 098327 0.99004 0.99173  0.99489
cum. 1115068 0.67628 0.789923 0.906085 0.042427 0.960504 0.976842 0.986669  0.99489
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Comparison of the two results

o Both, payments and incurred losses, will eventually result in the same
ultimate. But the estimates are not the same! This gap is a systematic
problem of projecting payments and incurred losses independently of

o Although in total the difference is only 5% we have much larger
differences per accident period, which almost cancel each other.

2.3 Validation and examples (part 1 of 3)
L 2.3.1 Chain-Ladder method on Payments and on Incurred (3/4)

each other. For more information see [7].

”

AP\DP Chain-Ladder-Method on Payments Chain-Ladder-Method on Incurred Reserves: Incurred - Payments

Current Ultimate Reserves IBN(e/y)R Current Ultimate Reserves IBN(e/y)R Reserves in % of mean Reserves
0 3'921'258 3'921'258 0 0 3'921'258 3'921'258 0 0 0

1 2'567'056 2'681'142 114'086 -238'813 2'919'955 2'905'040 337'984 -14'915 223'897 99%

2 3'182'511 3'576'632 394'121 318'805 3'257'827 3'214'395 31'884 -43'432 -362'237 -170%

3 3'003'425 3'612'174 608'749 198'253 3'413'921 3'334'861 331'436 -79'060 -277'313 -59%

4 2'150'351 2'848'093 697'742 -450'905 3'298'998 3'168'701 1'018'350 -130'297 320'608 37%

5 2'385'339 3'619'496 1'234'157 -82'931 3'702'427 3'489'267 1'103'928 -213'160 -130'228 -11%

6 1'487'577 2'626'200 1'138'623  -1'077'913 3'704'113 3'356'241 1'868'664 -347'872 730'040 49%

7 1'484'405 3'123'198 1'638'793  -1'284'899 4'408'097 3'482'056 1'997'651 -926'041 358'857 20%

8 1'376'124 3'736'063 2'359'939 -396'694 4'132'757 2'794'903 1'418'779 -1'337'854 -941'160 -50%

9 841'930 2'821'331 1'979'401 -224'045 3'045'376 3'398'542 2'556'612 353'166 577'211 25%

Total| 22'399'976 32'565'588 10'165'612 -3'239'141 35'804'729 33'065'263  10'665'287 -2'739'466 499'676 5%
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Comparison of the two results
« Both, payments and incurred losse, wil eventualy reslt in the same
ultimate. But the estimats are not the same! This gap is 2 systematic
problem of projecting payments and incured losses independently of
each other. For mare information see [1]
+ Although in total the diffrence i only 5% we have much larger
ifferences per accident period, which almst cancel each other.




2 Chain-Ladder-Method (CLM) 2.3 Validation and examples (part 1 of 3)
L 2.3.1 Chain-Ladder method on Payments and on Incurred (4/4)

—m— 0 Payments
&1 Payments

—+—2 Payments
o 3Fayments

—a—4 Payments

2005000

—m— 5 Payments

—a— 6 Payments

—e—7 Payments

S o 8Fayments
—a— 9 Payments
—m—0lncurred
a1 Incurred
000000 ——2Incurred
o 3incured
—4— 4 Incurred
—m— 5 Incurred

S —a—6Incurred

—+— T Incurred
@ 8 Incurred

—a— 9 Incurred
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2 Chain-Ladder-Method (CLM) 2.3 Validation and examples (part 1 of 3)
L 2.3.2 How to validate the Chain-Ladder assumptions (1/6)
Validation of Chain-Ladder Assumption 2.A

o Since we only have very few data, any statistical validation of Assumption 2.A will
usually fail.

o There are some helpful statistics and graphical presentations that can be used to get
a feeling about which estimate we should trust more. In the following slides we will
show some of them.

o The most important information is the knowledge about the composition of the
underlying portfolio and the corresponding risks. We usually face the problem of
splitting up the portfolio in subportfolios, which are as homogeneous as possible, but
are not too small in order to get the law of large numbers working. Typical criteria
for separation are:

* Type of the risk insured.

= Type of claims, like property damage or bodily injury.

* Type of payments, like lump sums, annuities, salvage and subrogation or deductibles.

= Type of case reserves, like automatically generated, set individually by a normal claims
manager or set individually by an expert.

» Complexity of the claims, often the size of the claim may be a criteria for its complexity.

« Finally, actuaries have to use other information, too, in order to determine their
estimates.
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Validation of Chain-Lader Assumption 2.4

+ Since e only have ver fow dat, any statisica validation of Assumption 2 will
wualy .
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2 Chain-Ladder-Method (CLM) 2.3 Validation and examples (part 1 of 3)
L 2.3.2 How to validate the Chain-Ladder assumptions (2/6)

The projection of incurred is more stable and closer to the estimated ultimate than the projection
of payments. This may be an indication to trust it more.

—m— 0 Payments

&1 Payments

\ —e—2 Payments
3 o 3Payments
—a— 4 Payments
) —m— 5 Payments
S —a— 6 Payments

—+—7 Payments.

o 8 Payments

— —a— 9 Payments

_ e Expecied Payments
= ATy Uttmate
—m— 0 Incurred
= & 1 Incurred
—e— 2 Incurred
© 3 Incurred
—a— 4 Incurred
—m—5 Incurred

—&— 6 Incurred

——T7 Incurred
i 7 &8 Incurr=d
—a—8 Incurred

a—Expected Incumed
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2 Chain-Ladder-Method (CLM) 2.3 Validation and examples (part 1 of 3)
L 2.3.2 How to validate the Chain-Ladder assumptions (3/6)

Plot of residuals

Ci,,k,+1 _ f Ci,lc+1 _ f
The residuals are defined by Cin _ _Cik
—~ 1C &2
Var[ EELID } k
Ci,k: k Czk:
Payments Incurred
e Development Residuals o Development Residuals
20 2 15 H
12 oo 1.0 e ;
S 1 1 ; . 0.5 E f
0.5 N 4 95
0.0 . : e ' ;
o I . 0.5 H H i
1.0 : : Lo : !
4.5 . . : i -1.5 H
20 ; 20
*+ 2 3 4 5 8 7 8 9 *+ 2 3 4 5 8 7 8 9
Development Year Development Year

The residual plots are very similar, except that the incurred residuals look a bit more symmetric.J
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2.3 Validation and examples (part 1 of 3)
L 2.3.2 How to validate the Chain-Ladder assumptions (4/6)

2 Chain-Ladder-Method (CLM)

Backtesting step by step
Here we compare the observed values with the one step backwards projected estimate, i.e.

c Ci,k+1

i

Payments Incurred

Back testing (step by step) Back testing (step by step)
2 s i s . ; s s oo f 2 s . s . 7 s 5
Onctl  vaisen uson eSS 2siess rewa 2esior Sesis IS s Senss Okl SSZUS  s2vaes 7S GSSNe IeSE oo doiris Sersel Ssirsen 3srnss
Eucted | 1170166 ARHEE 1365710 2220145 2504205 2960605 3260420 4s9i6s 37Sea0s 391256 rpectod | 3513773 MEHARRTA 496103 wsi7ese wieosos doszsoi doigzio Swreden sesrsen swiiass
hewl 7 rosisiz rsves ruesm e o 2imes 2z 2ssr0ss thewl e sy siozoc: soism 2seces  Zsisan 2sissss
Gocted  sov0ss 11 967559, 1274503 IGHB 1766940 2024501 | 2229297 23859 2587056 Gveced 2609157 [NHBGHA S77e5 3206145 3022509 3026495 297309 2944291 2919955
Tl visen v iswss 2uron s ewmwn Sowa i Tl 2wew ana sowws Swmsn Swro Swis swem smven
Soecred 1067524 1317400 Zussea 257001 WA 2573wz 31525 Bowced 2850365 4759051 4069253 3547565 3073 365 3290598 3257627
Sl 1OwIs vmawe imoim iems 2nws rewin 3o Shctel  reas smwis swisss Srooss Swwi Swsses  3asen
Bowted 1077950 1330452 1716507 2046058 2380514 2727244 3005425 Gowcred 2905913 [NAGSHBE 4220757 Sesosis swss s4riess 3z
hcl s vowss vawers iwoms isves 215091 el 2esi sewsss Sewess Smovs swsas 329
Eecred | t5916 1045053 reszss reess 715031 Gowced 2839410 4essass doitdos 349715 3362277 3298995
Sl voiER vzie iewen 2wvie 2359 Shel | vnwes sz susesis S 370227
Eected [V 08015 1439568 1720257 2050215 2385955 Gowced 3326675 Suseuss awra e 3702427
nel sz viosrs iassa 1 Gactil 7o soerves sosssas  s7owiss
Bipected roastso rasrsy Gowced 3007470 495284 a2iwen 370013
Thctal | 3750 toss  dsedos Thctal 303305 70 240057
o 2012 1130381 1issios Goected 3120241 S84 4105097
Shctel 100128 1376128 Shctal 2761163 4132757
e 1110501 1376120 Eoected 2300465 4132757
nctel 841930 shctal 3085376
[ — Eected 3015376

Incurred seems to be a bit more stable, in particular for later development periods. J

©R. Dahms (ETH Zurich, Spring 2021)

(RSOl 3 Mar 2021 39 / 240



2021-04-26

Stochastic Reserving
L Chain-Ladder-Method (CLM)
I—Validation and examples (part 1 of 3)




2 Chain-Ladder-Method (CLM) 2.3 Validation and examples (part 1 of 3)
L 2.3.2 How to validate the Chain-Ladder assumptions (5/6)

Backtesting the ultimate

Here we compare the projected ultimate starting at development period k with the one starting
at development period I — i (the estimated ultimate), i.e.

