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1 Basics of claim reserving 1.1 Introduction and motivation
1.1.1 General insurance (1/2)

All starts with:

An insured (policyholder) pays some premium to an insurer in order to transfer the (more or less
directly related) significant monetary consequences (loss) of a randomly incurring future
event (risk).

Examples 1.1

insurance insured loss

Motor Liability (MTPL) loss to a 3rd person caused by a self-inflicted car accident

General Liability (GL) loss to a 3rd person caused by the policyholder, except car accidents
Fire (Property) policyholders loss to household and property caused by fire
Health policyholders loss caused by illness
Pension policyholders loss, because of a long life
Life ‘another persons loss’ caused by the death of the insured

Life insurance

The insured risk depends directly on the life of the insured.

General (or Non-Life or P&C for property and casualty) insurance

The insured risk does not depends directly on the life of the insured.
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Important words of the definition:

• transfer: therefore no self-insurance
• random future: not (completely) known, random in timing or amount
• loss: no lotteries and no betting
• significant loss: therefore no service contract



1 Basics of claim reserving 1.1 Introduction and motivation
1.1.1 General insurance (2/2)

Reinsurance, Health and Accident

There are types of insurances which have components of both, Life and
General insurance.
The classification depends on the regulator, the company and the
accounting standard.

Switzerland

Life (and Pensions), Non-Life (General insurance or P&C), Health and
Reinsurance

IFRS 17

An insurance contract is

‘a contract under which one party (the issuer) accepts significant insurance
risk from another party (the policyholder) by agreeing to compensate the

policyholder if a specified uncertain future event (the insured event)
adversely affects the policyholder’
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1 Basics of claim reserving 1.1 Introduction and motivation
1.1.2 Claim reserves (1/2)

Problem 1.2

At the end of a business year an insurer usually knows all its contracts

but not all the corresponding claims and ultimate losses. Reasons may

be:

1. Not yet materialised or detected claims. For instance, product

liability insurance.

2. Not yet reported claims. For instance, time delay, because of

holidays.

3. Unknown future payments for not yet finally settled claims.

Years0 1 2 3 4 · · · · · · n n+ 1

contract signed

coverage period

accident reported

payments

closed reopened finally closed
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• Strictly taken: From the point in time where the insurance contract is in force (or the
insurance company has send a binding offer), the insurer has to account for all potential
claims. The precise rules for this depend on regulation and accounting standard.



1 Basics of claim reserving 1.1 Introduction and motivation
1.1.2 Claim reserves (2/2)

exapmles of the development of payments in percent of the ultimate

k0 10

100 %

Payment pattern

depend strongly on the underlying risk (exposure). Therefore, in practice an
actuary not only have to look at number based statistics, but also have to
understand the type of the underlying exposure.
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• red may be Motor Hull

• blue is typical for Garantie DÃ c©cennale in France or Spain

• gray may be madatory accident insurance in Switzerland



1 Basics of claim reserving 1.1 Introduction and motivation
1.1.3 Relevance of claim reserves (1/2)

Claim reserves are often the most important part of the balance sheet of a
general insurer. Moreover, a small changes in the estimate of claim reserves
may make the difference between an annual profit or loss.

assets

equity

other liabilities

claim reserves

balance sheet Some examples*:

insurer equity gain reserves gain
reserves

Zurich $ 21.0 $ 3.0 $ 82.7 3.6%
Allianz e 31.4 e 3.5 e 78.0 4.5%
Swiss Re $ 11.7 $ 3.0 $ 49.5 6.1%
Munich Re e 14.1 e 2.6 e 45.0 5.8%

*Amounts (in billion) representing only the general insurance part of the
company and are taken from the annual reports of 2012. The amounts are
not entirely comparable, because the separation of the general insurance
business from the other parts may be different from company to company.
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1 Basics of claim reserving 1.1 Introduction and motivation
1.1.3 Relevance of claim reserves (2/2)

Example: Converium AG

Converium AG was one of the largest reinsurers in the world. At
20th July 2004 the company issued a profit warning caused by a
strengthening of the claim reserves of the US general liability portfolio by
$ 400 million.
Consequences:

• loss of 35% of equity

• an immediate deep plunge of over 50% (about 70% until
October 2004) of the stock price

• rating downgrade from A to BBB+ by Standard & Poors

• unfriendly takeover by SCOR in 2007 (although Converium did make
profit again and got its A rating back)
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1 Basics of claim reserving 1.1 Introduction and motivation
1.1.4 Purposes of (stochastic) loss reserving

Loss reserving

is an integral part of many processes. For instance:

• annual closings

• pricing

• forecasts

• measuring risks, like under IFRS 17, Solvency II and the Swiss Solvency
Test (SST)

• modelling the value of customers

• . . .

The resulting estimates for claim reserves depend on its purpose. For instance,
loss reserving in the context of annual closings deals with the past, whereas
in the context of pricing we are interested in the future. Moreover, in pricing
one usually looks at a more detailed split in subportfolios than during closings.
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1 Basics of claim reserving 1.2 Basic terms and definitions
1.2.1 Terminology (1/2)

Definition 1.3 (Case reserves or outstanding)

Case reserves are estimates of the (undiscounted) sum of all future payments made by claim
managers on a claim by claim basis.

Definition 1.4 (Claim reserves or (technical) provisions)

Claim reserves are the estimates of the (undiscounted) sum of all future payments for claims
(of a portfolio) that have already happened.

claim reserves = case reserves + IBNR

Definition 1.5 (Incurred but not yet reported (IBNyR) reserves)

IBNyR reserves are the part of the claim reserves that corresponds to not yet reported claims.

Definition 1.6 (Incurred but not enough reserved (IBNeR) reserves)

IBNeR reserves are the difference between the claim reserves for claims known to the insurer
and the corresponding case reserves.

Definition 1.7 (IBNR or IBN(e/y)R)

IBNR reserves = IBNeR + IBNyR
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Provided we take a positive sign for claim reserves IBNyR are non-negative, whereas IBNeR may
be positive or negative.
Usually, we will not look at discounted reserves, because discounting (and inflation) disturbs
the development of claims and is dealt with separately, i.e. first get undiscounted figures and
corresponding payment patterns and then discount.



1 Basics of claim reserving 1.2 Basic terms and definitions
1.2.1 Terminology (2/2)

Definition 1.8 (Incurred (losses) or reported amounts)

incurred = payments + case reserves

Definition 1.9 (Ultimate)

ultimate = payments + claim reserves

= incurred + IBNR

ultimate =

claim reserves

payments

=

IBNyR

IBNeR

case reserves

payments

=

IBNR

case reserves

payments

=

IBNR

incurred

Remarks 1.10

• Payments are often called paid (losses).
• The naming is not consistent within the actuarial world. For instance, actuaries often

understand under IBNR only the IBNyR part.
• Precise definitions depend on the accounting standard. For instance, under IFRS 17

one has to discount the cash flows and one has to take the inception date (or the
begin of the coverage period) instead of the accident date.
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1 Basics of claim reserving 1.2 Basic terms and definitions
1.2.2 Triangles (trapezoids) (1/2)

Main objects

of reserving are claim development triangles (trapezoids), containing the development of pay-
ments (or other claim properties) per accident period for a whole portfolio.

I

ac
ci

d
en

t
p
er

io
d

0 J
development period

I

calendar-
period

Si,k

k

i

• We assume that I ≥ J . If I = J we have a triangle
and otherwise a trapezoid, but for simplicity we will
call it triangle anyway.

• rows = accident (or origin) periods
• columns = development periods
• diagonals = calendar periods
• Si,k are the payments during development period k

for claims happened in accident period i.
If more than one portfolio is involved we add an
additional upper index m to indicate the triangle.

• Payments could be replaced by other claim
properties like

* changes of reported amounts (= incremental incurred)
* number of newly reported claims
* payments on just getting large claims
* . . .
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Some actuaries look at those numbers from a different angel:

• accident periods or development periods decreasing instead of increasing
• permutation of accident, development and calendar periods

Moreover, the different kinds of periods have not to be based on the same single unit, like
months, quarters or years. For instance, sometimes one looks at accident years and development
months.



1 Basics of claim reserving 1.2 Basic terms and definitions
1.2.2 Triangles (trapezoids) (2/2)

Reserving means

to project the future of the triangles in order to get full rectangles.

I

ac
ci

d
en

t
p
er

io
d

0 J
development period

I

calendar-
period

n

Dn

• Dn is the σ-algebra of all information up to calender
period n:

Dn := σ
(
Sm
i,k : 0 ≤ m ≤ M, 0 ≤ i ≤ I, 0 ≤ k ≤ J ∧ (n− i)

)

• DI is the known part of the triangles.
• The unknown future of the triangles is:

{
Sm
i,k : 0 ≤ m ≤ M, 0 < k ≤ J, I − k < i ≤ I

}

We assume that there is no development after
development period J . That means we assume that there
is no tail development.

ultimate of accident period i =
J∑

k=0

Sm
i,k

claim reserves of accident period i =

J∑

k=I+1−i
Sm
i,k
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On a diagonlal n we have for all accident and development periods i and k:

n = i+ k,

in particular on the last known diagonal I we have I = k + i.



1 Basics of claim reserving 1.2 Basic terms and definitions
1.2.3 Stochastic reserving and Best Estimate (1/9)

Definition 1.11 (Stochastic loss reserving)

We call a reserving method a stochastic reserving method if it is based on a stochastic
model.

Remark 1.12

• Some actuaries call reserving methods that are based on simulations stochastic,
even if they are not based on a stochastic model.

• Since we have a stochastic model, we usually expect beside the estimate of
claim reserves some estimate of the corresponding uncertainties.

Types of stochastic reserving methods

We differentiate between

• distribution based reserving methods, which make explicit assumptions on
the distribution of claim properties Sm

i,k or related objects.
• distribution free reserving methods, which only makes assumptions on

moments of the distribution of claim properties Sm
i,k or related objects.
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1 Basics of claim reserving 1.2 Basic terms and definitions
1.2.3 Stochastic reserving and Best Estimate (2/9)

Definition 1.13 (Best Estimate)

The Swiss regulator defines (translation)

. . . Best Estimate reserves are the conditional unbiased estimator of the
conditional expectation of all future (undiscounted) cash flows based on all

at the time of estimation available information . . .

FINMA Rundschreiben 2008/42 Rückstellungen Schadenversicherung

Mathematically that could be interpreted like:

Ê

[
Ê

[
J∑

k=0

Sm
i,k

∣∣∣∣∣D
I

]
− Ê

[
J∑

k=0

Sm
i,k

∣∣∣∣∣D
I+1

]

︸ ︷︷ ︸
estimated claims development result

∣∣∣∣∣D
I

]

︸ ︷︷ ︸
estimated at time I

= 0.
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• A definition of Best Estimate reserves is not easily to find. We will look at the one of the
Swiss regulator.

• At the first look this definition looks promising. But if you try to translate the phrase
‘conditional unbiased estimator of a conditional expectation’ into formulas you will get
problems.

• One possibility is the following:
• First we do not look at future cash flows (or reserves) but at the ultimate payments.

Since we know the already paid amounts, both views are equivalent, but ultimates are
mathematically easier to handle then reserves:

1 We start with the expectation of the ultimate payments conditioned on all currently
available information.

2 estimate
3 One year later we do the same, but of course with more available information.
4 The difference is the observed claims development result (CDR) at time I + 1.
5 Taking the expectation conditioned on all currently available information we expect to

get zero. From the business point of view this means, we assume that the CDR is zero
within the planing framework at time I. Or in other words, we don not expect any profit
or loss on already happened claims.



1 Basics of claim reserving 1.2 Basic terms and definitions
1.2.3 Stochastic reserving and Best Estimate (3/9)

Uncertainty of the Best Estimate

• The Holy Grail of loss reserving is to estimate the (DI -conditional) distribution of the
reserves. Unfortunately, this would require very restrictive model assumptions.

• At least we would like to estimate beside the Best Estimate the corresponding uncertainty.
Often this is done via the mean squared error of prediction (mse):

Definition 1.14 (mse)

The B-conditional mean square error of prediction of the estimate Ŷ of a square integrable random
variable Y is defined by

mseB
[
Ŷ
]
:= E

[
(Y − Ŷ )2

∣∣∣B
]
.

In practice one often fits some distribution to the estimates of the first two centred moments Ŷ

and m̂seB
[
Ŷ
]
. In loss reserving one often takes a log-normal distribution.

Lemma 1.15 (Random and parameter error)

The mean squared error of prediction can be split into random the parameter error:

mseB
[
Ŷ
]
= Var[Y |B]︸ ︷︷ ︸

random error

+
(
E
[
Y − Ŷ

∣∣∣B
])2

.
︸ ︷︷ ︸

parameter error
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A proof of the split of the mse will be given in Lecture 3.



1 Basics of claim reserving 1.2 Basic terms and definitions
1.2.3 Stochastic reserving and Best Estimate (4/9)

Definition 1.16 (Ultimate uncertainty)

The ultimate uncertainty of the estimated ultimate (or reserves) of accident
period i is defined by

mseDI

[
J∑

k=0

Ŝi,k

]
= E



(

J∑

k=0

(Si,k − Ŝi,k)

)2
∣∣∣∣∣∣
DI




and analogously we define the ultimate uncertainty of the whole ultimate (or
reserves) by

mseDI

[
I∑

i=0

J∑

k=0

Ŝi,k

]
= E



(

I∑

i=0

J∑

k=0

(Si,k − Ŝi,k)

)2
∣∣∣∣∣∣
DI


.
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1 Basics of claim reserving 1.2 Basic terms and definitions
1.2.3 Stochastic reserving and Best Estimate (5/9)

Definition 1.17 (CDR)

The true claims development result (true CDR) of accident period i at time I+1 is the difference
of the expected ultimates conditioned on all information at time I and I + 1, i.e.:

CDRI+1
i := E

[
J∑

k=0

Si,k

∣∣∣∣∣D
I

]
− E

[
J∑

k=0

Si,k

∣∣∣∣∣D
I+1

]
.