J-1 J-1
Cik H fi owith Gy H I;=Ci.
=k

j=I—i

Payments Incurred

Back testing (current to ultimate) Back testing (current to ultimate)
wor o 3 2 3 . s . ’ . B wor o 3 2 B . s . 7 . B
OO EEETIN  sse0:  sorrose 4oa0si Iesan ysdsss2 AOIEN Iose  eannse o [ arEo[EEMEE 376003 o011 Iess0 yoaam  IMSE0 Isige Ionase Iease

1 verran| 2ussess zsssonfESEEN #sivs s ysesns 2swsn zeie 1 7oesol BU40SSE 0694 294346 294 290703 2907144 2076t 2905040
2 mesy vvesen OGS vesns yewser Jeam vessou  ysisen 3 ynyeso ;e usssel Y2l Yisioss 3awsen Ja07em  I2ienss

3 msen ysasses Is7os0 FasOisL yusTass Isoaasse  ewravs 3 aoasoEEER 3607 33 Iussn BT 3L

s | 2nosie rmsonlESEHE rsorenr meon  reion 4 omaor yisoms iowass ievews 102 yiseror

s | worsaisisn st ameus e s ewms ysersso Isave Iuvess e

. Beren 266200 6 3eurs veoram) saaen 3meas

7 sowess| Zsaes umiss 7 sesrcos|EEOOE  eszoss

. 3736063 .

s s

2821331 3308502

Again, incurred seems to be a bit more stable, in particular for later development periods. |
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2 Chain-Ladder-Method (CLM) 2.3 Validation and examples (part 1 of 3)
L 2.3.2 How to validate the Chain-Ladder assumptions (6/6)

Sensitivity to exclusion or inclusion of individual observed development factors

Here we compare the projected ultimate based on the selected development factors with the
projected ultimate if we exclude (or include) a observed development factor within the estimation

of fi.

Payments Incurred

o e e B T T T T
Chingeofreserves  0.45%  030%  434%  oo2% 2208 a7e% 293 OSSR Chingeofreserves  107%  221% 8% 212%  161%  os% o9 osex I saeK
St e T e T S o o o et W o W R e ST v, soon| e
T oo S M oo o I e e MM A, e S

S vicllirves B v e Do v i e

R ol S oo — [l S C R o e W o M

s o o S e .

L T e St oo IR

I e L A B

L O

Again, incurred seems to be a bit more stable, in particular for later development periods. J
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2 Chain-Ladder-Method (CLM) 2.3 Validation and examples (part 1 of 3)
L 2.3.2 How to validate the Chain-Ladder assumptions

2 Chain-Ladder-Method (CLM)

2.1 How does the Chain-Ladder method work
2.1.1 Chain-Ladder method without stochastic

2.1.2 Stochastic behind the Chain-Ladder method
2.2 Future development

2.2.1 Projection of the future development

2.3 Validation and examples (part 1 of 3)

2.3.1 Chain-Ladder method on Payments and on Incurred
2.3.2 How to validate the Chain-Ladder assumptions
2.4 Ultimate uncertainty

2.4.1 Ultimate uncertainty of accident period 4

2.4.2 Ultimate uncertainty of the aggregation of all accident periods
2.5 Validation and examples (part 2 of 3)

2.5.1 Ultimate uncertainty

2.6 Solvency uncertainty

2.6.1 Solvency uncertainty of a single accident period
2.6.2 Solvency uncertainty of all accident periods
2.6.3 Uncertainties of further CDR's

2.7 Validation and examples (part 3 of 3)

2.7.1 Solvency uncertainty

2.8 Literature
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2 Chain-Ladder-Method (CLM) 2t timatellnceftainty
L 2.4.1 Ultimate uncertainty of accident period i

Ultimate uncertainty of a single accident period (repetition)

The ultimate uncertainty of the estimated ultimate (or reserves) of accident

period i is defined by

msepr [6’”} =E [(C@J — @7J>2 DI] .

(1/6)

The mse can be split into random and parameter error

msep: [61.“]} = Var[CZ-J|D1] + E [Ci,J - ai,J‘DIF
— ~

random error parameter error

and analogously for the ultimate uncertainty of the whole reserves.
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var[C; 4| D] = var[c, ;- €, 4[]

- E[(C’i", —61.“,)2’#}— E[Ci“, -

:mse,DI{ai’J]

)




2 Chain-Ladder-Method (CLM) 2t timatellnceftainty
L 2.4.1 Ultimate uncertainty of accident period i (2/6)

Taylor approximation of the mse (introduced by Ancus Réhr in [12])

Lets look at the (multi-linear) functional:
Ui(g) x :=gs—1- - gr—i.

Then we get:

) Ui(g) =
U Y, T

agj z(g)x gj—1 9j+195-1 gr—i® g s
Ul() i, 1—i f fI i 7,[ i i,J7
Ui(F)CzI 1:F Fl[ ZCzI i — YiJg and

J—
Ciy—Cigr Z 5Flk ?Cz‘,l—i <Fi,k_fk>

F(Ra=h).

where we used a first order Taylor approximation and F; and f denote the vector of all link ratios
Fix: = Cirn/c,, of accident period i and the vector of all estimated development factors f,,

M“

respectively.
Note, for i + k& > I we have:

E[Fx|D'] = fi, Var[FiiD']~

Q)
ENN)

and Cov[Fi,k,Fh,j\DI] =0 for (i, k) # (h, 7).
ik

>\
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Sine Fj j, = Ci k41/C; ,  we get for i + k> 1T

E[Fiyk|DI] - E[E [Fiyk|Df€+k”DI] —E

C.
E i,k+1
Cik

itk
o }

Var[Fi,k|D’] - E[Var[Fi7k|Di+k]‘Dl] + Var[E [Fi7k|Di+k”Dl]

D’} =E[/IDT]= fi

_ itk 9 _
e Var[Cl,kgl‘Dk ] oI |40 E|:Uk62’i,k DI:| _ fi .
ik Cik Cik

For the covariance statement we get: If h4j < I then F}, ; € D! and we are done. Otherwise,
since (i,k) # (h, ), either F; 3, € D;.H'J or Fy, ; € ’D;:rk. Lets assume the first:

Cov [Fk F,w-|DI] - E[Cov [FM,F,L,]-{D?””DI] + Cov [E [FM{D?”] , E[th{D?””DI]

—0+ COV[FiYk,fA'DI] -0



2 Chain-Ladder-Method (CLM) 2t timatellnceftainty
L 2.4.1 Ultimate uncertainty of accident period i

Estimator 2.9 (Linear approximation of the ultimate uncertainty of accident period 7)

msep: [@J] =E [(CM _ ai»J)ZIDI}
J—1 5 ~ 2
( E— fk) D! (Taylor approximation)

X
m
7

= @,J STE[(Fo— o) (Futs — Fin) 2]

ki,ko=I1—1 fkl sz

J-1 C.
J

= Z b i (COV ik zk2|D] (fkl fkl) (ﬁz_sz))

k1,ko=I—i fk1 fk2

J-1
~ 3 Cov[Fi,, Zk2|D]+Cov[fkl,fk2 D]
k1,ko=I—1i fk1
random error parameter error
J— AQ - I—k=1,, J=1 ~9 I—k—1, 2
Z Tk Z %ia Z ez Te( Loy oy Zhe
/‘2 ZJ i,J ) = C

=I— Cik  nol- f k=I—iJk Ci, h=0 ~hk
random error parameter error

(3/6)

4
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E[(Finy = Fay) (Fira = B ) [P = E[(#rm = 1) = (B = 130 (Frmz = 71z) = (i = 7152
= E[(Fins = 11y (Fiea = )| 2" = E[(Fioky = £10) (Fhy = 15 )|P]

7E[(fk1 fkl)( kg T f’92)|D ]+E[(fk1 fkl)(fk'z 7fk‘2)‘D }
= Cov[Fy kys Fi kg [P | = E[Finy — £y |[P7] (Fay = Fra)

- E[Fiv"? B fk‘z‘DI} (fkl - f’“l) + (fAkl - fkl)(sz B f’“z)
= Cov[Fy ky s Fing [P = 0= 0+ (Fiy = fiy) (Fry — Fiy)
For ki < ko we have f,cl € Dy, and F; i, € ’D£2. This leads to

C°"[f’c1'fk2‘Dk1Ak2}: E[C°"[f’c1'f’c2|D’“2”Dk1Ak2}+C°"[E[fk1‘Dkz]'E[f’c2|D’“2”Dk1M2}

-0+ cov[fkl S |‘Dk1/\k2] -0
c°v[Fi,k1,Fi,k2|DI}: E[CO\/[FLM,Fi,k2|D£2]|D’]+Cov[E[Fi,kl|D£2},E[Fi,k2|D£2]|DI]

=0+ Cov[F; ks Fry |DI] =0



2 Chain-Ladder-Method (CLM) 2.4 Ultimate uncertainty
2.4.1 Ultimate uncertainty of accident period i (4/6)
Corollary 2.10

o If we use the variance minimizing weights

- Ci,k
Wik = 7251
> Ch,k
h=0
we get
8. JZ (L 1
msepz[ ] yom k I
it s Chui

o For the estimated coefficient of variation (and variance minimizing weights) we get

Jalen] fmen o)

\TB\C 61 = < ~ =
( ) E |:Ci,J:| Ci,J
"i (1 1 0
- . G — ;
k=I—i ]?Z Ci,k Z{L Ch k/ C.j (or I with I —i=v)—o0

which means the coefficient of variation of the ultimate uncertainty (or at least of the
parameter error) vanishes with increasing volume. Usually, this is not valid in practice.
Therefore, you should always consider in addition some model error.

4
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If we always use only the n last observed diagonals in order to estimate the development factors
the parameter error term in the coefficient of variation will not converge to zero for I — oo.

In practice, this is often a reasonable approach, because the comparability of the development
of very old (calender) periods in respect to the expected future is very questionable.
Nevertheless, you should always consider some model error.



2 Chain-Ladder-Method (CLM) 2t timatellnceftainty
L 2.4.1 Ultimate uncertainty of accident period i (5/6)

Corollary 2.11

o Instead of using a Taylor approximation you can directly estimate the
random and the parameter error like Mack has done in the original
approach, see [22]. The result is the same.

o For the process error we have made five approximations:

= Taylor approximation,
Var[i/c, JDT] ~ Ve, ,,

~

*Cip =g

'L7

*

~

* fo = fi, and

* o,% %3,%.

Following the original calculation of Mack, one can see that the first
two approximation cancel each other.
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approach, s [22]. The resut is the same.

« For the process error we have made five approsimations:

I—UItimate uncertainty

he oriinal calculaton of Mack, one can see that the first
two approximation cancel each other.

2021-04-26

Original estimation of the random error:
Var[C, ;|D'] = Var[C; 4|Bi ]
—_———
i) CLM
=Var[E[C; ;|Bi,s1][Bir—i] +E[Var[C; ;|Biy1]Bir—i]

= Va'[fJ71C¢.J71|Bi.I—'i}+ E{Gaf1cri,J71 ‘B'i,lfi]

i)CLM ii)CLM
J—2
2 2
:fJ—lvar{ci,J—1|Bi.I—'i}+’~7J—1 Il ¢
J=I—i
-
J—1 J—1 s 9 k—1 Corollary 2.3
== 2 Il fHew Il £ G-
k=1 —ij=k+1 j=I—i
2

J—1
IT #Cir.
j k3

j=I—1




2 Chain-Ladder-Method (CLM) 2t timatellnceftainty
L 2.4.1 Ultimate uncertainty of accident period i

Estimator 2.12 (Variance parameter)
Let Assumption 2.A be fulfilled. Then

(6/6)

I-1-k 2
o 1 C Ci,k+1 ~
O = A ik "o k| >
k i=0 ik
with
I-1-k 1 Tk
— 2
Zk =1-2—-k+ Z wi’kc—_ Z Ch,/w
i=0 bk p=0
are Dy-conditional unbiased estimators for the variance parameters 0']%, provided that
Z > 0.
If Z;, < 0 one could take
~2 \2
~ . (G_1)” - ~2
Uk = min T’o-k7270-k71
Ok—2
Variance minimizing weights
of (22)lead to Z;, =1 — k — 1.
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Unbiasedness:

Cik -
E{CM ( ikl > } = Ci’kva.[% e Dk:|
ik

le} k1 le}
=C; yVar Zhktl Z Wy g"“ Dy
ik h=0 h,k

I—k—1 C. c ]
Ci,kVaf i,k4+1 _ wh,,k h,k+1 Dk
h (I - k)ci,lc Ch k ]

Q

=0

T—1-kI—1—Fk
ikt Chy k1 Cikt1 Chy kt1
=C, Cov| | —ktl ) 1 R ikt —w ) 2 D
S e (e, ey, S o,

h1=0 hgy=0 hi,k ho,k
—l—kI—1— 2 2 2
I—-1—kI—-1—Fk a% okwi,k Ukw'i,k ok’whl,kwhz,k
=G 20 2 N\ T, Tomo, T Tomo, e TG e
h1=0 hy=0 (I =k)2C; 4 (I =F)C; 4 I =k, 4 hi,k
I—1—k I—1—k 2
s Cikt1 =
=of(1-2w,, +Cop > = > OE|C | = ) D] = 2k
: ko= o S - ’ c,
— s i=0 ik
change order of summation
Taking the variance minimizing weights we get
I—1—k 2 I—1—k I—1—k
Ok 1 Cik
Zp=I=2-kt 3 35— 2. Cnr=I1-2-k+ 3 s STtk
i=0 (Zh=0 c, k) ik h=0 i=0 2h—o Tk



2 Chain-Ladder-Method (CLM) 2t timatellnceftainty
L 2.4.2 Ultimate uncertainty of the aggregation of all accident periods (1/3)

Ultimate uncertainty of all accident periods

Analogue to the procedure we used for a single accident period, we split the
ultimate uncertainty of the aggregation of all accident periods into:

I I I 2
msepr E C;,7| = Var E Cig DI+ E g (CLJ — C’i,J) D!
=0 i=1—J+1 1=I1—-J+1
random error squared parameter estimation error

Since accident periods are independent, the random error of the sum of all
accident periods is simply the sum of all single periods random errors.

But for the parameter error this is not the case, because the accident periods
are coupled via the same estimated development factors.
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Ultimate uncertainty of all accident periods

Anslogue to the procedure we used for 3 single accident period, we it the
P‘J

Since accident periods are independent, the random error o the sum of all
accident periods is simply the sum of all single periods random errors.

But for the parameter eror tis i not the case, because the accident periods
are coupld via the same estimated development factors

uimate uncertainty of the aggregation of al accident periods into

e R e




2 Chain-Ladder-Method (CLM) 2t timatellnceftainty
L 2.4.2 Ultimate uncertainty of the aggregation of all accident periods (2/3)

Estimator 2.13 (of the ultimate uncertainty of all accident periods)

I 1 2
msepr Z AN =E Z (CLJ - @J) D!
i=0 i=0
I J-1 & 0\
= El Z G (Fi,k fk) D! (Taylor approximation)
o k=1—i Tr
1

<
L
)
)

4 s Cosf (5, 7,) (-,

11,i2=0 k1=1—11 ko=I—is

=ZZ

(COV [Fiy ks By s DY)+ (J?kl - fkl) (sz - sz))

I
k1, ko=0iy=I—ky is=I—ks fk1 f
J—-1 I I ~ ~

~ i1,J g, J
~ Z Z COV ’01 k1s 12,k2|D ]+Cov{fk17fk2 Dkl/\kg]

k1,ko=01i1=1—ky io=I—k> fk] sz

random error parameter error
2

J—1 ~9 I J—1 ~o 1 I—k-1_2
~S %y L Nk & Wik
~ ) iJ S ) i,J C

=0 T iZ1-k ik k=0 Tk \izIk h=0 ~hk

random error parameter error

V.
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For i1 + k1 > I and ig + ko > I we get

I
Cov[ i1, kleiz,k2|D ]

= c'.w[E[Filyk1 ‘Dilka} , E[F%,c2 |‘D,€1V,c2]|‘DI] + E[Cov[Fil’kl Fiy ks ‘D,{N@HDI}

=04+1;,-4,1 2 gl Iplla1, i P
= ir=iz ki =k 7k, B | o RN Liy=igtk1=ko %%k 7
i1,k1 i1,ky
I—ky—1 2
~ _ 2 hik1
Cov[Fuys oy [Pranka] = Thi=hooty Do S
h=0 h,k
Therefore,
mse ;1 [CLJ}
J—1 I I O ® I—ky—1,2
- Ciy,g Cigu 1 L bk
~ Z Tkylhy=ky | Lig=in 5 + e
kqika=0i1=T—ky io=T—ko Jky by i1,k h= h, k1
2
—1 -2 I I I—k—1,2
o ~ 1 w
_ k 2 h,k
STA (v a2 as) x s
k=0 i=I—k ik i=I—k =0 “n,k



2 Chain-Ladder-Method (CLM) 2t timatellnceftainty
L 2.4.2 Ultimate uncertainty of the aggregation of all accident periods (3/3)

Corollary 2.14
If we use the variance minimizing weights C
"
Wik = Ifkfi
> Ch
~ h=0
and the notation C ; 1= C,;, fori+k < I, we get
msepr [ai“]]
) 1 AzJ 1 2 1
k i, ~
SAs (s a) ot
> Z Z i,J T—k—1
=0 fi \iz1=k Ci i=I—k n=0  Chu
J-1 I A r & Y I A Y I & Y
_ . 31% Ci%J (Zh:o Ch,J) n (Zizl—k Ci,J) (Zh:o Ch,J)
- ™ ~ 2 =~ ~ 2 T—k—1
im0 Ji \iZik ( fL:O c, J) Ci,k (Z{z:o c, J) > h=0 Ch,k
J-1 I A I & Y I A Y I A Y
0 Z Ch (Zh:o Ch,J) N (Zi:pk Czk) (Zh:o Oh,J)
- ) ~ 2 ~ ~ 2 I-k—1
im0 Ji \iZr ( {L:o c, k) Ci,k (Z{L:o C, k) >h=0 Ch,k
1 2J-1 9
- (X0 Z % (s 5
i, ) T—k—1 4 I A
i=0 im0 fi \ im0 Cip im0 Cis
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For each k < J we have

I I—k—1 SIZhte, o, et I I
P i=0 ik =~ = -~ =
D Cikyr= Z Ci k1t Z R e Z Cint > FuCin =75 Cin
i=0 i =Tk Yico Gk =0 =Tk i=0
Therefore, we get for each k > I — ¢
Cig  fi—1 MGk Cik
T & = =~1 & T &
Ei C fJ—l "‘fk Zi:O Ci,k 21— Ci,,
Finally,
N I 2
i c2, 1 (Zi:l—k ka) 1

i—I—k (Z}Imo 6‘,%,6)2 Cik (Z{L=O 6‘,%,6)2 Sizh=te Chk
ik a7k Z{;&;l a7k + (E{:I—k ai,k)2
(SloCin) =i i
_ Sl 67k (Zf—é_l PR D D ¢, )
(BloC.u) Bizd T o

B .
2i=1—x Cik 1 1

= =7 = T—k—1 T —~I—k—1 Y
TheoChk Thio O ZiZo Gk ZiooCin



2 Chain-Ladder-Method (CLM) 2.5 Validation and examples (part 2 of 3)
L 2.5.1 Ultimate uncertainty 1/7)

Credibility like weighting of ultimates

One way of combining (two or more) estimates for the same ultimate is to use a credibility
like weighting. This means, for an estimated ultimate we take the lesser credibility the
further away it is from the last known value. In formula:

v

Estimator 2.15 (Credibility like weighted ultimate)
Let @"”f, 0 <m < M, be estimates of the same (unknown) ultimate. Then

-1

m m Al 1
iI—i C C’ —i ~m
g min —, = E min , —= i
m m C’l El
zI i i,J i,Ifi iJ

mixing weights

is a credibility like weighted mean of these estimates.

Remark 2.16 (Credibility like weighted ultimate uncertainty)

We will see later, see Section 4, that it is possible to transfer the weighting of ultimates
to the corresponding ultimate uncertainties.

y
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2 Chain-Ladder-Method (CLM)

2.5 Validation and examples (part 2 of 3)
L 2.5.1 Ultimate uncertainty

Credibility like weighting of ultimates from Examples 2.7 and 2.8

o We used the standard estimators for the variance parameters, see Estimator 2.12.
o Since the incurred values are much faster near the ultimate, the corresponding projection
gets more weight.

(2/7)

>
o

Payments

Incurred

Credibility like weighting

Ultimate

Reserves

Ultimate

Reserves

Ultimate

Reserves

QO ~NO O WON =2 O

(]

3'921'258
2'681'142
3'576'632
3'612'174
2'848'093
3'619'496
2'626'200
3'123'108
3'736'063
2'821'331

114'086
394121
608'749
697742
1'234'157
1'138'623
1'638'793
2'359'939
1'979'401

3'921'258
2'905'040
3'214'395
3'334'861
3'168'701
3'489'267
3'356'241
3'482'056
2'794'903
3'398'542

337'984
31'884
331'436
1'018'350
1'103'928
1'868'664
1'997'651
1'418'779
2'556'612

3'921'258
2'795'238
3'386'164
3'462'371
3'027'598
3'5642'859
3'075'415
3'347'249
3'126'759
3'254'340

228'182
203'653
458'946
877247
1'157'520
1'587'838
1'862'844
1'750'635
2'412'410

Total

32'565'588

10'165'612

33'065'263

10'665'287

32'939'252

10'539'276
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Creibiy e weightng of ulimates from Examples 27 and 28

W e the standard simators o the sncs prametrs, e Existor 2.2

Credbilty ke weighing

Payments Incures
| Utimate | Reserves | Utimate | Roserves | Utimate
o 3212 | yearas 3021258
1| zestiaz 114088 2005040 337984 2785238
2 3s7eeR2  se412i 3214395 B1BE4 3366164
3 3612174 G0BTeS 3334B61 V4 T4625TH
4 2848093 697742 3168701 1018350 3027598
5| 3619496 1234157 3489267 1103928 3547659
6 2626200 1138623 356241 TGS 30755
7 3123198 1636793 3482056 1997651 3347249
8 2359030 2704903 1416779 3126759
9

Total 52565568

01

25182
203653,
preee
s7r2e7
157520
567838
re6z8as
1750635

70165612/ 33065263 1065287 32939252 10539276)




2 Chain-Ladder-Method (CLM) 2.5 Validation and examples (part 2 of 3)
L 2.5.1 Ultimate uncertainty (3/7)

The projection of incurred is much faster very close and stable to the estimated ultimate than
the projection of payments. This may be an indication to trust it more.