The (observed) claims development result (CDR) of accident period i at time I + 1 is the
difference of the two corresponding estimates. If necessary we will denote the time of estimation
by an additional upper index:

ĈDR
I+1

i :=
J∑

k=0

(ŜI
i,k − ŜI+1

i,k ) =
J∑

k=I+1−i
ŜI
i,k −

(
Si,I+1−i +

J∑

k=I+2−i
ŜI+1
i,k

)
.

The true and the observed CDR of the aggregation of all accident periods are defined by:

CDRI+1 :=

I∑

i=0

CDRI+1
i and ĈDR

I+1
:=

I∑

i=0

ĈDR
I+1

i .

• A negative CDR corresponds to a loss and a positive CDR corresponds to a profit.
• If we have a Best Estimate then the estimate of the DI-conditional expectation of the

observed CDR equals zero.
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I+1
:=

I∑

i=0
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For the true CDR we have

E
[
CDRI+1

i

∣∣∣DI
]
= E


E




J∑

k=I+1−i

Si,k

∣∣∣∣∣∣
DI


−


Si,I+1−i + E




J∑

k=I+2−i

Si,k

∣∣∣∣∣∣
DI+1






∣∣∣∣∣∣
DI


= 0.

But for the observed CDR it depends on how do we estimate. Best Estimate is implicitly defined
by

Ê
[
ĈDR

I+1

i

∣∣∣∣D
I

]
= 0.



1 Basics of claim reserving 1.2 Basic terms and definitions
1.2.3 Stochastic reserving and Best Estimate (6/9)

Uncertainty of the CDR

As we have seen in the example of Converium it is very important (in particular for the CFO,
Solvency II or SST) to have some estimate of the uncertainty of the claims development result.
Often this is done via some kind of mean squared error of prediction:

Definition 1.18 (Solvency uncertainty)

The solvency uncertainty of the estimated ultimate (or reserves) of accident period i is defined
by

mse0|DI

[
ĈDR

I+1

i

]
:= E

[(
ĈDR

I+1

i − 0

)2
∣∣∣∣∣D

I

]

and analogously we define the solvency uncertainty of the aggregated ultimate (or reserves) by

mse0|DI

[
ĈDR

I+1
]
:= E

[(
ĈDR

I+1
− 0

)2
∣∣∣∣∣D

I

]
.

Remark 1.19

Since in practice the deviation of the observed CDR from zero is more important than its deviation
from the true CDR, we take the difference between the observed CDR and zero instead of the
difference between the observed CDR and the true CDR.
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ĈDR

I+1
− 0

)2
∣∣∣∣∣D

I

]
.

Remark 1.19

Since in practice the deviation of the observed CDR from zero is more important than its deviation
from the true CDR, we take the difference between the observed CDR and zero instead of the
difference between the observed CDR and the true CDR.

2
0
2
1
-0

4
-2

6

Stochastic Reserving

Basics of claim reserving

Basic terms and definitions

• SST means Swiss Solvency Test
• It is also possible to look at the deviation of the observed CDR from the true CDR. The

corresponding uncertainty will always be less or equal to the one we are looking at.



1 Basics of claim reserving 1.2 Basic terms and definitions
1.2.3 Stochastic reserving and Best Estimate (7/9)

Best Estimate reserves, ultimate and solvency uncertainty

will be the main objects of interest for these lectures. When estimating them you
should always keep in mind:

• Best Estimate reserves can be compared with the real world. We only have
to wait some (maybe very long) time. Moreover, observing the CDR and
other statistics we can learn from the past in order to get better estimates
in the future.

• But uncertainties cannot be compared with observations from the real
world. They will always be a result of a model. Therefore, we cannot learn
from the past in order to get better estimates in the future (we even
cannot determine if some estimate is better than another).

• Best Estimate reserves and the corresponding uncertainties are like position
and impulse in physics:
You cannot (should not) measure both simultaneously!
For instance, in order to get a Best Estimate you may apply some expert
judgement, which cannot be reflected in the estimation of uncertainties by
the underlying model.
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1 Basics of claim reserving 1.2 Basic terms and definitions
1.2.3 Stochastic reserving and Best Estimate (8/9)

Conditional expectations and intuition

Let assume a mother has two children.

a) What (approximately) is the probability that she has two girls?

�
1

2
�

1

3
�

1

4

b) Assume in addition that she has at least one daughter.
What (approximately) is the probability that she has two girls?

�
1

2
�

1

3
�

1

4

c) Assume in addition that one daughter was born on a Monday.
What (approximately) is the probability that she has two girls?

�
1

2
�

1

3
�

1

4
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• In general insurance and in particular in reserving conditional probabilities and
expectations play an important roll. But they are often not easy to understand.

• In order to illustrate this, let have a look at an easy exercise.
• Be careful: The human brain is not build for (conditional) probabilities and expectations.



1 Basics of claim reserving 1.2 Basic terms and definitions
1.2.3 Stochastic reserving and Best Estimate (9/9)

Reserving in the real world:

underwriter
marked
news
. . .

MCL Munich-Chain-Ladder-Method
PIC Paid-Incurred-Chain-Claims-

Method
CLM Chain-Ladder-Method

CC Cape-Cod-Method
CLRM Complementary-Loss-Ratio-

Method
ECLRM Extended-Complementary-

Loss-Ratio-Method
BFM Bornhuetter-Ferguson-Method

. . .

CLM CCMCL, PIC,
ECLRM

BF, CLRM

42
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• On the one hand there are information. If actuaries speak of reserving they often thinks
in triangles or vectors, containing the usual candidates like payments, reported amounts
and number of reported claims, or more exotic things like payments just before closing a
claim.

• But often we forget that there are a lot of other very important sources of information,
which even may not be numerical.

• On the other hand there are a lot of reserving methods which may help us to get a Best
Estimate:

• Most of them are based on one triangle only, like Chain-Ladder or Cape Code.
• Others combine a triangle and a vector, like the Complementary-Loss-Ratio-Method and

the Bornhuetter-Fergueson-Method.
• In recent years some methods, which combine several (in most cases two) triangles, have

been propagated. For instance, Munich-Chain-Ladder,
Extended-Complementary-Loss-Ratio-Method and Paid-Incurred-Chain-Claims-Method.

• But at the end the actuary has to include all the other information in order to get his or
hers Best Estimate. And to be honest, often this has more to do with fortune telling
than with mathematics or statistics.



1 Basics of claim reserving 1.3 Literature and software (1/2)

Literature

[1] Claims Reserving Manual.
Institute of Actuaries, 2nd revised edition edition, 11 1997.

[2] Heinz Bauer.
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Berlin: de Gruyter, 1996.

[3] Heinz Bauer.
Measure and integration theory. Transl. from the German by Robert B. Burckel.
Berlin: de Gruyter, 2001.

[4] Schmidt, Klaus D.
A Bibliography on Loss Reserving (permanent update).
url: http://www.math.tu-dresden.de/sto/schmidt/dsvm/reserve.pdf.
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Loss reserving : an actuarial perspective.
Huebner international series on risk, insurance, and economic security. Kluwer Academic, Boston
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1 Basics of claim reserving 1.3 Literature and software (2/2)

• Free software:

* R (www.cran.r-project.org), in particular the packages actuar and
ChainLadder.

* LSRM Tools (http://sourceforge.net/projects/lsrmtools/)
* . . .

• Commercial software:

* IBNRS by Addactis
* CROS by Deloitte (not for sale any more)
* ResQ by Towers Watson (almost no further development)
* . . .
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2 Chain-Ladder-Method (CLM) 2.1 How does the Chain-Ladder method work
2.1.1 Chain-Ladder method without stochastic (1/2)

Basic idea behind the Chain-Ladder method

The Chain-Ladder method is based on a single triangle. Originally it was
formulated in terms of the cumulative payments

Ci,k :=

k∑

j=0

Si,j

instead of the payments Si,k during the development period k.
The Chain-Ladder method is based on the idea that:

• cumulative payments of the next development period are approximately
proportional to the cumulative payments of the current period, i.e.

Ci,k+1 ≈ fkCi,k; and

• accident period are independent.

In particular that means that all accident periods are comparable with respect
to their development.
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2 Chain-Ladder-Method (CLM) 2.1 How does the Chain-Ladder method work
2.1.1 Chain-Ladder method without stochastic (2/2)

Simple example

i\k 0 1 2 3 4 ultimate reserves

0 1001.9−→1901.6−→3041.2−→3801.0−→380 380 0= 380 − 380

1 1202.2−→2651.6−→4241.2−→5301.0−→530 530 0= 530 − 530

2 2002.0−→4051.6−→6481.2−→8101.0−→810 810 162= 810 − 648

3 1501.9−→2801.6−→4481.2−→5601.0−→560 560 280= 560 − 280

4 2002.0−→4001.6−→6401.2−→8001.0−→800 800 600= 800 − 200

f̂k 2.0 1.6 1.2 1.0 3080 1042

f̂0 =
190+265+405+280
100+120+200+150 = 2.0 =

I−1∑

i=0

Ci,0∑I−1
h=0Ch,0︸ ︷︷ ︸
weight

Ci,1

Ci,0︸︷︷︸
observed development factorf̂1 =

304+424+648
190+265+405 = 1.6

f̂2 =
380+530
304+424 = 1.2

f̂3 =
380
380 = 1.0
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2 Chain-Ladder-Method (CLM) 2.1 How does the Chain-Ladder method work
2.1.2 Stochastic behind the Chain-Ladder method (1/4)

Definition 2.1 (σ-algebras)

I

ac
ci

d
en

t
p
er

io
d

0 J
development period

I

calendar-
period

n

Dn

k

Dk

i

Di,k

• Bi,k is the σ-algebra of all information of accident period i up
to development period k:

Bi,k :=σ
(
Si,j : 0 ≤ j ≤ k

)
= σ

(
Ci,j : 0 ≤ j ≤ k

)

• Di,k is the σ-algebra containing all information up to accident
period i and development period k:

Di,k :=σ
(
Sh,j : 0 ≤ h ≤ i, 0 ≤ j ≤ k

)
= σ (Bh,k : 0 ≤ h ≤ i)

• Dn is the σ-algebra of all information up to calender period n:

Dn :=σ
(
Si,k : 0 ≤ i ≤ I, 0 ≤ k ≤ J ∧ (n− i)

)

=σ
(
Ci,k : 0 ≤ i ≤ I, 0 ≤ k ≤ J ∧ (n− i)

)

=σ




I⋃

i=0

J∧(n−i)⋃

k=0

Bi,k




• Dk is the σ-algebra of all information up to development
period k:

Dk :=σ
(
Si,j : 0 ≤ i ≤ I, 0 ≤ j ≤ k

)

=σ
(
Ci,j : 0 ≤ i ≤ I, 0 ≤ j ≤ k

)

=σ

(
I⋃

i=0

Bi,k

)

• Dn
k := σ (Dn ∪ Dk)
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σ-algebras

The σ-algebra Dn
k is used in order to enable us to separate two arbitrary payments Si1,k1

and
Si2,k2

with (i1, k1) 6= (i2, k2). That means, for all (i1, k1) 6= (i2, k2) there exists n and k such
that

(Si1,k1
∈ Dn

k and Si2,k2
/∈ Dn

k ) or (Si1,k1
/∈ Dn

k and Si2,k2
∈ Dn

k ).



2 Chain-Ladder-Method (CLM) 2.1 How does the Chain-Ladder method work
2.1.2 Stochastic behind the Chain-Ladder method (2/4)

Assumption 2.A (Mack’s Chain-Ladder method)

There exist development factors fk and variance parameters σ2
k such that the

cumulative payments

Ci,k :=
k∑

j=0

Si,j

satisfy

i)CLM E
[
Ci,k+1

∣∣∣Bi,k

]
= fkCi,k,

ii)CLM Var
[
Ci,k+1

∣∣∣Bi,k

]
= σ2

kCi,k and

iii)CLM accident periods are independent.
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If Bi,k are replaced by Di+k
k then the last assumption about independence is not necessary, i.e.

it is enough to assume

ĩ)
CLM

E
[
Ci,k+1

∣∣∣Di+k
k

]
= fkCi,k ,

ĩi)
CLM

Var
[
Ci,k+1

∣∣∣Di+k
k

]
= σ2

kCi,k.

We will see later that we can replace the exposure Ci,k on the right side by more arbitrary ex-
posures, which will leads to a wide class of reserving methods, called Linear Stochastic Reserving
methods (LSRMs), see section 4.



2 Chain-Ladder-Method (CLM) 2.1 How does the Chain-Ladder method work
2.1.2 Stochastic behind the Chain-Ladder method (3/4)

Remark 2.2

• Since accident periods are independent, Bi,k could be replaced by Dk, Di,k

or Di+k
k .

• Published by Thomas Mack in 1991, see [22]. But other actuaries have
used at least parts of the stochastic model before. The reserving method
itself is much older.

• From a statistical point of view the estimation of development factors and
variance parameters is critical, because we have to estimate 2J parameters
by only J(I − J−1

2 ) observed development factors. Therefore, in practise
the reserving actuary has to include other information in order to overcome
the lack of observed data (over parametrised model).

• The method cannot deal with incomplete triangles, where payments for
early calendar periods are missing and therefore the cumulative payments
for early accident periods are not complete (usually too small).