—m— 0 Payments

&1 Payments

\ —e—2 Payments
3 o 3Payments
—a— 4 Payments
) —m— 5 Payments
S —a— 6 Payments

—+—7 Payments.

o 8 Payments

— —a— 9 Payments

_ e Expecied Payments
= ATy Uttmate
—m— 0 Incurred
= & 1 Incurred
—e— 2 Incurred
© 3 Incurred
—a— 4 Incurred
—m—5 Incurred

—&— 6 Incurred

——T7 Incurred
i 7 &8 Incurr=d
—a—8 Incurred

a—Expected Incumed
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2 Chain-Ladder-Method (CLM)

Ultimate uncertainties for Examples 2.7 and 2.8

2.5 Validation and examples (part 2 of 3)
L 2.5.1 Ultimate uncertainty

(4/7)

o We used the standard estimators for the variance parameters, see Estimator 2.12.

« Since the incurred values are a bit more stable, in particular for later development periods,
the corresponding uncertainties are lower.

o The linear approximation for the (parameter estimation) uncertainty results in almost the
same values as without approximation.

Ultimate uncertainty for payments| Ultimate uncertainty for incurred Credibility like weighting
AP Proc Var | Para Err Total Proc Var | Para Err Total Proc Var | Para Err Total

1 68'914| 56'985| 89'423 1'935 1'665 2'553| 32'813| 27101 42'558
2| 184'912| 144'485| 234'666 4'160 3'097 5'186| 85'511 66'895| 108'568
3| 203'838| 154'232| 255'612 7'819 4'967 9'264| 90'233| 68'639| 113'373
4| 223'462| 135'431| 261'298 9'419 5'434 10'874| 95'731 57'690| 111'770
5| 270'501| 178'156| 323'899| 30'001 14'319| 33'243| 106'489| 70'459| 127'689
6| 241'283| 131'817| 274'942| 51'348| 22'054| 55'884| 87'607| 48121 99'953
7| 330'933| 173'453| 373'634| 153'690| 60'273| 165'086| 170'661 77'709| 187'520
8| 437'284| 227'437| 492'894| 198'225| 66'754| 209'163| 228'791 98'782| 249'205
9| 430'953| 182'846| 468'137| 302'941| 107'849| 321'566| 274'932| 99'374| 292'340

Total| 865'025| 1'247'250| 1'517'861| 397'988| 222'173| 455'802| 449'186| 499'717| 671'926

Linear approximation

Total] 865'025| 1246'787| 1'517'480 397'988] 222'157| 455794] 449'186] 499'556] 671'806)

We always show the square root of uncertainties.
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The uncertainty of the weighing has been calculated using a LSRM coupling of both CLM via
0,1 _ 51,0 .. 50,0 1,1 .

the exposure Ri,k = Ri,k = Ri,k + Ri,k' see Section 4.

One can derive estimators for the ultimate uncertainty without a first order Taylor approximation,

see [21]. In practice, the resulting figures are almost alike.



2 Chain-Ladder-Method (CLM) 2.5 Validation and examples (part 2 of 3)
L 2.5.1 Ultimate uncertainty (5/7)

Density plot of the distribution of the estimated reserves using
Lognormal distributions (dotted lines representing the Best Estimate)

Projection of Incurred

Credibility like weighting

Projection of Payments
in million

& \

6 8 10 12 14 16

y
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The projection of incurred losses results in a more symmetric and tight distribution than the
projection of payments. Therefore, if we believe in the incurred projection and the corresponding
estimate of the ultimate uncertainty we would expect that the true future payments will only
deviate from the estimated reserves by a small amount. Whereas the projection of payments
indicates much larger differences (uncertainty).

The uncertainty of the Weighing has been calculated using a LSRM coupling of both CLM via

the exposure RZ k = R ’ = Rl e T Rl o See Section 4.



2 Chain-Ladder-Method (CLM) 2.5 Validation and examples (part 2 of 3)
L 2.5.1 Ultimate uncertainty (6/7)

Problem 2.17 (Fitting a distribution to Best Estimate reserves and mse)
Assume that for a portfolio we have

o A Best Estimate for the reserves,

e an estimate for uncertainties in terms of mse and the corresponding estimate of the
reserves R. That means the method, which was used for the estimation of the
uncertainty gives us a corresponding estimate of the reserves, which will usually differ
from the Best Estimate reserves.

How to fit a distribution to those estimates?

Fitting a distribution to Best Estimate reserves and mse
o Shifting the distribution: Means we fit the distribution with

Expectation = Best Estimate reserves (or ultimate)

Variance = mse

o Stretching the distribution: Means we fit the distribution with

Expectation = Best Estimate reserves (or ultimate)

mse - (Best Estimate reserves)?
RZ

Variance =

4
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| prefer the stretching, as long as it leads to plausible results, which in particular is not the case
if R=0.



2 Chain-Ladder-Method (CLM) 2.5 Validation and examples (part 2 of 3)
L 2.5.1 Ultimate uncertainty (7/7)

Density plot of the Lognormal distributions

Best Estimate reserves (BE) =1
mse=05 and R=38

Shifting 02 = 0.5

~ 1.22

: 2 _ 1002
Stretching 0 = 0.5 3
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V/Variance

Expectation constant.

Stretching means to keep the coefficient of variation



Stochastic Reserving

Lecture 4 (Continuation of Lecture 2)
Chain-Ladder method
René Dahms

ETH Zurich, Spring 2021

17 March 2021
(Last update: 26 April 2021)



2021-04-26

Stochastic Reserving
L Chain-Ladder-Method (CLM)
I—Validation and examples (part 2 of 3)




2 Chain-Ladder-Method (CLM) 2.5 Validation and examples (part 2 of 3)
L 2.5.1 Ultimate uncertainty

2 Chain-Ladder-Method (CLM)

2.1 How does the Chain-Ladder method work
2.1.1 Chain-Ladder method without stochastic

2.1.2 Stochastic behind the Chain-Ladder method
2.2 Future development

2.2.1 Projection of the future development

2.3 Validation and examples (part 1 of 3)

2.3.1 Chain-Ladder method on Payments and on Incurred
2.3.2 How to validate the Chain-Ladder assumptions
2.4 Ultimate uncertainty

2.4.1 Ultimate uncertainty of accident period 4

2.4.2 Ultimate uncertainty of the aggregation of all accident periods
2.5 Validation and examples (part 2 of 3)

2.5.1 Ultimate uncertainty

2.6 Solvency uncertainty

2.6.1 Solvency uncertainty of a single accident period
2.6.2 Solvency uncertainty of all accident periods
2.6.3 Uncertainties of further CDR's

2.7 Validation and examples (part 3 of 3)

2.7.1 Solvency uncertainty

2.8 Literature
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2 Chain-Ladder-Method (CLM) 20 SElvEiey TEEiEnsy
L 2.6.1 Solvency uncertainty of a single accident period (1/7)

Claims development result and solvency uncertianty (repetition)

The observed claims development result (CDR) at time I + 1 of a single accident period i is the
(observed) difference of the estimated ultimates of estimation time I and estimation time I + 1:
et AL Al
COR, =Cl,-Cl3\.

Here and in the following we denote (if necessary) the time of estimation by an additional upper

index.

A negative CDR corresponds to a loss and a positive CDR corresponds to a profit. Moreover, in
the Best Estimate case the estimate of the conditionally expected CDR is zero, i.e.

E[C/D\Rj“

D’]:o.

) ) ) T i —I+1
The solvency uncertainty of a single accident period i is defined as the mse of the CDR;
conditioned under all information at time I, i.e.
Df]

2
=E [(c/[ﬁf“ - 0)

= Var[@f}l‘Dl]—&- E[CA’f}rl — @{J‘DI}

—T+1
mseg|pr {CDRi

2

random error parameter error
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2 Chain-Ladder-Method (CLM) 2.6:5olvency uncertainty
L 2.6.1 Solvency uncertainty of a single accident period (2/7)

Assumption 2.B (Consistent estimates over time)

In order to have consistent estimates at times I and I + 1 we assume that there exist

D! N Dy-measurable weights 0 < wff,lc r < 1 with

o Cr_pr =0 implies wf',lC r =0

e witi= (1wt Jwly, for0<i<T—1—F

Remark 2.18

The above assumption means that we do not change our (relative) believes into the old devel-
opment periods and only put some credibility wI k « to the new encountered development.

The variance minimizing weights, introduced in Lemma 2.4, satisfy Assumption 2.B.

Lemma 2.19 (Consistent estimates over time)

Let Assumptions 2.A and 2.B be fulfilled. Then we have
L f/ﬂ“ =(1- wf*,ﬁ k)flc +wit k% =(1- wﬁi k)fk + w{tllc,kFI*kvk’
> fo=E[R D] [f’“!vf} (U= wf L DI+l d = T
3. Gy o= E[a{}rl‘pl] = k 1+1 i FofriCiris

. E{CDRHI

DI } = 0, which means we have a Best Estimate.

y
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I—Solvenc uncertaint,
Yy Yy
AT41 = 41 Cintr R Ci k1 1+1 Cr—k,k+1
7 witTh ZDRT — (1 — Gi, wit ki L ok
ik Cin I—k,k ; Cik I—k,k Cr .k
- c N
_ I+1 I+1 I—kk+1 _ I+1 T I+1
=@ —wr iy W)k R B A —wp T I +wily o Fr-
I—k.k
7I+1 I I+1 I I+1 71 I+1
= E[fk |D ]:E[fk |’Dk}:(1*w1tk,k)fk+w1tk,kfk
% <1
E fk = fk
I I = 1 B I
=~ 1 1
e[ciH o' ]=€| TI #Ht'cirnap'|=€|g[fiTi|pio] TI FP'Cirnaa|D
k=I+1—1 k=I+1—1
J—2 E 1 E
=fs-1E 11 kar Cis1—i|D'|=...= I ka[Ci,Ii»lfi"D }
k=If1—i k=If1—i
-1 -1
= JI 7ElCir+1-ilBir—il= 11 Fufr—iCii—:
k=I+4+1—1i k=I+1—i
T+1|,1 I I I I = =
~ P A _
E[COR, D' =€[¢] ,|p']-e[¢/H D= TI Ficii—i— TI Fufi—iCints
k=I—1 k=I+4+1—1

J—1

J-1
H f]ﬁc'i,l—i_ H

k=I—i k=I+1—i

Q

T I
fkfjfici,l—i =0




2 Chain-Ladder-Method (CLM) 2.6:5olvency uncertainty
L 2.6.1 Solvency uncertainty of a single accident period (3/7)

Taylor approximation of next years estimates
Recall the (multi-linear) functional:

Ui(g)x :==gj-1---gr—iz.
Then we get:
0 Ui(g)z

U@ r=g7-1"" gj+19j-1 " gr—it = ——,
dg; " j+19j i py

Ui (?I) Cires =11 F-iCiz_i=Cl;,
Ui (Ffﬂ) Ciri

TI+1 AT+1
PGy = ClYY and

J—-1
_ N 9 N
ot -Clix Y U (Ff+1) ol (F,{,jl - f;i) :
I

I+l
Pyl aF
cly = cl, N
:$( iI—i — f[ ) Z ! w; kk(Flfk,kfflg)
fizi k=I—i+1 fk

where we used a first order Taylor approximation and ! denotes the vector of the at time I
estimated development factors and Ff“ is a vector with components
pret [ BT forit k> 1,
bk Fp, fori+k=1I
The red parts are the difference to the ultimate uncertainty case.

4
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For k =1 — i we get
I+1 T nt
Fi,I—i_fI—i_ i,I—i_fI—i

and for k > 1 —iitis

I+1 T _ 7141 T I+1 i I+1 o I+1 )
il —Te=R" = F= 0w )f +wr o Frowe — fi = wili, (Fl—k,k - fk)



2 Chain-Ladder-Method (CLM) 20 SElvEiey TEEiEnsy
L 2.6.1 Solvency uncertainty of a single accident period

(4/7)
Linear approximation of the CDR
If we replace in the linear approximation of the ultimate, i.e. in
J-1 aIJ
AL i, iy
Ciy—Cig~ Z 7 (Fi,k - fk),
k=I—i Jk
the term (FMC fk> by
ﬁl =I FI kk_]?]g, fOFkZ]—i,
ik _fi’k o w§+}€ k (Flfk,k — fé) s for k> I —1,
(1k I+ Lp>1- zw§ kk) (FI kk—fk>
we get the linear approximation of the CDR, i
CI+1 Cly~ /7 (Fufi ) Z wit Tk (FI kk — fk)
f1oi —I—i+1
J— I ~7
z I N
= Z = (Fk —fk>.
e i |
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The term ﬁilk _J?i,k depends on the accident period i only via the indicator functions 1,_;_;
and 1k>17i-



2 Chain-Ladder-Method (CLM) 2.6:5olvency uncertainty
L 2.6.1 Solvency uncertainty of a single accident period

Estimator 2.20 (Solvency uncertainty of accident period 7)
— ~ ~ 2
mse|pr [CDRZ-] —E {(q{jl -¢ly) ’DI]

(5/7)

J-1 61 - ~I 2
E Z i’IJ (Fllk —fi7k> D! (Taylor approximation)
k= k
J-1 Al
l

1%

CI
_ J Y, J I+1
= fl (1k1_1 it Lpysr—iwi Ty kl) (1k2:1—i + 1psr—i w[,kgvh)

ki,ko=I1—i fk1 ko
E[(Fits = ) (Frotos = 1) ]
J-1 ~2

o 2 1
~ Z A’“ ((1;, T—i+ 1g>7— 711)1 kk)CI ) o

keI —i (fé) I—kk
random error
J—-1 I k—1 ¥
H. ol
Ok 1 . 1 RS ( hk
+ 5 k=I—i T 1k>1—i U’I—k,k C
k=I—i (ﬁ) h=0 h.k

parameter error
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From the derivation of the ultimate uncertainty we already know
7T I 7T I __ I 2 2
EKFI*klv’“l - fk‘l) (Flszvk'z - fk2)|D ] - C°V[F1*k1~’“1‘F’*’“2vk2 ‘D }Jr (fkl - fkl) (sz - sz)

~ CQV[FI—Icl,kl v FI ko ko |’DI] + Cov[f;{l , f;{Q "Dkll\kQ}

2
~2 I—k1—1 =2 I
~ 1 Tk 21: Tk (whv )
~ tk1=ko Iel C
I—ky ky h=0 hokq

Therefore (the red terms are the differences to the ultimate uncertainty case),

mse, o1 [CDRi]
J-1 @&l &l

i,J Yig I+ ) I41
T (1k1:1—7‘,+1k1>1—7’,“«’1,1\.1,1\.1)(1k-,2:1—7,+1k2>1—7,“~’1,;\.2‘k.2>
k1,ka=0 Jky Ty

Q

2
~2 I—ky—1 52
1 ky L™ %y (whvh)
ki=k2 | & + Z c
I—kq,k1 h=0 h,kq
2
-~ I—-k—1 52
1 N2 Ch Tk (wh,k)
_ + k
= it le>r—ivrign) g F c




2 Chain-Ladder-Method (CLM) 2.6:5olvency uncertainty
L 2.6.1 Solvency uncertainty of a single accident period

Ultimate uncertainty for accident period i

2
J=1 o J-1 9 I—k—1
2 1 o <wh k)
ol k
mseps O] = > (¢ )CI+Z GO
k=I—i ( ) k=I—i (fk> h=0 hk
random error parameter error

(6/7)

Solvency uncertainty for accident period ¢
mse0|DI [ﬁz}

J—1 ~9

o 2 1
~ E — ((lk [7z+1k>1721b[ kk)(][ ) o
k=I—i ( ,g) I-kk

random error

’\2

- 2
=+ Z ~ ((lk 171+1k>171u/1 kk>CI )

I
k=I—i k) h=0 )

parameter error
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It almost looks like a simple multiplication by the factor
I+1
<1k:I—i + 1k>1—iw1tk’k> )

except for the index replacement (i by I — k) in the random error part.



2 Chain-Ladder-Method (CLM) 2.6:5olvency uncertainty
L 2.6.1 Solvency uncertainty of a single accident period (7/7)

Corollary 2.21

If we use the variance minimizing weights
C.
I _ i,k I+1 ik
Wik =T and W=
> Chk > Chk
h=0 h=0
we get for the solvency uncertainty of accident period i
mseg|pr [CDRi]
o} Ct i 1 iy Ch
Cty Z 3 | Le=1—i + 1r>1- c +) P 3
= fk> (zibe, k) ek 050 G (ST CL)
&7 Cik 1 1
CZ; Z —— | Le=1—i + L1 . 2l\e + <= ,
k=I—i (fk) ( h—0Ch k) 1-kk  2p=o  Cpi
where the red terms indicate the differences to the ultimate uncertainty case.
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2 Chain-Ladder-Method (CLM) 2.6:5olvency uncertainty
L 2.6.2 Solvency uncertainty of all accident periods (1/4)

Dependent accident periods

~T o
Since ﬁfk andﬁ depend on F7_x = Crk+1/C;_, ., for all 4, the CDRiIH,
i < I, are not independent. Therefore, we cannot simply take the sum over all
accident periods in order to derive the solvency uncertainty of the aggregation
of all accident periods.
But the Taylor approximation still works: |
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2 Chain-Ladder-Method (CLM) 20 SElvEiey WEEiEnsy
L 2.6.2 Solvency uncertainty of all accident periods

Estimator 2.22 (Solvency uncertainty of all accident periods)
2

1 I
mse|pr ZC/D\RZ = Z (C’I+1 6,{,) D!
=0 =

(Taylor approximation)

J—1 J—1 61

s o1 1) (- )PP

k1 k2

2
m
Rl
Z
Iy ~
(=)
VLS
I
)
H;:)‘:Q
<
VRS
el
o
PN
Eal
N
)
2,

i1,12=0 k1 =1—141 ka=I—i2

‘ oI+l ) o I+1
=14y + 1k1>1711w17k1,k1) (lkz:lfzz + 1k2>1712w1—k2,k2)

2

(2/4)

J-1 6_\2 1 1
~ . 5 Z <1k I—i + 1k>[ i U’[ k k) CI -~
1 C
k=0 (fk> i=I—k I—kk
random error
2
J-1 o I 21—k—1 (!
T A1 hk
+ Z Yier—i+ 1psr— ] k k C §
7Y ¢
k=0 ( fi i=I—k h=0 h.k
parameter error
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From the single accident period case we know

52 I—ki—1 52 2
o o w
=T =1 17 . k1 kl( hvkl)
E[(FI—ICLIH_fkl)(FI—kQ,kQ_sz)‘D ]~1k1:k2 o 7T > a)
I—Fky,ky h=0 h,kq

Therefore, we get

I
mse, o1 Z CDR;
K2

=0
N 2
I J-1 J—1 I Az I—ki—15 I
Cl ¢, 1=t E7, (“’h k1
B DIED DI ey =k + > ——
ooF 1=k \ o T c
i1,ig=0ky=I—iy kg=I—ig Jkq ko I—kq,kq h=0 h,kq
I+1
(1761—1*!1 + 1k1>1*11w1 kl Ky (1k2 T—ig t lhg>T—igWrlg,, kQ)
. . 2
J-1 I I 1 1 I—ki—1 52 I
Cii,7 Cig,g L7 Ty (Whig
- - Loy [y TR
F c
k1,kp=0i1=I—ky io=I—ky Jkq ko Crky by h=0 h,ky
I+1
(1k1—1*t1 + 1k1>1*11w1 kl k1 (1k2 T—ig t lhg>T—igWrly,, kg)
2
1 _ 1
=1 52 I 11 . I—k—1 (wh,k)
k=0 (fk) i=I—k Crokk h=0 h,k