• There are other stochastic models that lead to the same estimates of the
reserves. For instance, the over-dispersed Poisson model, see [11].
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2 Chain-Ladder-Method (CLM) 2.1 How does the Chain-Ladder method work
2.1.2 Stochastic behind the Chain-Ladder method (4/4)

Corollary 2.3

• The parts i)CLM and ii)CLM of Assumption 2.A can be rewritten in
terms of the incremental payments Si,k:

i’)
CL

E
[
Si,k+1

∣∣∣Bi,k

]
= (fk − 1)Ci,k and

ii’)CL Var
[
Si,k+1

∣∣∣Bi,k

]
= σ2

kCi,k.

Therefore, Assumption 2.A means that under the knowledge of Bi,k the
cumulative payments Ci,k are a good exposure for next periods
payments Si,k+1.

• Iterating part i)CLM of Assumption 2.A we get

E
[
Ci,k+n

∣∣Bi,k

]
= E

[
E
[
Ci,k+n

∣∣Bi,k+n−1
]∣∣Bi,k

]

= fk+n−1E
[
Ci,k+n−1

∣∣Bi,k

]

= . . .

= fk+n−1 · . . . · fkCi,k.
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Proof of i’)CLM:

E
[
Si,k+1

∣∣∣Bi,k
]
= E

[
Ci,k+1 − Ci,k

∣∣∣Bi,k
]

= E
[
Ci,k+1

∣∣∣Bi,k
]
− Ci,k

︸ ︷︷ ︸
C

i,k
is Bi,k measurable

= fkCi,k︸ ︷︷ ︸
ii)CLM

−Ci,k

Proof of ii’)CLM:

Var
[
Si,k+1

∣∣∣Bi,k
]
= Var

[
Ci,k+1 − Ci,k

∣∣∣Bi,k
]

= Var
[
Ci,k+1

∣∣∣Bi,k
]

︸ ︷︷ ︸
C

i,k
is Bi,k measurable



2 Chain-Ladder-Method (CLM) 2.2 Future development

2.2.1 Projection of the future development (1/3)

Lemma 2.4 (Chain-Ladder development factors)

Let Assumption 2.A be fulfilled and take arbitrary DI ∩Dk-measurable weights 0 ≤ wi,k ≤ 1 with

• wi,k = 0 if Ci,k = 0 and

•
∑I−1−k

i=0 wi,k = 1 if Ci,k 6= 0 for at least one 0 ≤ i ≤ I − 1− k.

Then:

1. The weighted means
f̂k :=

I−1−k∑

i=0

wi,k

Ci,k+1

Ci,k

(2.1)

of the observed development factors
Ci,k+1

Ci,k
are Dk-conditional unbiased estimators of the

development factors fk. In order to shorten notation, we use here and in the following the
definition 0

0 := 0.
Moreover, the weights

wi,k :=
Ci,k∑I−1−k

h=0 Ch,k

(2.2)

result in estimators f̂k with the smallest (Dk-conditional) variance of all estimators of the
form (2.1).

2. For all k and all kn > kn−1 > . . . > k0 ≥ 0 we have

Var
[
f̂k

∣∣∣Dk

]
=

I−1−k∑

i=0

σ2
kw

2
i,k

Ci,k

and E
[
f̂kn f̂kn−1

· . . . · f̂k0
∣∣∣Dk0

]
= fknfkn−1

· . . . · fk0 .
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• unbiased:

E
[
f̂k

∣∣∣Dk

]
= E

[
I−1−k∑

i=0
wi,k

C
i,k+1
C
i,k

∣∣∣∣∣Dk

]

=

I−1−k∑

i=0

wi,k

E
[
Ci,k+1

∣∣∣Dk

]

C
i,k

︸ ︷︷ ︸
measurable with respect to Dk

=

I−k∑

i=0

wi,k

fkCi,k

C
i,k

︸ ︷︷ ︸
i)CLM

= fk

• minimal variance: Var
[
f̂k

]
= E

[
Var
[
f̂k

∣∣∣Dk

]]
+ Var

[
E
[
f̂k

∣∣∣Dk

]]
= E

[
Var
[
f̂k

∣∣∣Dk

]]
+ 0

Var
[
f̂k

∣∣∣Dk

]
= Var




I−1−k∑

i=0

wi,k

Ci,k+1

C
i,k

∣∣∣∣∣∣
Dk



=

I−1−k∑

i=0

w
2
i,k

Var
[
Ci,k+1

∣∣∣Dk

]

C2
i,k

︸ ︷︷ ︸
measurable with respect to Dk and iii)CLM

= σ
2
k

I−1−k∑

i=0

w
2
i,k

1

C
i,k

︸ ︷︷ ︸
ii)CLM

Lagrange: minimize
∑I−1−k

i=0 w2
i,k

1
C
i,k

+ λ
(
1 −

∑I−1−k
i=0 wi,k

)

∂

∂w
i,k

• = 2wi,k

1

C
i,k

−λ =⇒ wi,k =
λ

2
Ci,k and λ =

2
∑I−1−k

i=0 C
i,k

︸ ︷︷ ︸
∑I−1−k

i=0
w

i,k
=1

=⇒ wi,k =
Ci,k

∑I−1−k
h=0

C
h,k

• uncorrelated: E
[
f̂kn f̂kn−1

· . . . · f̂k0
∣∣∣Dk0

]
= E

[
E
[
f̂kn

∣∣∣Dkn

]
f̂kn−1

· . . . · f̂k0
∣∣∣Dk0

]

= fkn
E
[
f̂kn−1

· . . . · f̂k0
∣∣∣Dk

]
= . . . = fkn

fkn−1
· . . . · fk0



2 Chain-Ladder-Method (CLM) 2.2 Future development

2.2.1 Projection of the future development (2/3)

Estimator 2.5 (Chain-Ladder Ultimate)

Let Assumption 2.A be fulfilled. Then the estimates

Ĉi,k := f̂k−1 · . . . · f̂I−iCi,I−i

are DI−i-conditional unbiased estimators of Ci,k, for I − i < k ≤ J .
In order to shorten notation, we define

Ĉi,k := Ci,k,

for 0 ≤ k ≤ I − i.

Theorem 2.6 (Chain-Ladder Best Estimate)

The Estimator 2.5 with the variance minimizing weights (2.2) satisfies the condition
of a Best Estimate, i.e.

Ê
[
ĈI+1
i,J − ĈI

i,J

∣∣∣DI
]
= 0,

where the additional upper index specifies the time of estimation.
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• Proof of unbiasedness:

E
[
Ĉi,k

∣∣∣DI−i

]
= E

[
f̂k−1 · . . . · f̂I−iCi,I−i

∣∣∣DI−i

]
= E

[
E
[
f̂k−1

∣∣∣Dk−1

]
f̂k−2 · . . . · f̂I−iCi,I−i

∣∣∣DI−i

]

= E
[
fk−1 f̂k−2 · . . . · f̂I−iCi,I−i

∣∣∣DI−i

]
= . . . = fk−1 · . . . · fI−iCi,I−i

= E
[
Ci,k

∣∣∣DI−i

]

• Best Estimate: f̂I+1
k

:=
∑I−k

i=0

C
i,k

∑I−k
h=0

C
h,k

C
i,k+1
C
i,k

=



1−
C
I−k,k

∑I−k
h=0

C
h,k



 f̂I
k +

C
I−k,k

∑I−k
h=0

C
h,k

C
I−k,k+1
C
I−k,k

=⇒ E
[
f̂
I+1
k

∣∣∣DI
k

]
=



1−
CI−k,k

∑I−k
h=0

C
h,k



 f̂
I
k +

CI−k,k
∑I−k

h=0
C

h,k

fk =: f̄k

=⇒ Ê
[
f̂
I+1
k

∣∣∣DI
k

]
= f̂

I
k

E
[
Ĉ

I+1
i,J

∣∣∣DI
]
= E

[
f̂
I+1
J−1 · . . . · f̂

I+1
I+1−i

Ci,I+1−i

∣∣∣DI
]

= E
[
E
[
f̂
I+1
J−1

∣∣∣DI
J−1

]
f̂
I+1
J−2 · . . . · f̂

I+1
I+1−i

Ci,I+1−i

∣∣∣DI
]

= E
[
f̄J−1f̂

I+1
J−2 · . . . · f̂

I+1
I+1−iCi,I+1−i

∣∣∣DI
]

= . . . = f̄J−1 · . . . · f̄I+1−iE
[
Ci,I+1−i

∣∣∣DI
]
= f̄J−1 · . . . · f̄I+1−ifI−iCi,I−i

=⇒ Ê
[
Ĉ

I+1
i,J

∣∣∣DI
]
= f̂

I
J−1 · . . . · f̂

I
I−iCi,I−i = Ĉ

I
i,J = Ê

[
Ĉ

I
i,J

∣∣∣DI
]
.



2 Chain-Ladder-Method (CLM) 2.2 Future development

2.2.1 Projection of the future development (3/3)

Chain-Ladder method in practice

• The Chain-Ladder method is probably the most popular reserving
method in general insurance and usually works fine for most of the
standard business, provided we take care of:

* The size of the portfolio (has to be large enough to get the law of large
numbers working).

* The homogeneity of the portfolio (for example exclude extraordinary large
or late claims).

• But it has problems with:

* Inflation or other diagonal effects, because such effects contradict the
assumption of independent accident periods.

* Too large or too small values at the last (known) diagonal. Because the
values of the last diagonal are realisations of random variables, this may
even happen if the portfolio satisfies Assumption 2.A perfectly.
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2 Chain-Ladder-Method (CLM)
2.3 Validation and examples (part 1 of 3)

2.3.1 Chain-Ladder method on Payments and on Incurred (1/4)

Example 2.7 (Chain-Ladder method on payments)

• We took the variance minimizing weights (2.2).
• For the calculation of the IBNR we used the corresponding incurred from Example 2.8.
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2 Chain-Ladder-Method (CLM)
2.3 Validation and examples (part 1 of 3)

2.3.1 Chain-Ladder method on Payments and on Incurred (2/4)

Example 2.8 (Chain-Ladder method on incurred losses)

• We took the variance minimizing weights (2.2).
• For the calculation of the reserves we used the corresponding payments from Example 2.7.
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Example 2.8 (Chain-Ladder method on incurred losses)

• We took the variance minimizing weights (2.2).
• For the calculation of the reserves we used the corresponding payments from Example 2.7.
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2 Chain-Ladder-Method (CLM)
2.3 Validation and examples (part 1 of 3)

2.3.1 Chain-Ladder method on Payments and on Incurred (3/4)

Comparison of the two results

• Both, payments and incurred losses, will eventually result in the same
ultimate. But the estimates are not the same! This gap is a systematic
problem of projecting payments and incurred losses independently of
each other. For more information see [7].

• Although in total the difference is only 5% we have much larger
differences per accident period, which almost cancel each other.
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2 Chain-Ladder-Method (CLM)
2.3 Validation and examples (part 1 of 3)

2.3.1 Chain-Ladder method on Payments and on Incurred (4/4)
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2 Chain-Ladder-Method (CLM)
2.3 Validation and examples (part 1 of 3)

2.3.2 How to validate the Chain-Ladder assumptions (1/6)

Validation of Chain-Ladder Assumption 2.A

• Since we only have very few data, any statistical validation of Assumption 2.A will
usually fail.

• There are some helpful statistics and graphical presentations that can be used to get
a feeling about which estimate we should trust more. In the following slides we will
show some of them.

• The most important information is the knowledge about the composition of the
underlying portfolio and the corresponding risks. We usually face the problem of
splitting up the portfolio in subportfolios, which are as homogeneous as possible, but
are not too small in order to get the law of large numbers working. Typical criteria
for separation are:

* Type of the risk insured.
* Type of claims, like property damage or bodily injury.
* Type of payments, like lump sums, annuities, salvage and subrogation or deductibles.
* Type of case reserves, like automatically generated, set individually by a normal claims

manager or set individually by an expert.
* Complexity of the claims, often the size of the claim may be a criteria for its complexity.
* . . .

• Finally, actuaries have to use other information, too, in order to determine their
estimates.
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2 Chain-Ladder-Method (CLM)
2.3 Validation and examples (part 1 of 3)

2.3.2 How to validate the Chain-Ladder assumptions (2/6)

The projection of incurred is more stable and closer to the estimated ultimate than the projection
of payments. This may be an indication to trust it more.
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2 Chain-Ladder-Method (CLM)
2.3 Validation and examples (part 1 of 3)

2.3.2 How to validate the Chain-Ladder assumptions (3/6)

Plot of residuals

The residuals are defined by

Ci,k+1

Ci,k
− f̂k√

V̂ar
[
Ci,k+1

Ci,k

∣∣∣Dk

]=
Ci,k+1

Ci,k
− f̂k√
σ̂2
k

Ci,k

.

Payments Incurred

The residual plots are very similar, except that the incurred residuals look a bit more symmetric.
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2 Chain-Ladder-Method (CLM)
2.3 Validation and examples (part 1 of 3)

2.3.2 How to validate the Chain-Ladder assumptions (4/6)

Backtesting step by step

Here we compare the observed values with the one step backwards projected estimate, i.e.

Ci,k with
Ci,k+1

f̂k
.

Payments Incurred

Incurred seems to be a bit more stable, in particular for later development periods.
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2 Chain-Ladder-Method (CLM)
2.3 Validation and examples (part 1 of 3)

2.3.2 How to validate the Chain-Ladder assumptions (5/6)

Backtesting the ultimate

Here we compare the projected ultimate starting at development period k with the one starting
at development period I − i (the estimated ultimate), i.e.

Ci,k

J−1∏

j=k

f̂j with Ci,I−i

J−1∏

j=I−i
f̂j = Ĉi,J .

Payments Incurred

Again, incurred seems to be a bit more stable, in particular for later development periods.
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2 Chain-Ladder-Method (CLM)
2.3 Validation and examples (part 1 of 3)

2.3.2 How to validate the Chain-Ladder assumptions (6/6)

Sensitivity to exclusion or inclusion of individual observed development factors

Here we compare the projected ultimate based on the selected development factors with the
projected ultimate if we exclude (or include) a observed development factor within the estimation
of f̂k.

Payments Incurred

Again, incurred seems to be a bit more stable, in particular for later development periods.
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2 Chain-Ladder-Method (CLM)
2.3 Validation and examples (part 1 of 3)
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2 Chain-Ladder-Method (CLM) 2.4 Ultimate uncertainty

2.4.1 Ultimate uncertainty of accident period i (1/6)

Ultimate uncertainty of a single accident period (repetition)

The ultimate uncertainty of the estimated ultimate (or reserves) of accident
period i is defined by

mseDI

[
Ĉi,J

]
= E

[(
Ci,J − Ĉi,J

)2∣∣∣∣DI

]
.

The mse can be split into random and parameter error

mseDI

[
Ĉi,J

]
= Var

[
Ci,J

∣∣DI
]

︸ ︷︷ ︸
random error

+ E
[
Ci,J − Ĉi,J

∣∣∣DI
]2

︸ ︷︷ ︸
parameter error

and analogously for the ultimate uncertainty of the whole reserves.
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Var
[
Ci,J

∣∣∣DI
]
= Var

[
Ci,J − Ĉi,J

∣∣∣DI
]

= E
[(

Ci,J − Ĉi,J

)2
∣∣∣∣D

I

]

︸ ︷︷ ︸
=mse

DI

[
Ĉ

i,J

]

− E
[
Ci,J − Ĉi,J

∣∣∣DI
]2



2 Chain-Ladder-Method (CLM) 2.4 Ultimate uncertainty

2.4.1 Ultimate uncertainty of accident period i (2/6)

Taylor approximation of the mse (introduced by Ancus Röhr in [12])

Lets look at the (multi-linear) functional:

Ui(g) x := gJ−1 · · · gI−ix.
Then we get:

∂

∂gj
Ui(g) x = gJ−1 · · · gj+1gj−1 · · · gI−ix =

Ui(g) x

gj
,

Ui

(
f̂
)
Ci,I−i = f̂J−1 . . . f̂I−iCi,I−i = Ĉi,J ,

Ui(Fi)Ci,I−i = Fi,J−1 . . . Fi,I−iCi,I−i = Ci,J and

Ci,J − Ĉi,J ≈
J−1∑

k=I−i

∂

∂Fi,k
Ui(Fi)

∣∣∣∣
f̂

Ci,I−i
(
Fi,k − f̂k

)

=

J−1∑

k=I−i

Ĉi,J

f̂k

(
Fi,k − f̂k

)
,

where we used a first order Taylor approximation and Fi and f̂ denote the vector of all link ratios
Fi,k : = Ci,k+1/Ci,k of accident period i and the vector of all estimated development factors f̂k,
respectively.
Note, for i+ k ≥ I we have:

E
[
Fi,k|DI

]
= fk, Var

[
Fi,k|DI

]
≈ σ̂2

k

Ĉi,k

and Cov
[
Fi,k, Fh,j |DI

]
= 0 for (i, k) 6= (h, j).
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Sine Fi,k = Ci,k+1/Ci,k, we get for i+ k ≥ I

E
[
Fi,k

∣∣DI
]
= E

[
E
[
Fi,k

∣∣Di+k
k

]∣∣∣DI
]
= E

[
E

[
Ci,k+1

Ci,k

∣∣∣∣∣D
i+k
k

]∣∣∣∣∣D
I

]
= E

[
fk|DI

]
= fk

Var
[
Fi,k

∣∣DI
]
= E

[
Var

[
Fi,k

∣∣Di+k
k

]∣∣∣DI
]
+ Var

[
E
[
Fi,k

∣∣Di+k
k

]∣∣∣DI
]

= E




Var
[
Ci,k+1

∣∣∣Di+k
k

]

C2
i,k

∣∣∣∣∣∣
DI


+ 0 = E

[
σ2
kCi,k

C2
i,k

∣∣∣∣∣D
I

]
≈

σ̂2
k

Ĉi,k

.

For the covariance statement we get: If h+ j < I then Fh,j ∈ DI and we are done. Otherwise,
since (i, k) 6= (h, j), either Fi,k ∈ Dh+j

j or Fh,j ∈ Di+k
k . Lets assume the first:

Cov
[
Fi,k, Fh,j

∣∣DI
]
= E

[
Cov

[
Fi,k, Fh,j

∣∣Dh+j
j

]∣∣∣DI
]
+ Cov

[
E
[
Fi,k

∣∣Dh+j
j

]
,E

[
Fh,j

∣∣Dh+j
j

]∣∣∣DI
]

= 0 + Cov
[
Fi,k, fj

∣∣DI
]
= 0



2 Chain-Ladder-Method (CLM) 2.4 Ultimate uncertainty

2.4.1 Ultimate uncertainty of accident period i (3/6)

Estimator 2.9 (Linear approximation of the ultimate uncertainty of accident period i)

mseDI

[
Ĉi,J

]
= E

[(
Ci,J − Ĉi,J

)2∣∣∣∣DI

]

≈ E



(

J−1∑

k=I−i

Ĉi,J

f̂k

(
Fi,k − f̂k

))2
∣∣∣∣∣∣
DI


 (Taylor approximation)

=
J−1∑

k1,k2=I−i

Ĉi,J

f̂k1

Ĉi,J

f̂k2

E
[(

Fi,k1 − f̂k1

)(
Fi,k2 − f̂k2

)∣∣∣DI
]

=

J−1∑

k1,k2=I−i

Ĉi,J

f̂k1

Ĉi,J

f̂k2

(
Cov

[
Fi,k1 , Fi,k2 |DI

]
+
(
f̂k1 − fk1

)(
f̂k2 − fk2

))

≈
J−1∑

k1,k2=I−i

Ĉi,J

f̂k1

Ĉi,J

f̂k2


Cov

[
Fi,k1 , Fi,k2 |DI

]
︸ ︷︷ ︸

random error

+Cov
[
f̂k1 , f̂k2

∣∣∣Dk1∧k2
]

︸ ︷︷ ︸
parameter error




≈
J−1∑

k=I−i

σ̂2
k

f̂2
k

Ĉ2
i,J

1

Ĉi,k︸ ︷︷ ︸
random error

+

J−1∑

k=I−i

σ̂2
k

f̂2
k

Ĉ2
i,J

I−k−1∑

h=0

w2
h,k

Ch,k
︸ ︷︷ ︸

parameter error

= Ĉ2
i,J

J−1∑

k=I−i

σ̂2
k

f̂2
k

(
1

Ĉi,k

+

I−k−1∑

h=0

w2
h,k

Ch,k

)
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Estimator 2.9 (Linear approximation of the ultimate uncertainty of accident period i)
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]

︸ ︷︷ ︸
parameter error




≈
J−1∑

k=I−i

σ̂2
k

f̂2
k

Ĉ2
i,J

1

Ĉi,k︸ ︷︷ ︸
random error

+
J−1∑

k=I−i

σ̂2
k

f̂2
k

Ĉ2
i,J

I−k−1∑

h=0

w2
h,k

Ch,k
︸ ︷︷ ︸

parameter error

= Ĉ2
i,J

J−1∑

k=I−i

σ̂2
k

f̂2
k

(
1

Ĉi,k

+
I−k−1∑

h=0

w2
h,k

Ch,k

)2
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E
[(

Fi,k1
− f̂k1

) (
Fi,k2

− f̂k2

)∣∣∣DI
]
= E

[((
Fi,k1

− fk1

)
−
(
f̂k1
− fk1

))((
Fi,k2

− fk2

)
−
(
f̂k2
− fk2

))∣∣∣DI
]

= E
[(

Fi,k1
− fk1

)(
Fi,k2

− fk2

)∣∣∣DI
]
− E

[(
Fi,k1

− fk1

)(
f̂k2
− fk2

)∣∣∣DI
]

− E
[(

f̂k1
− fk1

)(
Fi,k2

− fk2

)∣∣∣DI
]
+ E

[(
f̂k1
− fk1

)(
f̂k2
− fk2

)∣∣∣DI
]

= Cov
[
Fi,k1

, Fi,k2

∣∣∣DI
]
− E

[
Fi,k1

− fk1

∣∣∣DI
](

f̂k2
− fk2

)

− E
[
Fi,k2

− fk2

∣∣∣DI
](

f̂k1
− fk1

)
+
(
f̂k1
− fk1

)(
f̂k2
− fk2

)

= Cov
[
Fi,k1

, Fi,k2

∣∣∣DI
]
− 0− 0 +

(
f̂k1
− fk1

)(
f̂k2
− fk2

)

For k1 < k2 we have f̂k1
∈ Dk2

and Fi,k1
∈ DI

k2
. This leads to

Cov
[
f̂k1

, f̂k2

∣∣∣Dk1∧k2

]
= E

[
Cov

[
f̂k1

, f̂k2

∣∣∣Dk2

]∣∣∣Dk1∧k2

]
+ Cov

[
E
[
f̂k1

∣∣∣Dk2

]
, E
[
f̂k2

∣∣∣Dk2

]∣∣∣Dk1∧k2

]

= 0 + Cov
[
f̂k1

, fk2

∣∣∣Dk1∧k2

]
= 0

Cov
[
Fi,k1

, Fi,k2

∣∣∣DI
]
= E

[
Cov

[
Fi,k1

, Fi,k2

∣∣∣DI
k2

]∣∣∣DI
]
+ Cov

[
E
[
Fi,k1

∣∣∣DI
k2

]
,E
[
Fi,k2

∣∣∣DI
k2

]∣∣∣DI
]

= 0 + Cov
[
Fi,k1

, fk2

∣∣∣DI
]
= 0



2 Chain-Ladder-Method (CLM) 2.4 Ultimate uncertainty

2.4.1 Ultimate uncertainty of accident period i (4/6)

Corollary 2.10

• If we use the variance minimizing weights

wi,k =
Ci,k

I−k−1∑
h=0

Ch,k

we get

mseDI

[
Ĉi,J

]
≈ Ĉ2

i,J

J−1∑

k=I−i

σ̂2
k

f̂2
k

(
1

Ĉi,k

+
1

∑I−k−1
h=0 Ch,k

)
.

• For the estimated coefficient of variation (and variance minimizing weights) we get

V̂aC
(
Ĉi,J

)
:=

√
V̂ar
[
Ci,J

]

Ê
[
Ĉi,J

] ≈

√
m̂seDI

[
Ĉi,J

]

Ĉi,J

=

√√√√
J−1∑

k=I−i

σ̂2
k

f̂2
k

(
1

Ĉi,k

+
1

∑I−k−1
h=0 Ch,k

)
−→

C·,k (or I with I − i = v)→∞
0


or

√√√√
J−1∑

k=v

σ̂2
k

f̂2
k

1

Ĉi,k


,

which means the coefficient of variation of the ultimate uncertainty (or at least of the
parameter error) vanishes with increasing volume. Usually, this is not valid in practice.
Therefore, you should always consider in addition some model error.
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If we always use only the n last observed diagonals in order to estimate the development factors
the parameter error term in the coefficient of variation will not converge to zero for I →∞.
In practice, this is often a reasonable approach, because the comparability of the development
of very old (calender) periods in respect to the expected future is very questionable.
Nevertheless, you should always consider some model error.



2 Chain-Ladder-Method (CLM) 2.4 Ultimate uncertainty

2.4.1 Ultimate uncertainty of accident period i (5/6)

Corollary 2.11

• Instead of using a Taylor approximation you can directly estimate the
random and the parameter error like Mack has done in the original
approach, see [22]. The result is the same.

• For the process error we have made five approximations:

* Taylor approximation,

* Var
[
1/Ci,k|DI

]
≈ 1/Ci,k,

* Ci,k ≈ Ĉi,k,

* fk ≈ f̂k, and

* σ2
k ≈ σ̂2

k.

Following the original calculation of Mack, one can see that the first
two approximation cancel each other.

c©R. Dahms (ETH Zurich, Spring 2021) Stochastic Reserving: Lecture 3 10 Mar 2021 46 / 240



Corollary 2.11

• Instead of using a Taylor approximation you can directly estimate the
random and the parameter error like Mack has done in the original
approach, see [22]. The result is the same.

• For the process error we have made five approximations:

* Taylor approximation,

* Var
[
1/Ci,k|DI

]
≈ 1/Ci,k,

* Ci,k ≈ Ĉi,k,
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Original estimation of the random error:

Var
[
Ci,J

∣∣∣DI
]
= Var

[
Ci,J

∣∣∣Bi,I−i

]

︸ ︷︷ ︸
iii)CLM

= Var
[
E
[
Ci,J

∣∣∣Bi,J−1

]∣∣∣Bi,I−i

]
+ E

[
Var
[
Ci,J

∣∣∣Bi,J−1

]∣∣∣Bi,I−i

]

= Var
[
fJ−1Ci,J−1

∣∣∣Bi,I−i

]

︸ ︷︷ ︸
i)CLM

+ E
[
σ
2
J−1Ci,J−1

∣∣∣Bi,I−i

]

︸ ︷︷ ︸
ii)CLM

= f
2
J−1Var

[
Ci,J−1

∣∣∣Bi,I−i

]
+ σ

2
J−1

J−2∏

j=I−i

fj Ci,I−i

︸ ︷︷ ︸
Corollary 2.3

= · · · =
J−1∑

k=I−i

J−1∏

j=k+1

f
2
j σ

2
k

k−1∏

j=I−i

fj Ci,I−i

=

J−1∑

k=I−i

σ2
k

f2
k

∏k−1
j=I−i

f
j
C

i.I−i




J−1∏

j=I−i

fj Ci,I−i




2

≈ Ĉ
2
i,J

J−1∑

k=I−i

σ̂2
k

f̂2
k

∏k−1
j=I−i

f̂
j
C

i.I−i

= Ĉ
2
i,J

J−1∑

k=I−i

σ̂2
k

f̂2
k
Ĉ

i,k



2 Chain-Ladder-Method (CLM) 2.4 Ultimate uncertainty

2.4.1 Ultimate uncertainty of accident period i (6/6)

Estimator 2.12 (Variance parameter)

Let Assumption 2.A be fulfilled. Then

σ̂2
k :=

1

Zk

I−1−k∑

i=0

Ci,k

(
Ci,k+1

Ci,k

− f̂k

)2

,

with

Zk := I − 2− k +

I−1−k∑

i=0

w2
i,k

1

Ci,k

I−1−k∑

h=0

Ch,k,

are Dk-conditional unbiased estimators for the variance parameters σ2
k, provided that

Zk > 0.
If Zk ≤ 0 one could take

σ̂2
k := min

(
(σ̂2

k−1)
2

σ̂2
k−2

, σ̂2
k−2, σ̂

2
k−1

)
.