2 Chain-Ladder-Method (CLM) 2.6:5olvency uncertainty
L 2.6.2 Solvency uncertainty of all accident periods

(3/4)
Ultimate uncertainty of all accident periods
J—-1 32 I 2 1
msepr CIJ Z k Z CIJ =
3 ,.7 2 2, CI
k=0 (fk) i=I—k ik
random error
2
J-1 o I 21—k—1} (w!
Tk Al hok
+ C; — 7
Z e 2 Z iJ Z C
k=0 (fk> i=I—k h=0 h.k
parameter error )
Estimator 2.23 (Solvency uncertainty of all accident periods)
I o J-1 b\_g I 1
~ k I+1 \AI
mseg|pr Z CDR; | = Z Z <1k:1—i + 1~ w17k7k> Ci,J ol
i=0 k=0 (f,f) i=I—k I—k.k
random error
2
J-1 9 I 21—k—1 (!
T I h.k
+ PN Z (1}%'*1 + i wy kk)c Z C
k=0 (f,i) i=I—k h=0 hok
parameter error
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2 Chain-Ladder-Method (CLM) 2.6:5olvency uncertainty
L 2.6.2 Solvency uncertainty of all accident periods (4/4)

Corollary 2.24

If we use the variance minimizing weights

C.
I _ i,k I+1 _ i,k
Wik = 7757 and Wik = Tk
> Cuy > Cu
h=0 h=0

we get for the solvency uncertainty of all accident periods

mse|p1 [GD\RZ}

I 27-1 1

~ (a2 -

~ ,J =~ 2 T—k—1 C I—k C ’
i=0 k=0 ( k) h=0 hok h=0“nk

where the red term indicate the difference to the ultimate uncertainty case.
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I

C
I+ AT I—k,k AL
Z (lk I1—i+ lksr—qwil kk)ch*CI kot 2 =TR iJ
Tk i=I—k+1 2h=0 Ch,k
I ol
AT - k J Al
=Cr_pa+ > ~r Cig
imi—ht1 Sh_g CL,
I AT I
_al L Yici—k+1%ig ) &l Crop,k
=Cr—gg |1+ Tk &I =>Cli=r% 1
Eh:o h,J =0 h=0 “h,J

Therefore, we get for the solvency uncertainty of all accident periods

mse

o|p!

[coR, | ~

i=0

()

=0

2
Cr_ik ) ( 1 i 1
T—k T—k—1
Zh=0Cnk Crekre  ZhZo g
—~ 2 I-k
57 ( Crokk ) 2h=0Cn,k
T—F—1
;5) 6 k) Ci—kk2h=0 Chk
oh Crokk

1

(7L ShZo " Cnx Tazo Cn i

k=0 (

52 (
iy

T—k—1
Yh=0 Chux

T Ik
2h=o

‘ch,k)

)
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- 2.6.3 Uncertainties of further CDR's (1/4)

Estimation at time n > I
Analogously to the next years estimation we can look at the estimation of
the ultimate at any timen > 1

J—1 n—i—1 J—1
Ano mo_ m
i,J Ci,n—i H fk _Ci,I—z' H Fi,k H fk'
k=n—i k=I1—1i k=n—i

The development factors are estimated by

n—k—1

D wpFa
h=0

with consistent future weights w},. That means for I —k <i<n—k—1,
there exists D}-measurable weights 0 < w[’; < 1 with

¢« Cp,=0 implies wyy = 0,

o wip = (1 —wy_ Jwy L fori+k<n.

v
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Analogously to the next years estimation we can look at the estimation of
the ultimate at any time 1 >

L Chain-Ladder-Method (CLM) e i e i £

L Solvency uncertainty st s '

with consisent future weights . That means for I~k < < n—k 1,

there exists Dj-measurable v ity = 1 with
+ €y =0 imples

oy = (1= foridk<n
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- 2.6.3 Uncertainties of further CDR's (2/4)

Claims development result between two estimation time I < n; < ny

Since formulas will get very tedious (see for instance [12]), if one analyses the
CDR with respect to two time periods I < nj < ng analogously to the next
year claim development result, we will only consider the special case of variance
minimizing weights

Cik

2,

n— k 1 ’
>h=0  Chp
which leads to the following estimates (at time n) of the development factors

n—k—1 n—k—1
Ci k+1 Z C k+1

fi = Zw?kc = anlc

i=0 i,k

w;'y = (2.3)

In this case we have

I I
POIHED IS | i3 (24)

v
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& L—Chain-Ladder-Method (CLM)
< L .
< Solvency uncertainty i s 0 h loing it (o i) of he delgmen s
i 2 ‘Z’:‘
N 3
N p 4

For each k > 0 we have

I n—k—1 I
AN T Aan
D Clrpi= > Cipnt > FRCH
i=0 i=0 i=n—k
—k—1 k-1 I
E?:O ci k+1 " n An
= n—k—1 Z Cik+ fi Z Cik
Yico Gk i=0 i=n—k
n—k—1 I

I
=3
]
Q
Eal
+
=
]
o
“R‘

which by induction proves (2.4).



2 Chain-Ladder-Method (CLM) 2.6:5olvencyiuncertainty.
L 2.6.3 Uncertainties of further CDR's

Estimator 2.25 (Uncertainty of the CDR™"? with variance minimizing weights)

In the case of variance e minimizing weights (2.3) the uncertainty of the claims development
') between two time periods I < ni < ngy can be estimated by

result S0 0( C’

mseq| pr [C/D\R

nl,n2:|

(3/4)

i=0

I 2 J-1 J—1 2
~(ew) g (M- T2 o

=0 k=0 k=0

1 2 (J-1 oy
“(ZC@J> L+ ik2< n1—1911 ~1 ngkll 1> -1

i=0 k=0 ( ,g) Yito G 2o €

2 5_
2 n1—k— no—k—1 ~ .
=0 k=0 ﬁ >izo 10] 2izo 1CiI,k
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We will start with some very brave approximations

I J—1 J—1 2 E
/\nlyng _ ’\‘712 A’Ll
mse, o1 [CDR }7 S Ciol E HEI I D
1=0
J

2
Cl,o)

o (M- 1

. .. . g . . .
In order to estimate the remaining expectations of the square of fi 2, we will look at the corresponding variance

Q

Q
- 1t4-
Q .

g

m]- :g:q(f;l)

=0

and expectation of f:z and always replace all future weights w?% by their estimates at time I, i.e. by
Pt

Sn2 .
ik’ 1
h,k
We get ’
€ ge ng—k—1 C. b1 nog—k—1 C. i1 ny—k—1 C. et no—k—1
Fno ny| _ ng 2, n| ~ ~n9 1, ny| _ ) i,k ~no
E{fk ‘D ]*E > ik |0 |FE > Dk o |P T > ik g T > Bk
i=0 ik i=0 ik i=0 ik i=nj—k
ny—k—1 ~T no—k—1 ny—k—1 51 no—k—1 A7
_ Z Ci,k Ci,k+1 Zh_nl— ch k h=0 C}L,k f”l Zh=n1—k ch,k‘ f
- ng—k—1 ~7 C. n2 k—1 A7 k& n2 k—1 =1 k no—k—1 A7 k
i=0  2pZo Ch,k ik Xh= Ch k Xh= Ch,lc 2hZo Ch,k
ng—k—1 =1
>
n h=nj—k “hk n n ny,mn wn
~ it + (fp = FoY) = FPY+ Q20" 2(F, — 2

n k—1 x71
Z 2 C(h k
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This leads to
(€[22 | = (7 42003 ™2 7 (g — 7o)+ (2012 P (g, — 7707

< (70 o (P o] = () + 58

ng—k—1 571 2
(Zi*nl—k Ci,k)
ny—k—1 31 no—k—1 7 \2~’
Zi:O Cz k Ei:o ci,k

,D'n1:|

For the variance we get

nog—k—1
Var[f;Q‘Dnl]:Var Z w ﬁ

=0 ik

nog—k—1 C.
’D"1:| ~ Var|: Z @2 ikl
ik C
=0 i,k

no—k—1 c
_~ng )2 i, k41 |9

= E (w, i) Var Ziktl D"

. i C.

i=ni—k i,k

no—k—1 c

2 i P

= E (@"%) Var |E kA1 'Dzl D" | £ E|Var Zi,k+1 Dl?l Dl

. v C .

i=ni—k ik ik

ESS)

ng—k—1 2 ng—k—1 51
D ~ ~no\2 Tk _ 2 Z1_”1* C
~ > (@R) Fz-= f’kw'
i=n1—k ik (Z C] k)

i

i=nj—k
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Both estimates together lead to

2 I (Zr2 ool i Ol
om0 o (e R s EEE

no—k—1 x1
2iZny —k Cik

F1\2 | -2
(7Y +ot—

1—k—1 57 ng—k—1
2i=o0 Ci ke 2i=0 Cik

PV I 1 1
- (fk) + %% (an—k—l ar - an—k—l o1 >

i=0 ik i=0 ik

J—1
1 1 ~I1\2
2 T
: - - )
ny—k—1 77 no—k—1 A7 >> H ( k
(Ei:o ci,k 2iZo Ci,,lc k=0
2
(XI:C > J-1 - 52 ( 1 1 )
= i,J ~\2 ni—k—1 A7 ~ma—k—1 57 -
i=0 k=0 (flf) 2i=o0 Cik 2iZo Cik

2
1 J—1 ~2
Z A’IJ Z o . - -
y s, — 71 thl—k—l Gl Ew—k—l éfk

ik i=0

Combining all we get

coptln2
mseg o1 [CDR ] ~

4
~/
1~
Q
°
M
I/~
)
-
—
~~
=
-
N~—
N
+
q
=

22
e N
‘Ié

where we used in the last step a Taylor approximation in 3% at zero.
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- 2.6.3 Uncertainties of further CDR's (4/4)

Remark 2.26

o All summation over accident periods stop at I, but we skipped AT in
order to keep the formulas a bit simpler.

o the red parts are the differences to our estimators for the solvency and
ultimate uncertainty, i.e.

* If we take no = I + 1 and ny = I Estimator 2.25 leads to the same
formulas as in the solvency uncertainty case, see Corollary 2.24.

* If we take no = 0o and n; = I Estimator 2.25 leads to the same formulas
as in the ultimate uncertainty case, see Corollary 2.14.

« The derivation of Estimator 2.25 is based on the article [12] by Ancus
Rohr and discussion with Alois Gisler.

o In practise the differences between the last two lines of Estimator 2.25
are usually very very small.
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Remark 2.26

« All summation over accident periods stop at I, but we skipped A1 in
order to keep the formulas 3 bit simpler.
« the red parts are the diffrences 10 our estimators for the solvency and
imte uncertainy,

« The derivation of Estimator 2.25 s based on the article [12] by Ancus
R and discussion with Alois Gisler

« In practse the ifferences between the last two fines of Estimator 225
are usually very very smal



2 Chain-Ladder-Method (CLM)

Solvency uncertainties for Examples 2.7 and 2.8

2.7 Validation and examples (part 3 of 3)
L 2.7.1 Solvency uncertainty

(1/4)

o We used the standard estimators for the variance parameters, see Estimator 2.12.