Variance minimizing weights

of (2.2) lead to Zk = I − k − 1.
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Unbiasedness:

E



Ci,k




Ci,k+1

C
i,k

− f̂k




2∣∣∣∣∣∣
Dk



= Ci,kVar




Ci,k+1

C
i,k

− f̂k

∣∣∣∣∣∣
Dk





= Ci,kVar




Ci,k+1

C
i,k

−
I−k−1∑

h=0

wh,k

Ch,k+1

C
h,k

∣∣∣∣∣∣
Dk





= Ci,kVar




I−k−1∑

h=0




Ci,k+1

(I − k)C
i,k

− wh,k

Ch,k+1

C
h,k





∣∣∣∣∣∣
Dk





= Ci,k

I−1−k∑

h1=0

I−1−k∑

h2=0

Cov








Ci,k+1

(I − k)C
i,k

− wh1,k

Ch1,k+1

C
h1,k



 ,




Ci,k+1

(I − k)C
i,k

− wh2,k

Ch2,k+1

C
h2,k





∣∣∣∣∣∣
Dk





= Ci,k

I−1−k∑

h1=0

I−1−k∑

h2=0



 σ2
k

(I − k)2C
i,k

−
σ2
kwi,k

(I − k)C
i,k

1h1=i −
σ2
kwi,k

(I − k)C
i,k

1h2=i +
σ2
kwh1,kwh2,k

C
h1,k

1h1=h2





= σ
2
k



1 − 2wi,k + Ci,k

I−1−k∑

h=0

w2
h,k

C
h,k



 =⇒︸︷︷︸
change order of summation

I−1−k∑

i=0

E



Ci,k




Ci,k+1

C
i,k

− f̂k




2∣∣∣∣∣∣
Dk



= Zk

Taking the variance minimizing weights we get

Zk = I−2−k+

I−1−k∑

i=0

C2
i,k(∑I−1−k

h=0
C

h,k

)2
1

C
i,k

I−1−k∑

h=0

Ch,k = I−2−k+

I−1−k∑

i=0

Ci,k
∑I−1−k

h=0
C

h,k

= I−1−k.



2 Chain-Ladder-Method (CLM) 2.4 Ultimate uncertainty

2.4.2 Ultimate uncertainty of the aggregation of all accident periods (1/3)

Ultimate uncertainty of all accident periods

Analogue to the procedure we used for a single accident period, we split the
ultimate uncertainty of the aggregation of all accident periods into:

mseDI

[
I∑

i=0

Ĉi,J

]
= Var

[
I∑

i=I−J+1

Ci,J

∣∣∣∣∣D
I

]

︸ ︷︷ ︸
random error

+ E

[
I∑

i=I−J+1

(
Ci,J − Ĉi,J

)∣∣∣∣∣D
I

]2

︸ ︷︷ ︸
squared parameter estimation error

.

Since accident periods are independent, the random error of the sum of all
accident periods is simply the sum of all single periods random errors.
But for the parameter error this is not the case, because the accident periods
are coupled via the same estimated development factors.

c©R. Dahms (ETH Zurich, Spring 2021) Stochastic Reserving: Lecture 3 10 Mar 2021 48 / 240



Ultimate uncertainty of all accident periods

Analogue to the procedure we used for a single accident period, we split the
ultimate uncertainty of the aggregation of all accident periods into:

mseDI

[
I∑

i=0
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2 Chain-Ladder-Method (CLM) 2.4 Ultimate uncertainty

2.4.2 Ultimate uncertainty of the aggregation of all accident periods (2/3)

Estimator 2.13 (of the ultimate uncertainty of all accident periods)

mseDI

[
I∑

i=0

Ĉi,J

]
= E



(

I∑

i=0

(
Ci,J − Ĉi,J

))2
∣∣∣∣∣∣
DI




≈ E



(

I∑

i=0

J−1∑

k=I−i

Ĉi,J

f̂k

(
Fi,k − f̂k

))2
∣∣∣∣∣∣
DI


 (Taylor approximation)

=

I∑

i1,i2=0

J−1∑

k1=I−i1

J−1∑

k2=I−i2

Ĉi1,J

f̂k1

Ĉi2,J

f̂k2

E
[(

Fi1,k1 − f̂k1

)(
Fi2,k2 − f̂k2

)∣∣∣DI
]

=
J−1∑

k1,k2=0

I∑

i1=I−k1

I∑

i2=I−k2

Ĉi1,J

f̂k1

Ĉi2,J

f̂k2

(
Cov

[
Fi1,k1 , Fi2,k2 |DI

]
+
(
f̂k1 − fk1

)(
f̂k2 − fk2

))

≈
J−1∑

k1,k2=0

I∑

i1=I−k1

I∑

i2=I−k2

Ĉi1,J

f̂k1

Ĉi2,J

f̂k2


Cov

[
Fi1,k1 , Fi2,k2 |DI

]
︸ ︷︷ ︸

random error

+Cov
[
f̂k1 , f̂k2

∣∣∣Dk1∧k2

]

︸ ︷︷ ︸
parameter error




≈
J−1∑

k=0

σ̂2
k

f̂2
k

I∑

i=I−k
Ĉ2
i,J

1

Ĉi,k︸ ︷︷ ︸
random error

+

J−1∑

k=0

σ̂2
k

f̂2
k

(
I∑

i=I−k
Ĉi,J

)2 I−k−1∑

h=0

w2
h,k

Ch,k
︸ ︷︷ ︸

parameter error
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E
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]

=
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k1,k2=0

I∑

i1=I−k1

I∑

i2=I−k2

Ĉi1,J

f̂k1

Ĉi2,J

f̂k2

(
Cov

[
Fi1,k1 , Fi2,k2 |DI

]
+
(
f̂k1 − fk1

)(
f̂k2 − fk2

))

≈
J−1∑

k1,k2=0

I∑

i1=I−k1

I∑

i2=I−k2

Ĉi1,J

f̂k1

Ĉi2,J

f̂k2


Cov

[
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︸ ︷︷ ︸

random error

+Cov
[
f̂k1 , f̂k2

∣∣∣Dk1∧k2

]

︸ ︷︷ ︸
parameter error




≈
J−1∑

k=0

σ̂2
k

f̂2
k

I∑

i=I−k
Ĉ2
i,J

1

Ĉi,k︸ ︷︷ ︸
random error

+
J−1∑

k=0

σ̂2
k

f̂2
k

(
I∑

i=I−k
Ĉi,J

)2 I−k−1∑

h=0

w2
h,k

Ch,k
︸ ︷︷ ︸

parameter error
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For i1 + k1 ≥ I and i2 + k2 ≥ I we get

Cov
[
Fi1,k1

, Fi2,k2

∣∣∣DI
]

= Cov
[
E
[
Fi1,k1

∣∣∣DI
k1∨k2

]
, E
[
Fi2,k2

∣∣∣DI
k1∨k2

]∣∣∣DI
]
+ E

[
Cov

[
Fi1,k1

, Fi2,k2

∣∣∣DI
k1∨k2

]∣∣∣DI
]

= 0 + 1i1=i2
1k1=k2

σ
2
k1

E



 1

C
i1,k1

∣∣∣∣∣∣
DI



≈ 1i1=i2
1k1=k2

σ̂
2
k1

1

Ĉ
i1,k1

Cov
[
f̂k1

, f̂k2

∣∣∣Dk1∧k2

]
= 1k1=k2

σ
2
k1

I−k1−1∑

h=0
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Ĉi1,J

f̂
k1
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Ĉ
i1,k2

+

I−k1−1∑

h=0

w2
h,k1

C
h,k1





=

J−1∑

k=0

σ̂2
k

f̂2
k




I∑

i=I−k

Ĉ
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Ĉ
i,k

+




I∑

i=I−k
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2 Chain-Ladder-Method (CLM) 2.4 Ultimate uncertainty

2.4.2 Ultimate uncertainty of the aggregation of all accident periods (3/3)

Corollary 2.14
If we use the variance minimizing weights

wi,k =
Ci,k

I−k−1∑
h=0

Ch,k

and the notation Ĉi,k := Ci,k, for i+ k ≤ I, we get
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
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Ĉ2
i,J
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Ĉi,k

+

(∑I
i=I−k Ĉi,J
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Ĉi,J

)2 J−1∑

k=0

σ̂2
k

f̂2
k

(
1

∑I−k−1
i=0 Ĉi,k
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For each k < J we have
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2 Chain-Ladder-Method (CLM)
2.5 Validation and examples (part 2 of 3)

2.5.1 Ultimate uncertainty (1/7)

Credibility like weighting of ultimates

One way of combining (two or more) estimates for the same ultimate is to use a credibility
like weighting. This means, for an estimated ultimate we take the lesser credibility the
further away it is from the last known value. In formula:

Estimator 2.15 (Credibility like weighted ultimate)

Let Ĉm
i,J , 0 ≤ m ≤ M , be estimates of the same (unknown) ultimate. Then

M∑

m=0

min

(
Ĉm
i,J

Cm
i,I−i

,
Cm
i,I−i

Ĉm
i,J

)(
M∑

l=0

min

(
Ĉ l
i,J

C l
i,I−i

,
C l
i,I−i

Ĉ l
i,J

))−1

︸ ︷︷ ︸
mixing weights

Ĉm
i,J

is a credibility like weighted mean of these estimates.

Remark 2.16 (Credibility like weighted ultimate uncertainty)

We will see later, see Section 4, that it is possible to transfer the weighting of ultimates
to the corresponding ultimate uncertainties.
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2 Chain-Ladder-Method (CLM)
2.5 Validation and examples (part 2 of 3)

2.5.1 Ultimate uncertainty (2/7)

Credibility like weighting of ultimates from Examples 2.7 and 2.8

• We used the standard estimators for the variance parameters, see Estimator 2.12.
• Since the incurred values are much faster near the ultimate, the corresponding projection

gets more weight.

c©R. Dahms (ETH Zurich, Spring 2021) Stochastic Reserving: Lecture 3 10 Mar 2021 52 / 240



Credibility like weighting of ultimates from Examples 2.7 and 2.8

• We used the standard estimators for the variance parameters, see Estimator 2.12.
• Since the incurred values are much faster near the ultimate, the corresponding projection

gets more weight.

2
0
2
1
-0

4
-2

6

Stochastic Reserving

Chain-Ladder-Method (CLM)

Validation and examples (part 2 of 3)



2 Chain-Ladder-Method (CLM)
2.5 Validation and examples (part 2 of 3)

2.5.1 Ultimate uncertainty (3/7)

The projection of incurred is much faster very close and stable to the estimated ultimate than
the projection of payments. This may be an indication to trust it more.
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2 Chain-Ladder-Method (CLM)
2.5 Validation and examples (part 2 of 3)

2.5.1 Ultimate uncertainty (4/7)

Ultimate uncertainties for Examples 2.7 and 2.8

• We used the standard estimators for the variance parameters, see Estimator 2.12.
• Since the incurred values are a bit more stable, in particular for later development periods,

the corresponding uncertainties are lower.
• The linear approximation for the (parameter estimation) uncertainty results in almost the

same values as without approximation.

We always show the square root of uncertainties.
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Validation and examples (part 2 of 3)

The uncertainty of the weighing has been calculated using a LSRM coupling of both CLM via
the exposure R0,1

i,k = R1,0
i,k := R0,0

i,k + R1,1
i,k , see Section 4.

One can derive estimators for the ultimate uncertainty without a first order Taylor approximation,
see [21]. In practice, the resulting figures are almost alike.



2 Chain-Ladder-Method (CLM)
2.5 Validation and examples (part 2 of 3)

2.5.1 Ultimate uncertainty (5/7)

Density plot of the distribution of the estimated reserves using
Lognormal distributions (dotted lines representing the Best Estimate)

6 8 10 12 14 16

in million

Projection of Payments

Projection of Incurred

Credibility like weighting

c©R. Dahms (ETH Zurich, Spring 2021) Stochastic Reserving: Lecture 3 10 Mar 2021 55 / 240



Density plot of the distribution of the estimated reserves using
Lognormal distributions (dotted lines representing the Best Estimate)

0 2 4 6 8 10 12 14 160 2 4

in million

Projection of Payments

Projection of Incurred

Credibility like weighting

2
0
2
1
-0

4
-2

6

Stochastic Reserving

Chain-Ladder-Method (CLM)

Validation and examples (part 2 of 3)

The projection of incurred losses results in a more symmetric and tight distribution than the
projection of payments. Therefore, if we believe in the incurred projection and the corresponding
estimate of the ultimate uncertainty we would expect that the true future payments will only
deviate from the estimated reserves by a small amount. Whereas the projection of payments
indicates much larger differences (uncertainty).
The uncertainty of the weighing has been calculated using a LSRM coupling of both CLM via
the exposure R0,1

i,k = R1,0
i,k := R0,0

i,k + R1,1
i,k , see Section 4.



2 Chain-Ladder-Method (CLM)
2.5 Validation and examples (part 2 of 3)

2.5.1 Ultimate uncertainty (6/7)

Problem 2.17 (Fitting a distribution to Best Estimate reserves and mse)

Assume that for a portfolio we have

• A Best Estimate for the reserves,
• an estimate for uncertainties in terms of mse and the corresponding estimate of the

reserves R. That means the method, which was used for the estimation of the
uncertainty gives us a corresponding estimate of the reserves, which will usually differ
from the Best Estimate reserves.

How to fit a distribution to those estimates?

Fitting a distribution to Best Estimate reserves and mse

• Shifting the distribution: Means we fit the distribution with

Expectation = Best Estimate reserves (or ultimate)

Variance = m̂se

• Stretching the distribution: Means we fit the distribution with

Expectation = Best Estimate reserves (or ultimate)

Variance =
m̂se · (Best Estimate reserves)2

R2
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Validation and examples (part 2 of 3)

I prefer the stretching, as long as it leads to plausible results, which in particular is not the case
if R ≈ 0.



2 Chain-Ladder-Method (CLM)
2.5 Validation and examples (part 2 of 3)

2.5.1 Ultimate uncertainty (7/7)

Density plot of the Lognormal distributions

Best Estimate reserves (BE) = 10

m̂se = 0.5 and R = 8

6 8 10 12 14 16

σ2 = 0.5 Shifting σ2 = 0.5

Stretching σ2 = 0.51002

642
≈ 1.22
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Stretching means to keep the coefficient of variation
√

Variance
Expectation

constant.
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2 Chain-Ladder-Method (CLM)
2.5 Validation and examples (part 2 of 3)

2.5.1 Ultimate uncertainty
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2 Chain-Ladder-Method (CLM) 2.6 Solvency uncertainty

2.6.1 Solvency uncertainty of a single accident period (1/7)

Claims development result and solvency uncertianty (repetition)

The observed claims development result (CDR) at time I +1 of a single accident period i is the
(observed) difference of the estimated ultimates of estimation time I and estimation time I +1:

ĈDR
I+1

i := ĈI
i,J − ĈI+1

i,J .

Here and in the following we denote (if necessary) the time of estimation by an additional upper
index.
A negative CDR corresponds to a loss and a positive CDR corresponds to a profit. Moreover, in
the Best Estimate case the estimate of the conditionally expected CDR is zero, i.e.

Ê

[
ĈDR

I+1

i

∣∣∣∣DI

]
= 0.

The solvency uncertainty of a single accident period i is defined as the mse of the ĈDR
I+1

i

conditioned under all information at time I, i.e.

mse0|DI

[
ĈDR

I+1

i

]
:= E

[(
ĈDR

I+1

i − 0

)2
∣∣∣∣∣D

I

]

= Var
[
ĈI+1
i,J

∣∣∣DI
]

︸ ︷︷ ︸
random error

+ E
[
ĈI+1
i,J − ĈI

i,J

∣∣∣DI
]2

︸ ︷︷ ︸
parameter error

.
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ĈI+1
i,J

∣∣∣DI
]

︸ ︷︷ ︸
random error

+ E
[
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2 Chain-Ladder-Method (CLM) 2.6 Solvency uncertainty

2.6.1 Solvency uncertainty of a single accident period (2/7)

Assumption 2.B (Consistent estimates over time)

In order to have consistent estimates at times I and I + 1 we assume that there exist
DI ∩ Dk-measurable weights 0 ≤ wI+1

I−k,k ≤ 1 with

• CI−k,k = 0 implies wI+1
I−k,k = 0,

• wI+1
i,k := (1− wI+1

I−k,k)w
I
i,k, for 0 ≤ i ≤ I − 1− k.

Remark 2.18
The above assumption means that we do not change our (relative) believes into the old devel-
opment periods and only put some credibility wI+1

I−k,k to the new encountered development.
The variance minimizing weights, introduced in Lemma 2.4, satisfy Assumption 2.B.

Lemma 2.19 (Consistent estimates over time)

Let Assumptions 2.A and 2.B be fulfilled. Then we have

1. f̂ I+1
k = (1− wI+1

I−k,k)f̂
I
k + wI+1

I−k,k
CI−k,k+1

CI−k,k
= (1− wI+1

I−k,k)f̂
I
k + wI+1

I−k,kFI−k,k,

2. f̄k := E
[
f̂ I+1
k

∣∣∣DI
]
= E

[
f̂ I+1
k

∣∣∣DI
k

]
= (1− wI+1

I−k,k)f̂
I
k + wI+1

I−k,kfk ≈ f̂ I
k ,

3. C̄i,J := E
[
ĈI+1
i,J

∣∣∣DI
]
=
∏J−1

k=I+1−i f̄kfI−iCi,I−i,

4. Ê

[
ĈDR

I+1

i

∣∣∣∣DI

]
= 0, which means we have a Best Estimate.
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Remark 2.18
The above assumption means that we do not change our (relative) believes into the old devel-
opment periods and only put some credibility wI+1

I−k,k to the new encountered development.
The variance minimizing weights, introduced in Lemma 2.4, satisfy Assumption 2.B.

Lemma 2.19 (Consistent estimates over time)

Let Assumptions 2.A and 2.B be fulfilled. Then we have

1. f̂ I+1
k = (1− wI+1

I−k,k)f̂
I
k + wI+1

I−k,k
CI−k,k+1

CI−k,k
= (1− wI+1

I−k,k)f̂
I
k +wI+1

I−k,kFI−k,k,

2. f̄k := E
[
f̂ I+1
k

∣∣∣DI
]
= E

[
f̂ I+1
k

∣∣∣DI
k

]
= (1− wI+1

I−k,k)f̂
I
k + wI+1

I−k,kfk ≈ f̂ I
k ,

3. C̄i,J := E
[
ĈI+1
i,J

∣∣∣DI
]
=
∏J−1

k=I+1−i f̄kfI−iCi,I−i,

4. Ê

[
ĈDR

I+1

i

∣∣∣∣DI

]
= 0, which means we have a Best Estimate.
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1. f̂
I+1
k

:=

I−k∑

i=0

w
I+1
i,k

Ci,k+1

Ci,k

= (1− w
I+1
I−k,k

)

I−k−1∑

i=0

w
I
i,k

Ci,k+1

Ci,k

+ w
I+1
I−k,k

CI−k,k+1

CI−k,k

= (1− w
I+1
I−k,k

)f̂
I
k + w

I+1
I−k,k

CI−k,k+1

CI−k,k

= (1− w
I+1
I−k,k

)f̂
I
k + w

I+1
I−k,k

FI−k,k

2. =⇒ E
[
f̂
I+1
k

∣∣∣DI
]
= E

[
f̂
I+1
k

∣∣∣DI
k

]
= (1 − w

I+1
I−k,k

)f̂
I
k + w

I+1
I−k,k

fk

=⇒ ̂̄fk := f̂
I
k

3. E
[
Ĉ

I+1
i,J

∣∣∣DI
]
= E




J−1∏

k=I+1−i

f̂
I+1
k

Ci,I+1−i

∣∣∣∣∣∣
DI



= E



E
[
f̂
I+1
J−1

∣∣∣DI
J−1

] J−2∏

k=I+1−i

f̂
I+1
k

Ci,I+1−i

∣∣∣∣∣∣
DI





= f̄J−1E




J−2∏

k=I+1−i

f̂
I+1
k

Ci,I+1−i

∣∣∣∣∣∣
DI



= . . . =

J−1∏

k=I+1−i

f̄kE
[
Ci,I+1−i

∣∣DI
]

=

J−1∏

k=I+1−i

f̄kE
[
Ci,I+1−i

∣∣Bi,I−i

]
=

J−1∏

k=I+1−i

f̄kfI−iCi,I−i

4. E
[
ĈDR

I+1
i

∣∣∣DI
]
= E

[
Ĉ

I
i,J

∣∣∣DI
]
− E

[
Ĉ

I+1
i,J

∣∣∣DI
]
=

J−1∏

k=I−i

f̂
I
kCi,I−i −

J−1∏

k=I+1−i

f̄kfI−iCi,I−i

≈
J−1∏

k=I−i

f̂
I
kCi,I−i −

J−1∏

k=I+1−i

f̂
I
k f̂

I
I−iCi,I−i = 0



2 Chain-Ladder-Method (CLM) 2.6 Solvency uncertainty

2.6.1 Solvency uncertainty of a single accident period (3/7)

Taylor approximation of next years estimates

Recall the (multi-linear) functional:

Ui(g) x := gJ−1 · · · gI−ix.
Then we get:

∂

∂gj
Ui(g) x = gJ−1 · · · gj+1gj−1 · · · gI−ix =

Ui(g) x

gj
,

Ui

(
f̂ I
)
Ci,I−i = f̂ I

J−1 . . . f̂
I
I−iCi,I−i = ĈI

i,J ,

Ui

(
FI+1
i

)
Ci,I−i = f̂ I+1

J−1 . . . f̂
I+1
I−i+1Fi,I−iCi,I−i = ĈI+1

i,J and

ĈI+1
i,J − ĈI

i,J ≈
J−1∑

k=I−i

∂

∂F I+1
i,k

Ui

(
FI+1
i

)∣∣∣∣∣
f̂I

CI
i,I−i

(
F I+1
i,k − f̂ I

k

)
,

=
CI
i,J

f̂ I
I−i

(
Fi,I−i − f̂ I

I−i
)
+

J−1∑

k=I−i+1

CI
i,J

f̂ I
k

wI+1
I−k,k

(
FI−k,k − f̂ I

k

)

where we used a first order Taylor approximation and f̂ I denotes the vector of the at time I
estimated development factors and FI+1

i is a vector with components

F I+1
i,k :=

{
f̂ I+1
k , for i+ k > I,
Fi,k, for i+ k = I.

The red parts are the difference to the ultimate uncertainty case.
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For k = I − i we get
F I+1
i,I−i − f̂I

I−i = Fi,I−i − f̂I
I−i

and for k > I − i it is

F I+1
i,k − f̂I

k = f̂I+1
k − f̂I

k = (1 −wI+1
I−k,k)f̂

I
k + wI+1

I−k,kFI−k,k − f̂I
k = wI+1

I−k,k

(
FI−k,k − f̂I

k

)



2 Chain-Ladder-Method (CLM) 2.6 Solvency uncertainty

2.6.1 Solvency uncertainty of a single accident period (4/7)

Linear approximation of the CDR

If we replace in the linear approximation of the ultimate, i.e. in

Ci,J − ĈI
i,J ≈

J−1∑

k=I−i

ĈI
i,J

f̂ I
k

(
Fi,k − f̂ I

k

)
,

the term
(
Fi,k − f̂ I

k

)
by

F̃ I
i,k −

˜̂
f
I

i,k :=

{
FI−k,k − f̂ I

k , for k = I − i,

wI+1
I−k,k

(
FI−k,k − f̂ I

k

)
, for k > I − i,

=
(
1k=I−i + 1k>I−iw

I+1
I−k,k

)(
FI−k,k − f̂ I

k

)
.

we get the linear approximation of the CDR, i.e.

ĈI+1
i,J − ĈI

i,J ≈
ĈI
i,J

f̂ I
I−i

(
Fi,I−i − f̂ I

I−i
)
+

J−1∑

k=I−i+1

ĈI
i,J

f̂ I
k

wI+1
I−k,k

(
FI−k,k − f̂ I

k

)

=

J−1∑

k=I−i

ĈI
i,J

f̂ I
k

(
F̃ I
i,k −

˜̂
f

I

k

)
.
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The term F̃ I
i,k −

˜̂
f

I

i,k depends on the accident period i only via the indicator functions 1k=I−i

and 1k>I−i.



2 Chain-Ladder-Method (CLM) 2.6 Solvency uncertainty

2.6.1 Solvency uncertainty of a single accident period (5/7)

Estimator 2.20 (Solvency uncertainty of accident period i)

mse0|DI

[
ĈDRi

]
= E

[(
ĈI+1
i,J − ĈI

i,J

)2∣∣∣∣DI

]

≈ E



(

J−1∑

k=I−i

ĈI
i,J

f̂ I
k

(
F̃ I
i,k −

˜̂
f
I

i,k

))2
∣∣∣∣∣∣
DI


 (Taylor approximation)

=
J−1∑

k1,k2=I−i

ĈI
i,J

f̂ I
k1

ĈI
i,J

f̂ I
k2

(
1k1=I−i + 1k1>I−iw

I+1
I−k1,k1

)(
1k2=I−i + 1k2>I−iw

I+1
I−k2,k2

)

E
[(

FI−k1,k1 − f̂ I
k1

)(
FI−k2,k2 − f̂ I

k2

)∣∣∣DI
]

≈
J−1∑

k=I−i

σ̂2
k(

f̂ I
k

)2
((

1k=I−i + 1k>I−iw
I+1
I−k,k

)
ĈI
i,J

)2 1

CI−k,k
︸ ︷︷ ︸

random error

+

J−1∑

k=I−i

σ̂2
k(

f̂ I
k

)2
((

1k=I−i + 1k>I−iw
I+1
I−k,k

)
ĈI
i,J

)2 I−k−1∑

h=0

(
wI
h,k

)2

Ch,k

︸ ︷︷ ︸
parameter error
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From the derivation of the ultimate uncertainty we already know

E
[(
FI−k1,k1

− f̂
I
k1

)(
F

I
I−k2,k2

− f̂
I
k2

)∣∣∣DI
]
= Cov

[
FI−k1,k1

, FI−k2,k2

∣∣∣DI
]
+
(
f̂
I
k1
− fk1

) (
f̂
I
k2
− fk2

)

≈ Cov
[
FI−k1,k1

, FI−k2,k2

∣∣∣DI
]
+ Cov

[
f̂
I
k1

, f̂
I
k2

∣∣∣Dk1∧k2

]

≈ 1k1=k2




σ̂2
k1

C
I−k1,k1

+

I−k1−1∑

h=0

σ̂2
k1

(
wI

h,k

)2

C
h,k1



 .