« Since the incurred values are a bit more stable, in particular for later development periods,
the corresponding uncertainties are lower.
o The linear approximation for the (parameter estimation) uncertainty results in almost the

same values like without approximation.

Ap Solvency uncertainty for payments| Solvency uncertainty for incurred Credibility like weighting
Proc Var | Para Err Total Proc Var | Para Err Total Proc Var | Para Err Total

1 68'914 56'985 89'423 1'935 1'665 2'553 32'813 27101 42'558
2| 171'037| 126'690| 212'847 3'741 2'610 4'561 79'147 58'707 98'543
3| 109'318 73'276| 131'605 6'748 3'961 7'825 47'066 31'872 56'842
4| 143'337 73'807| 161223 5'929 3'045 6'666 63'039 32'229 70'800
5 126'341 73'120| 145'975 28'448 13115 31'325 46'567 27'713 54'189
6 92'633 49'013| 104'800 42'423 17'435 45'866 33'101 18'187 37'768
70 212791 89'328| 230'780| 144'761 55'891| 155175 144'968 56'753| 155'681
8| 261'148| 111'014| 283'765| 143'548 46'460| 150'879| 159'362 59'347| 170'054
9| 215'464 78'066| 229'170, 211'338 71'652| 223154, 171'916 58'364| 181'553

Total| 847'287| 539'524| 1'004'481| 327'445| 116'968| 347'709| 415'961| 231'429| 476'008

We always show the square root of uncertainties.
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The uncertainty of the weighing has been calculated using a LSRM coupling of both CLM via
0,1 _ 51,0 .. 50,0 1,1 .

the exposure Ri,k = Ri,k = Ri,k + Ri,k' see Section 4.

One can derive estimators for uncertainties without a first order Taylor approximation, see [21].

In practice, the resulting figures are almost alike.



2 Chain-Ladder-Method (CLM) 2.7 Validation and examples (part 3 of 3)
271 Solvency uncertainty (2/4)

Density plot of the distribution of the CDR using Lognormal
distributions (dotted lines representing the Best Estimate)

Projection of Incurred|:

Credibility like weighting

// Projection of Payments
‘ ‘ ‘ in million

6 8 10 12 14 16
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The incurred projection results in a very symmetric and tight distribution of the CDR. Therefore,
if we believe in it we would expect only very small amounts for the CDR.
The uncertainty of the vxgeighin% Igas been calculated using a LSRM coupling of both CLM via

0,1 __ 1,1 .
the exposure R“ﬁ = R“ﬁ = Ri,k + Ri,k' see Section 4.



2 Chain-Ladder-Method (CLM)

2.7 Validation and examples (part 3 of 3)
L 2.7.1 Solvency uncertainty

Ultimate vs. solvency uncertainties for Examples 2.7 and 2.8

o We used the standard estimators for the variance parameters, see Estimator 2.12.

o In total the square root of the solvency uncertainty is about 70 % of the square root of the
ultimate uncertainty, whereas it is higher in older and lesser in recent accident periods.
That means during one business period we gain information that is worth about 30 % of

« For standard business one usually expects that the square root of the solvency uncertainty

the uncertainty.

lies between 50 % and 90 % of the square root of the ultimate uncertainty.

(3/4)

AP Uncertainty for payments Uncertainty for incurred Credibility like weighting
Ultimate | Solvency % Ultimate | Solvency % Ultimate | Solvency %

0 — - — — — - — — —

1 89'423 89'423 100% 2'553 2'553 100% 42'558 42'558 100%

2| 234'666| 212'847 91% 5'186 4'561 88%| 108'568 98'543 91%

3| 255'612| 131'605 51% 9'264 7'825 84%| 113'373 56'842 50%

4| 261'298| 161223 62% 10'874 6'666 61%| 111'770 70'800 63%

5| 323'899| 145'975 45% 33243 31'325 94%| 127'689 54'189 42%

6| 274'942| 104'800 38% 55'884 45'866 82% 99'953 37'768 38%

7| 373'634| 230'780 62%| 165'086| 155175 94%| 187'520| 155'681 83%

8| 492'894| 283'765 58%| 209'163| 150'879 72%| 249'205| 170'054 68%

9| 468'137| 229170 49%| 321'566| 223154 69%| 292'340| 181'553 62%

Total| 1'517'861| 1'004'481 66%| 455'802| 347'709 76%| 671'926| 476'008 71%

We always show the square root of uncertainties.
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The uncertalnty of the welghmg has been calculated using a LSRM coupling of both CLM via
the exposure RZ e = R ’ = Rl e T Rl o See Section 4.



2.7 Validation and examples (part 3 of 3)
271 Solvency uncertainty (4/4)
Density plot of the distribution of the CDR (solid curves) and

estimated reserves (dotted curves) using Lognormal distributions
(dotted lines representing the Best Estimate)

Projection of Incurred

Credibility like weighting

el
(Tolhe

~L\. Projection of Payments
iq million

6 8 10 12 14 16
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b Projection of Payments

i it

16

Note, distributions of the estimated reserves have been obtained by fitting the Lognormal distri-
bution to the estimated reserves as mean and the corresponding uncertainty as variance.

Like expected, the densities of the solvency uncertainty are much tighter than the one of the
ultimate uncertainty.

The uncertaintyO ?f the vxgeighin% Igas been calculated using a LSRM coupling of both CLM via

, 1 1,1 .
the exposure Ri,rk =R = Ri,k + Ri,k' see Section 4.
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3l0ther classicallreservingimethods 3.1 Complementary-Loss-Ration method (CLRM)
L 3.1.1 CLRM without stochastic (1/2)

Basic idea behind the Complementary-Loss-Ration method
The Complementary-Loss-Ration method is based on a single triangle and a
exposure P; depending on accident periods i. Often pricing information like
the risk premium is taken as exposure.
The Complementary-Loss-Ration method is based on the idea that:

o The payments of the next development period are proportional to the

given exposure, i.e.
Si k1 = D

o Accident period are independent.
In particular, that means that all accident periods are comparable with respect
to their development.
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L Complementary-Loss-Ration method (CLRM)

Basic idea behind the Complementary-Loss-Ration method
“The Complementary-Loss-Ration method is based on 3 single trangle and a
exposure P, depending on accident periods i, Often pricng information like
the isk premium is taken 35 exposure.
The Complementary-Loss-Ration method is based on the idea that
« The payments of the next development period are propartional to the
given exposure, e

Supet ® i
+ Aecident period are independent
In partculr, " d

e i |



3l0ther classicallreservingimethods 3.1 Complementary-Loss-Ration method (CLRM)
L 3.1.1 CLRM without stochastic

(2/2)
Simple example
i\k | 0 12 3 4 | exposure | ultimate reserves
0 | 100 3.8380/2.8280 1.0100 0.00 100 860 0= 860 — 860
1 | 120 3.6360]2.6260 1.2120 0.00 100 860 0= 860 — 860
2 | 200 3.9/780/2.3460 1.1220 0.00 00 1660 | 220= 1660 — 1440
3 | 1403.8570[25375 11165 0.00 150 1250 540= 1250 — 710
4 | 2003883625550 1.1242 0.00 220 1828 | 1628= 1828 — 200
fil 38 25 11 00 770 | 6458 2388
I-1
]? — 3804360+780+4570 _ g ¢ b SM
0 = T00+100+200+150 — 2° = -1 p P
i=0 tho h N
R icht  observed development factor
f = 280+260+460 __ o & welg
1 = 100+100+200 — “
7 _ 1004120 _
fa= 1001100 =11

— 0 _
3= 100 = 0.0

v
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3l0ther classicallreservingimethods 3.1 Complementary-Loss-Ration method (CLRM)
L 3.1.2 Stochastic behind CLRM (1/3)
Assumption 3.A (CLRM)

There exist exposures P;, development factors f, and variance parameters a,% such
that

i)CLRM E {Si7k+1‘8i,k} = kaz:
ii)CLRNI Var {S, Bi,k} = O']%]Di and

i,k+1
)CLRM accident periods are independent.

Remark 3.1

o Since accident periods are independent, B; j could be replaced by Dy, or by D,’:r]?

o Often the assumptions are formulated without conditioning. The difference
between both ways are:

= In taking unconditional expectations we take the average over all possible triangles
and therefore ignore the observed past B; j, completely.

*« In taking conditional expectations we explicitly assume that the observed past B; j
has no influence on the expected future development.
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Assumption 3.A (CLRM)

er exst exposures I, development foctors f, and variance parameters o such

accdent priods are independent.

Remark 3.1
. Sine acciden periods s indepeodent, B, couk b repsced by D o by D"

+ Oftenthe sssumptions sre formulted vithou conditning. The dference
betuesn both v e

thatth obsered s ..



3l0ther classicallreservingimethods 3.1 Complementary-Loss-Ration method (CLRM)
L 3.1.2 Stochastic behind CLRM (2/3)

Estimator 3.2 (Future development for CLRM)

Let Assumption 3.A be fulfilled. Then for every set of D-conditionally un-
biased estimators f, of f, the estimator

CCLRM —iyng t Z FeP
k=I1—1i

is a Dr_j-conditionally unbiased estimator for the ultimate outcome C; ;.

Remark 3.3

o Usually one takes

I—-k-1

~ P; St
Jr = Z I—kz—l o
i=0 Zh:o Py, P

o Because of the additive structure of Estimator 3.2, the
Complementary- Loss-Ratio method is often called additive method.
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E[é\ic,bRM‘llei] =Ci(q1—iyas + JZ_l E[J?;C‘foi] P;
k=I—i

=Ci,(1—ias t Jil E[E[fk’Dk”DI—i] P;
k=i
J-1

=Cig-ogrs+ Y b
k=1 i

k3

= Ci1—ipns + Jil E[E[Si,k+l‘Dk]‘D1_i]
k=I—1

k3

j)CLRM

=E[Ci,7|D1-4]



3l0ther classicallreservingimethods 3.1 Complementary-Loss-Ration method (CLRM)
L 3.1.2 Stochastic behind CLRM (3/3)

Remark 3.4

o The method itself is well known and often used. But, because of its simplicity, corresponding
stochastic models haven't been studied so much as for the Chain-Ladder method.

o From a statistical point of view the estimation of the development factors and the variance
parameters is critical since we have to estimate 2.J parameters based on J(I — %)
observed development factors. Therefore, in practise the reserving actuary has to include
other information in order to overcome the lack of observed data (over parametrised model).

o The method can deal with some kind of incomplete triangle, where some upper left
sub-triangle is missing.

« Since the exposures P; are given and fixed over (development) time, the method cannot

really react on observed changes in the data. For instance, assume we take the risk premium

as exposure and observe at time k = 1, that the frequency of claims has doubled. Therefore,
we would expect twice the payments compared to those that have been projected with

CLRM.

Often the CLRM is used for the early development periods, where we do not have so much

information within the observed data. And for later development periods other methods like

CLM are used in order to take the information contained in B; , into account.

CLRM of Assumption 3.A, CLRM cannot deal with diagonal effects like

Because of part iii)
inflation.
Analogously to what we have done for the Chain-Ladder method, see Section 2, we could
derive formulas for the ultimate uncertainty as well as for the solvency uncertainty.
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We will analyse uncertainties in the more general setup of Linear Stochastic Reserving methods
later in section 4.



3 Other classical reserving methods B2 | St i AEEem mEdies! (H1FU)
L 3.2.1 BFM without stocastics (1/2)

Problem 3.5 (How to include an experts opinion about the ultimate?)

We have often repeated that an actuary has to use all available information in order to de-
termine a Best Estimate. But how to combine an experts opinion U about the ultimate C;
with the observed data.

V.

Bornhuetter-Ferguson method

One solution is to used the Bornhuetter-Ferguson method, introduced by Bornhuetter and Ferguson
in [15]. The basic idea is that we take the last observed data C;;_; and add a fraction 1 — [; of
the external given a priori ultimate Ufri, ie.

CEM .= G i+ (1 - 1)U, (3.1)

where the factors I; are called link ratios and should represent the proportion of the ultimate that
has already developed.

v

Problem 3.6 (Where to get the link ratios?)
Possible answers:
o Experts opinion. R
o Use a reserving method and take [; :=
L= g;}_i(;cw')‘l, which was the original idea behind BFM.

o Use a stochastic model that leads to estimators which have the same shape like (3.1).

Cé’ ‘. In the case of CLM we would get
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Roughly spoken, we take the a priori ultimate and replace the already developed part by the
observated data.



3 Other classical reserving methods B2 | St i AEEem mEdies! (H1FU)
L 3.2.1 BFM without stocastics (2/2)

Remark 3.7
o Since the link ratios I; should represent the proportion of the ultimate that has
already developed, we expect that [;_; = 1, provided we have no tail development.
o As actuaries we have to be very careful in using experts opinions, in particular, if we
take the a priori ultimate and the link ratios from the same expert. The reason is
that those experts often have own interests in a profitable (or sometimes non
profitable) outcome of the portfolio.

BFM as credibility weighted average

If we take a reserving method in order to determine the link ratios I; := %ﬁ and if all
i,J

link ratios 0 < I; < 1 then ClBJFM could be looked at as credibility like weighted average of

the a priori ultimate Uf” and the estimated ultimate @J with credibility weights (1 — ;)

and [;, respectively:
C Cigia ) N )
CEM =C i+ (1 - LU = —5I Cis+ (1 —L)UP" = 1,C g+ (1 — 1)U,
i,J

Note, this formula is similar to the credibility like weighting of ultimates proposed in Es-
timator 2.15.
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3 Other classical reserving methods E2jEomiuettephereusoninethodi(CRM)
L 3.2.2 Stochastic behind BFM

Remark 3.8 (BFM as Complementary-Loss-Ratio method)

If we take the Complementary-Loss-Ratio method with exposure P; := Uip” we get the

estimate (see 3.2)
J-1

M= Comang + Y BB
k=I—1

Defining the link ratios via

we get the same form as in (3.1). Therefore, the Bornhuetter-Ferguson method can be
looked at as Complementary-Loss-Ratio method with exposures UP™".

Remark 3.9

There are other stochastic models that lead to estimators of the form (3.1), see for instance
[18, Section 6.6].

»
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3 Other classical reserving methods 3.3 Benktander-Hovinen method (BHM)

Basic idea behind the Benktander-Hovinen method

The basic idea of BHM is to apply the Bornhuetter-Ferguson method on the Chain-
Ladder method estimation with the weighted a priory ultimate

UiBHMpri — TAleM +( _Z)Uzpm _ Ci,Ifi + (1 _’l\i)Ume CBFM7
and the link ratioslAi of the Chain-Ladder method. Therefore, we assume that

0<7;<1.
Then we get the estimate

CPM = Cirmi+ (1= ;) CEM.

Remark 3.10
Connection between BHM, BFM and CLM
o BHM was independently developed by Benktander, see [14], and Hovinen,
see [16].
o The BHM is a twice iterated BFM with Chain-Ladder link ratios.
o Iterating BFM further will finally lead to the CLM Best Estimate, see [17].
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Basic idea behind the Benktander-Hovinen method
“The basc dea of BHM is 1o aply the BormhueterFrguson method on the Chai
Ladder method estimtion ith the weghted 3 prory ulimate

Gl (1T = I

Then'we et the esimate

= i+ (1 TN

Remark 3.10
Connection between BHM, BFM and CLM
- BHM was independently develoed by Benkiander, s [14], and Hovinen,
s [16]
HIM s 3 tice itersted BFM vith Chai-Lacder Ik ri.
- trating BFM furher will inally lead to the CLM Best Estimate, e [17]




3 Other classical reserving methods 3.4 Cape-Cod method (1/2)

Basic idea behind the Cape-Cod method (CCM)

We have seen that the Best Estimate reserves of the Chain-Ladder method depend heavily
on the last known diagonal, which makes this method vulnerable to outliers of C; ;_;.
The Cape-Cod method uses an external given exposure P; to smooth the last diagonal.
Therefore,
1. We assume that there exists a k with
Ci1—i = Kl P;

where I; := k T z(/\c'-M)*1 are the link ratios of the CLM.
2. Then we estimate « by
DY e e
>imr- g Libs

3. Finally, we calculate the reserves with CLM where the values C; ;_; are replaced by

CEM = 71, P,.

2

CEM =i+

Then we get J_1
( [T 7Mes - Cff“’l) =Ci-i+ (1=L)RP.  (32)
k=

—1
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3 Other classical reserving methods 3.4 Cape-Cod method

(2/2)

Remark 3.11

o The name Cape-Cod refers to the place where this method has been
introduced for the first time.

o Because of (3.2), CCM can also be seen as a BFM with (by <)
modified a priory ultimate KP;.
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« The name Cape-Cod refers to the place where this method has been
introduced for the first time.
+ Because of (3.2), CCM can also be seen as 2 BFM with (by 7)
modified a prory uimate £F



3l0ther classicallreservingimethods 3.5 Extended-Complementary-Loss-Ration method (ECLRM)
L 3.5.1 ECLRM without stochastic (1/2)

Basic idea behind the Extended-Complementary-Loss-Ration method

The Extended-Complementary-Loss-Ration method is based on a triangle of payments Si{k

and a triangle of the corresponding (changes of the) incurred losses SO
The Extended-Complementary-Loss-Ration method is based on the |dea that:

o The payments of the next development period are proportional to the case reserves
at the end of the current development period, i.e.

k

Sil,k+1 ~ fli Z (Sio,j - Sil,j) = fl%R

Jj=0
o The changes of the incurred losses during the next development period k > 1 are
proportional to the case reserves at the end of the current development period, i.e
0 . 0
Sike1 = SRy

o Accident period are independent.
In particular, that means that all accident periods are comparable with respect to their
development.
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3l0ther classicallreservingimethods 3.5 Extended-Complementary-Loss-Ration method (ECLRM)
L 3.5.1 ECLRM without stochastic

Simple example

Changes of incurred losses S, Payments S},

Case

reserves Rz‘, b

(2/2)

k|0 1 2 3 ik|o 1 2 3 k| o 1 2 3
0 | 50005200 -0.4-160 0.00 0 | 100 05200{05200 1.040 0 -04000.1 400.00
1| 700 0.4[160-0.4-160 0.00 1 | 300 0.4160/05200 1.040 1 | 4001040004 40090
21 90003120/ -0.4-112 0.00 2 | 500 0.6240[0.5140 1.028 2 00j.72800.1, 280.00
3| 55004120 -04-108 0.00 3| 2500515005135 1.027 3 | 3000927001 270.90
o 04 04 00 fi] 05 05 10 il 09 01 00
f = 20500120 — 0.4 Jo = 200le2io — 0.5 fo=1+04-05=09
70 _ =160—160 F1 _ 2004200 - —
fi= 2004400 —04 fi= 4001400 =05 fi=1-04-05=0.1
B=25%=00 fr=9_-190 fo=1+400-1.0=00
i | Ultimate | Reserves | IBNR )
0 540 0 0 The case reserves develop according to the
1 200 10 Chain-Ladder method with f, =1+ f? — fi.
2 008 168 | -112 e If we use CLM we would get
3 562 212 12 ‘ CLM on Payments | CLM on Incurred
S 2710 520 | -100 Reserves | 969 | 398
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3l0ther classicallreservingimethods 3.5 Extended-Complementary-Loss-Ration method (ECLRM)
L 3.5.2 Stochastic behind ECLRM (1/3)
Assumption 3.B (ECLRM)

There exist development factors f;"*, m € {0,1}, and covariance parameters
M2 my mg € {0, 1}, such that

Tk
)ECLRM E{ zk+1‘82k] Tt Z_] 0(50 _Sl ) = fi' R, 1,

)ECEM Cov| ST 1, ST, |Bis| = o™ R, . and

i,k+1° k+1

)ECLRM

i accident periods are independent.

Remark 3.12

o Since accident periods are independent, B; ;, could be replaced by Dj,
or by D”k

o Usually, SY 'k and S} |, representing changes of incurred losses and
payments durlng development period k for claims of accident period ¢,
respectively. Then R, are the case reserves at the end of development
period k for claims of accident period i.

4
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Extended-Complementary-Loss-Ration method (ECLRM)

Assumprion 3.8 (ECLAM)
Thee st dselopment s 7.
ST s € 101) e

D e ] = g7

€ {0.1), and covariance parameters

E Cou[s, . ST
e

i accident periods are independent.
Remark 3.12

Since accident periods ae independent, 5, could be replaced by Dy
orby D}

Ustaly, %, and 51, representing changes of ncured losss and
payments during development peio  fo clims of sccident period
respectvly. Then 1, ar t