Therefore (the red terms are the differences to the ultimate uncertainty case),

mse
0|DI

[
ĈDRi

]

≈
J−1∑

k1,k2=0

ĈI
i,J

f̂I
k1

ĈI
i,J

f̂I
k2

(
1k1=I−i + 1k1>I−iw

I+1
I−k1 ,k1

) (
1k2=I−i + 1k2>I−iw

I+1
I−k2,k2

)

1k1=k2




σ̂2
k1

C
I−k1,k1

+

I−k1−1∑

h=0

σ̂2
k1

(
wI

h,k1

)2

C
h,k1





=

J−1∑

k=I−i

(
ĈI

i,J

f̂I
k

)2 (
1k=I−i + 1k>I−iw

I+1
I−k,k

)2



σ̂2
k

C
I−k,k

+

I−k−1∑

h=0

σ̂2
k

(
wI

h,k

)2

C
h,k







2 Chain-Ladder-Method (CLM) 2.6 Solvency uncertainty

2.6.1 Solvency uncertainty of a single accident period (6/7)

Ultimate uncertainty for accident period i

mseDI

[
ĈI
i,J

]
≈

J−1∑

k=I−i

σ̂2
k(

f̂ I
k

)2
(
ĈI
i,J

)2 1

ĈI
i,k

︸ ︷︷ ︸
random error

+
J−1∑

k=I−i

σ̂2
k(

f̂ I
k

)2
(
ĈI
i,J

)2 I−k−1∑

h=0

(
wI
h,k

)2

Ch,k

︸ ︷︷ ︸
parameter error

Solvency uncertainty for accident period i

mse0|DI

[
ĈDRi

]

≈
J−1∑

k=I−i

σ̂2
k(

f̂ I
k

)2
((

1k=I−i + 1k>I−iw
I+1
I−k,k

)
ĈI
i,J

)2 1

CI−k,k
︸ ︷︷ ︸

random error

+

J−1∑

k=I−i

σ̂2
k(

f̂ I
k

)2
((

1k=I−i + 1k>I−iw
I+1
I−k,k

)
ĈI
i,J

)2 I−k−1∑

h=0

(
wI
h,k

)2
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︸ ︷︷ ︸
parameter error
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Ultimate uncertainty for accident period i
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It almost looks like a simple multiplication by the factor

(
1k=I−i + 1k>I−iw

I+1
I−k,k

)
,

except for the index replacement (i by I − k) in the random error part.



2 Chain-Ladder-Method (CLM) 2.6 Solvency uncertainty

2.6.1 Solvency uncertainty of a single accident period (7/7)

Corollary 2.21

If we use the variance minimizing weights

wI
i,k =

Ci,k

I−k−1∑
h=0

Ch,k

and wI+1
i,k =

Ci,k

I−k∑
h=0

Ch,k

we get for the solvency uncertainty of accident period i

mse0|DI

[
ĈDRi

]

≈ Ĉ2
i,J

J−1∑

k=I−i

σ̂2
k(

f̂ I
k

)2


1k=I−i + 1k>I−i

C2
I−k,k(∑I−k

h=0Ch,k

)2





 1

CI−k,k
+

I−k−1∑

h=0

C2
h,k

Ch,k

(∑I−k−1
v=0 Cv,k

)2




= Ĉ2
i,J

J−1∑

k=I−i

σ̂2
k(

f̂ I
k

)2


1k=I−i + 1k>I−i

C2
I−k,k(∑I−k

h=0Ch,k

)2



(

1

CI−k,k
+

1
∑I−k−1

h=0 Ch,k

)
,

where the red terms indicate the differences to the ultimate uncertainty case.
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Corollary 2.21
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CI−k,k
+

I−k−1∑

h=0

C2
h,k

Ch,k

(∑I−k−1
v=0 Cv,k

)2




= Ĉ2
i,J

J−1∑

k=I−i

σ̂2
k(

f̂ I
k

)2


1k=I−i + 1k>I−i

C2
I−k,k(∑I−k

h=0Ch,k

)2



(

1

CI−k,k
+

1
∑I−k−1

h=0 Ch,k

)
,

where the red terms indicate the differences to the ultimate uncertainty case.2
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2 Chain-Ladder-Method (CLM) 2.6 Solvency uncertainty

2.6.2 Solvency uncertainty of all accident periods (1/4)

Dependent accident periods

Since F̃ I
i,k and

˜̂
f

I

k depend on FI−k,k = CI−k,k+1/CI−k,k, for all i, the ĈDR
I+1

i ,
i ≤ I, are not independent. Therefore, we cannot simply take the sum over all
accident periods in order to derive the solvency uncertainty of the aggregation
of all accident periods.
But the Taylor approximation still works:
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2 Chain-Ladder-Method (CLM) 2.6 Solvency uncertainty

2.6.2 Solvency uncertainty of all accident periods (2/4)

Estimator 2.22 (Solvency uncertainty of all accident periods)

mse0|DI

[
I∑

i=0

ĈDRi

]
= E



(

I∑

i=0

(
ĈI+1
i,J − ĈI

i,J

))2
∣∣∣∣∣∣
DI




≈ E



(

I∑

i=0

J−1∑

k=I−i

ĈI
i1,J

f̂ I
k1

(
F̃ I
i,k −

˜̂
f

I

i,k

))2
∣∣∣∣∣∣
DI


 (Taylor approximation)

=

I∑

i1,i2=0

J−1∑

k1=I−i1

J−1∑

k2=I−i2

ĈI
i1,J

f̂ I
k1

ĈI
i2,J

f̂ I
k2

E
[(

FI−k1,k1 − f̂ I
k1

)(
FI−k2,k2 − f̂ I

k2

)∣∣∣DI
]

(
1k1=I−i1 + 1k1>I−i1w

I+1
I−k1,k1

)(
1k2=I−i2 + 1k2>I−i2w

I+1
I−k2,k2

)

≈
J−1∑

k=0

σ̂2
k(

f̂ I
k

)2

(
I∑

i=I−k

(
1k=I−i + 1k>I−iw

I+1
I−k,k

)
ĈI
i,J

)2
1

CI−k,k
︸ ︷︷ ︸

random error

+

J−1∑

k=0

σ̂2
k(

f̂ I
k

)2

(
I∑

i=I−k

(
1k=I−i + 1k>I−iw

I+1
I−k,k

)
ĈI
i,J

)2 I−k−1∑

h=0

(
wI
h,k

)2

Ch,k

︸ ︷︷ ︸
parameter error
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ĈI
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ĈI
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From the single accident period case we know

E
[(
FI−k1,k1

− f̂
I
k1

)(
FI−k2,k2

− f̂
I
k2

)∣∣∣DI
]
≈ 1k1=k2




σ̂2
k1

C
I−k1,k1

+

I−k1−1∑

h=0

σ̂2
k1

(
wI

h,k1

)2

C
h,k1



 .

Therefore, we get

mse
0|DI




I∑

i=0

ĈDRi





≈
I∑

i1,i2=0

J−1∑

k1=I−i1

J−1∑

k2=I−i2

ĈI
i1,J

f̂I
k1

ĈI
i2,J

f̂I
k2

1k1=k2




σ̂2
k1

C
I−k1,k1

+

I−k1−1∑

h=0

σ̂2
k1

(
wI

h,k1

)2

C
h,k1





(
1k1=I−i1

+ 1k1>I−i1
w

I+1
I−k1 ,k1

) (
1k2=I−i2

+ 1k2>I−i2
w

I+1
I−k2 ,k2

)

=

J−1∑

k1,k2=0

I∑

i1=I−k1

I∑

i2=I−k2

ĈI
i1,J

f̂I
k1

ĈI
i2,J

f̂I
k2

1k1=k2




σ̂2
k1

C
I−k1,k1

+

I−k1−1∑

h=0

σ̂2
k1

(
wI

h,k1

)2

C
h,k1





(
1k1=I−i1

+ 1k1>I−i1
w

I+1
I−k1 ,k1

) (
1k2=I−i2

+ 1k2>I−i2
w

I+1
I−k2 ,k2

)

=

J−1∑

k=0

σ̂2
k(

f̂I
k

)2




I∑

i=I−k

(
1k=I−i + 1k>I−iw

I+1
I−k,k

)
Ĉ

I
i,J




2



1

C
I−k,k

+

I−k−1∑

h=0

(
wI

h,k

)2

C
h,k







2 Chain-Ladder-Method (CLM) 2.6 Solvency uncertainty

2.6.2 Solvency uncertainty of all accident periods (3/4)

Ultimate uncertainty of all accident periods

mseDI

[
ĈI
i,J

]
≈

J−1∑

k=0

σ̂2
k(

f̂ I
k

)2
I∑

i=I−k

(
ĈI
i,J

)2 1

ĈI
i,k

︸ ︷︷ ︸
random error

+
J−1∑

k=0

σ̂2
k(

f̂ I
k

)2

(
I∑

i=I−k
ĈI
i,J

)2 I−k−1∑

h=0

k
(
wI
h,k

)2

Ch,k

︸ ︷︷ ︸
parameter error

Estimator 2.23 (Solvency uncertainty of all accident periods)

mse0|DI

[
I∑

i=0

ĈDRi

]
≈

J−1∑

k=0

σ̂2
k(

f̂ I
k

)2

(
I∑

i=I−k

(
1k=I−i + 1k>I−iw

I+1
I−k,k

)
ĈI
i,J

)2
1

CI−k,k
︸ ︷︷ ︸

random error

+

J−1∑

k=0

σ̂2
k(

f̂ I
k

)2

(
I∑

i=I−k

(
1k=I−i + 1k>I−iw

I+1
I−k,k

)
ĈI
i,J

)2 I−k−1∑

h=0

(
wI
h,k

)2

Ch,k

︸ ︷︷ ︸
parameter error
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Ultimate uncertainty of all accident periods
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Estimator 2.23 (Solvency uncertainty of all accident periods)
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2 Chain-Ladder-Method (CLM) 2.6 Solvency uncertainty

2.6.2 Solvency uncertainty of all accident periods (4/4)

Corollary 2.24

If we use the variance minimizing weights

wI
i,k =

Ci,k

I−k−1∑
h=0

Ch,k

and wI+1
i,k =

Ci,k

I−k∑
h=0

Ch,k

we get for the solvency uncertainty of all accident periods

mse0|DI

[
ĈDRi

]

≈
(

I∑

i=0

ĈI
i,J

)2 J−1∑

k=0

σ̂2
k(

f̂ I
k

)2

(
1

∑I−k−1
h=0 Ch,k

− 1
∑I−k

h=0Ch,k

)
,

where the red term indicate the difference to the ultimate uncertainty case.
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I∑

i=I−k

(
1k=I−i + 1k>I−iw

I+1
I−k,k

)
Ĉ

I
i,J = Ĉ

I
I−k,J +

I∑

i=I−k+1

CI−k,k
∑I−k

h=0
C

h,k

Ĉ
I
i,J

= Ĉ
I
I−k,J +

I∑

i=I−k+1

ĈI
I−k,J

∑I−k
h=0

ĈI
h,J

Ĉ
I
i,J

= Ĉ
I
I−k,J



1 +
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i=I−k+1 ĈI

i,J
∑I−k

h=0
ĈI

h,J



 =
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Ĉ
I
i,J

CI−k,k
∑I−k

h=0
ĈI

h,J

Therefore, we get for the solvency uncertainty of all accident periods
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
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
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C
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
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C
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C
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
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


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Ĉ
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


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
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
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I
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C
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∑I−k
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C
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


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Ĉ
I
i,J




2 J−1∑

k=0

σ̂2
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C
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



2 Chain-Ladder-Method (CLM) 2.6 Solvency uncertainty

2.6.3 Uncertainties of further CDR’s (1/4)

Estimation at time n ≥ I

Analogously to the next years estimation we can look at the estimation of
the ultimate at any time n ≥ I

Ĉn
i,J := Ci,n−i

J−1∏

k=n−i
f̂n
k = Ci,I−i

n−i−1∏

k=I−i
Fi,k

J−1∏

k=n−i
f̂n
k .

The development factors are estimated by

f̂n
k :=

n−k−1∑

h=0

wn
h,kFh,k

with consistent future weights wn
i,k. That means for I − k ≤ i ≤ n− k − 1,

there exists Dn
k -measurable weights 0 ≤ wn

i,k ≤ 1 with

• Ci,k = 0 implies wn
i,k = 0,

• wn
i,k = (1− wn

n−k,k)w
n−1
i,k , for i+ k < n.
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2 Chain-Ladder-Method (CLM) 2.6 Solvency uncertainty

2.6.3 Uncertainties of further CDR’s (2/4)

Claims development result between two estimation time I ≤ n1 < n2

Since formulas will get very tedious (see for instance [12]), if one analyses the
CDR with respect to two time periods I ≤ n1 < n2 analogously to the next
year claim development result, we will only consider the special case of variance
minimizing weights

wn
i,k :=

Ci,k∑n−k−1
h=0 Ch,k

, (2.3)

which leads to the following estimates (at time n) of the development factors

f̂n
k :=

n−k−1∑

i=0

wn
i,k

Ci,k+1

Ci,k

=

∑n−k−1
i=0 Ci,k+1∑n−k−1
i=0 Ci,k

.

In this case we have
I∑

i=0

Ĉn
i,J =

I∑

i=0

Ci,0

J−1∏

k=0

f̂n
k . (2.4)
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For each k > 0 we have

I∑

i=0

Ĉ
n
i,k+1 =

n−k−1∑

i=0

Ci,k+1 +
I∑

i=n−k

f̂
n
k Ĉ

n
i,k

=

∑n−k−1
i=0

Ci,k+1
∑n−k−1

i=0 C
i,k

n−k−1∑

i=0

Ci,k + f̂
n
k

I∑

i=n−k

Ĉ
n
i,k

= f̂
n
k

n−k−1∑

i=0

Ci,k + f̂
n
k

I∑

i=n−k

Ĉ
n
i,k

= f̂
n
k

I∑

i=0

Ĉ
n
i,k,

which by induction proves (2.4).



2 Chain-Ladder-Method (CLM) 2.6 Solvency uncertainty

2.6.3 Uncertainties of further CDR’s (3/4)

Estimator 2.25 (Uncertainty of the CDRn1,n2 with variance minimizing weights)

In the case of variance minimizing weights (2.3) the uncertainty of the claims development
result

∑I
i=0(Ĉ

n2
i,J − Ĉn1

i,J) between two time periods I ≤ n1 < n2 can be estimated by

mse0|DI

[
ĈDR

n1,n2
]

:= E



(

I∑

i=0

(
Ĉn2
i,J − Ĉn1

i,J

))2
∣∣∣∣∣∣
DI



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I∑
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)2
E



(

J−1∏

k=0

f̂n2
k −

J−1∏

k=0

f̂n1
k

)2∣∣∣∣∣∣
DI




≈
(

I∑
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Ci,J

)2


J−1∏

k=0


1 +

σ̂2
k(

f̂ I
k

)2

(
1

∑n1−k−1
i=0 ĈI

i,k

− 1
∑n2−k−1

i=0 ĈI
i,k

)
− 1




≈
(

I∑

i=0

ĈI
i,J

)2 J−1∑

k=0
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Estimator 2.25 (Uncertainty of the CDRn1,n2 with variance minimizing weights)
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ĈI
i,k

∑n2−k−1
h=0

ĈI
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Both estimates together lead to

E

[(
f̂
n2
k

)2
∣∣∣∣D

n1

]
≈
(
f̂
I
k

)2
+ σ̂

2
k





(∑n2−k−1
i=n1−k

ĈI
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ĈDR

n1,n2
]
≈




I∑

i=0

Ci,0




2


J−1∏

k=0




(
f̂
I
k

)2
+ σ̂

2
k



 1
∑n1−k−1

i=0 ĈI
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ĈI
i,k







− 1





≈




I∑

i=0

Ĉ
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where we used in the last step a Taylor approximation in σ̂2
k at zero.



2 Chain-Ladder-Method (CLM) 2.6 Solvency uncertainty

2.6.3 Uncertainties of further CDR’s (4/4)

Remark 2.26

• All summation over accident periods stop at I, but we skipped ∧I in
order to keep the formulas a bit simpler.

• the red parts are the differences to our estimators for the solvency and
ultimate uncertainty, i.e.

* If we take n2 = I + 1 and n1 = I Estimator 2.25 leads to the same
formulas as in the solvency uncertainty case, see Corollary 2.24.

* If we take n2 = ∞ and n1 = I Estimator 2.25 leads to the same formulas
as in the ultimate uncertainty case, see Corollary 2.14.

• The derivation of Estimator 2.25 is based on the article [12] by Ancus
Röhr and discussion with Alois Gisler.

• In practise the differences between the last two lines of Estimator 2.25
are usually very very small.
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2 Chain-Ladder-Method (CLM)
2.7 Validation and examples (part 3 of 3)

2.7.1 Solvency uncertainty (1/4)

Solvency uncertainties for Examples 2.7 and 2.8

• We used the standard estimators for the variance parameters, see Estimator 2.12.
• Since the incurred values are a bit more stable, in particular for later development periods,

the corresponding uncertainties are lower.
• The linear approximation for the (parameter estimation) uncertainty results in almost the

same values like without approximation.

We always show the square root of uncertainties.
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Validation and examples (part 3 of 3)

The uncertainty of the weighing has been calculated using a LSRM coupling of both CLM via
the exposure R0,1

i,k = R1,0
i,k := R0,0

i,k + R1,1
i,k , see Section 4.

One can derive estimators for uncertainties without a first order Taylor approximation, see [21].
In practice, the resulting figures are almost alike.



2 Chain-Ladder-Method (CLM)
2.7 Validation and examples (part 3 of 3)

2.7.1 Solvency uncertainty (2/4)

Density plot of the distribution of the CDR using Lognormal
distributions (dotted lines representing the Best Estimate)

6 8 10 12 14 16

in million
Projection of Payments

Projection of Incurred

Credibility like weighting
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Validation and examples (part 3 of 3)

The incurred projection results in a very symmetric and tight distribution of the CDR. Therefore,
if we believe in it we would expect only very small amounts for the CDR.
The uncertainty of the weighing has been calculated using a LSRM coupling of both CLM via
the exposure R0,1

i,k = R1,0
i,k := R0,0

i,k + R1,1
i,k , see Section 4.



2 Chain-Ladder-Method (CLM)
2.7 Validation and examples (part 3 of 3)

2.7.1 Solvency uncertainty (3/4)

Ultimate vs. solvency uncertainties for Examples 2.7 and 2.8

• We used the standard estimators for the variance parameters, see Estimator 2.12.
• In total the square root of the solvency uncertainty is about 70% of the square root of the

ultimate uncertainty, whereas it is higher in older and lesser in recent accident periods.
That means during one business period we gain information that is worth about 30% of
the uncertainty.

• For standard business one usually expects that the square root of the solvency uncertainty
lies between 50% and 90% of the square root of the ultimate uncertainty.

We always show the square root of uncertainties.
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Validation and examples (part 3 of 3)

The uncertainty of the weighing has been calculated using a LSRM coupling of both CLM via
the exposure R0,1

i,k = R1,0
i,k := R0,0

i,k + R1,1
i,k , see Section 4.



2 Chain-Ladder-Method (CLM)
2.7 Validation and examples (part 3 of 3)

2.7.1 Solvency uncertainty (4/4)

Density plot of the distribution of the CDR (solid curves) and
estimated reserves (dotted curves) using Lognormal distributions
(dotted lines representing the Best Estimate)
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Projection of Incurred
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Density plot of the distribution of the CDR (solid curves) and
estimated reserves (dotted curves) using Lognormal distributions
(dotted lines representing the Best Estimate)
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Validation and examples (part 3 of 3)

Note, distributions of the estimated reserves have been obtained by fitting the Lognormal distri-
bution to the estimated reserves as mean and the corresponding uncertainty as variance.
Like expected, the densities of the solvency uncertainty are much tighter than the one of the
ultimate uncertainty.
The uncertainty of the weighing has been calculated using a LSRM coupling of both CLM via
the exposure R0,1

i,k = R1,0
i,k := R0,0

i,k + R1,1
i,k , see Section 4.
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3 Other classical reserving methods
3.1 Complementary-Loss-Ration method (CLRM)

3.1.1 CLRM without stochastic (1/2)

Basic idea behind the Complementary-Loss-Ration method

The Complementary-Loss-Ration method is based on a single triangle and a
exposure Pi depending on accident periods i. Often pricing information like
the risk premium is taken as exposure.
The Complementary-Loss-Ration method is based on the idea that:

• The payments of the next development period are proportional to the
given exposure, i.e.

Si,k+1 ≈ fkPi.

• Accident period are independent.

In particular, that means that all accident periods are comparable with respect
to their development.
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3 Other classical reserving methods
3.1 Complementary-Loss-Ration method (CLRM)

3.1.1 CLRM without stochastic (2/2)

Simple example

i\k 0 1 2 3 4 exposure ultimate reserves

0 100 3.8380 2.8280 1.0100 0.00 100 860 0= 860 − 860

1 120 3.6360 2.6260 1.2120 0.00 100 860 0= 860 − 860

2 200 3.9780 2.3460 1.1220 0.00 200 1660 220= 1660 − 1440

3 140 3.8570 2.5375 1.1165 0.00 150 1250 540= 1250 − 710

4 200 3.8836 2.5550 1.1242 0.00 220 1828 1628= 1828 − 200

f̂k 3.8 2.5 1.1 0.0 770 6458 2388

f̂0 =
380+360+780+570
100+100+200+150 = 3.8 =

I−1∑

i=0

Pi∑I−1
h=0 Ph︸ ︷︷ ︸

weight

Si,1

Pi︸︷︷︸
observed development factor

f̂1 =
280+260+460
100+100+200 = 2.5

f̂2 =
100+120
100+100 = 1.1

f̂3 =
0

100 = 0.0
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3 Other classical reserving methods
3.1 Complementary-Loss-Ration method (CLRM)

3.1.2 Stochastic behind CLRM (1/3)

Assumption 3.A (CLRM)

There exist exposures Pi, development factors fk and variance parameters σ2
k such

that

i)CLRM E
[
Si,k+1

∣∣∣Bi,k

]
= fkPi,

ii)CLRM Var
[
Si,k+1

∣∣∣Bi,k

]
= σ2

kPi and

iii)CLRM accident periods are independent.

Remark 3.1

• Since accident periods are independent, Bi,k could be replaced by Dk or by Di+k
k .

• Often the assumptions are formulated without conditioning. The difference
between both ways are:

* In taking unconditional expectations we take the average over all possible triangles
and therefore ignore the observed past Bi,k completely.

* In taking conditional expectations we explicitly assume that the observed past Bi,k

has no influence on the expected future development.
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3 Other classical reserving methods
3.1 Complementary-Loss-Ration method (CLRM)

3.1.2 Stochastic behind CLRM (2/3)

Estimator 3.2 (Future development for CLRM)

Let Assumption 3.A be fulfilled. Then for every set of Dk-conditionally un-
biased estimators f̂k of fk the estimator

ĈCLRM
i,J := Ci,(I−i)∧J +

J−1∑

k=I−i
f̂kPi

is a DI−i-conditionally unbiased estimator for the ultimate outcome Ci,J .

Remark 3.3

• Usually one takes

f̂k :=
I−k−1∑

i=0

Pi∑I−k−1
h=0 Ph

Si,k+1

Pi
.

• Because of the additive structure of Estimator 3.2, the
Complementary- Loss-Ratio method is often called additive method.
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E
[
ĈCLRM

i,J

∣∣∣DI−i

]
= Ci,(I−i)∧J +

J−1∑

k=I−i

E
[
f̂k

∣∣∣DI−i

]
Pi

= Ci,(I−i)∧J +

J−1∑

k=I−i

E
[
E
[
f̂k

∣∣∣Dk

]∣∣∣DI−i

]
Pi

= Ci,(I−i)∧J +

J−1∑

k=I−i

fkPi

= Ci,(I−i)∧J +

J−1∑

k=I−i

E
[
E
[
Si,k+1

∣∣∣Dk

]∣∣∣DI−i

]

︸ ︷︷ ︸
i)CLRM

= E
[
Ci,J

∣∣DI−i

]



3 Other classical reserving methods
3.1 Complementary-Loss-Ration method (CLRM)

3.1.2 Stochastic behind CLRM (3/3)

Remark 3.4

• The method itself is well known and often used. But, because of its simplicity, corresponding
stochastic models haven’t been studied so much as for the Chain-Ladder method.

• From a statistical point of view the estimation of the development factors and the variance
parameters is critical since we have to estimate 2J parameters based on J(I − J−1

2 )
observed development factors. Therefore, in practise the reserving actuary has to include
other information in order to overcome the lack of observed data (over parametrised model).

• The method can deal with some kind of incomplete triangle, where some upper left
sub-triangle is missing.

• Since the exposures Pi are given and fixed over (development) time, the method cannot
really react on observed changes in the data. For instance, assume we take the risk premium
as exposure and observe at time k = 1, that the frequency of claims has doubled. Therefore,
we would expect twice the payments compared to those that have been projected with
CLRM.

• Often the CLRM is used for the early development periods, where we do not have so much
information within the observed data. And for later development periods other methods like
CLM are used in order to take the information contained in Bi,k into account.

• Because of part iii)CLRM of Assumption 3.A, CLRM cannot deal with diagonal effects like
inflation.

• Analogously to what we have done for the Chain-Ladder method, see Section 2, we could
derive formulas for the ultimate uncertainty as well as for the solvency uncertainty.
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We will analyse uncertainties in the more general setup of Linear Stochastic Reserving methods
later in section 4.



3 Other classical reserving methods
3.2 Bornhuetter-Ferguson method (BFM)

3.2.1 BFM without stocastics (1/2)

Problem 3.5 (How to include an experts opinion about the ultimate?)

We have often repeated that an actuary has to use all available information in order to de-

termine a Best Estimate. But how to combine an experts opinion Upri
i about the ultimate Ci,J

with the observed data.

Bornhuetter-Ferguson method
One solution is to used the Bornhuetter-Ferguson method, introduced by Bornhuetter and Ferguson
in [15]. The basic idea is that we take the last observed data Ci,I−i and add a fraction 1 − li of

the external given a priori ultimate Upri
i , i.e.

ĈBFM
i,J := Ci,I−i + (1− l̂i)U

pri
i , (3.1)

where the factors li are called link ratios and should represent the proportion of the ultimate that
has already developed.

Problem 3.6 (Where to get the link ratios?)

Possible answers:

• Experts opinion.

• Use a reserving method and take l̂i :=
Ci,I−i

Ĉi,J
. In the case of CLM we would get

l̂i =
∏J−1

k=I−i(f̂
CLM
k )−1, which was the original idea behind BFM.

• Use a stochastic model that leads to estimators which have the same shape like (3.1).
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Roughly spoken, we take the a priori ultimate and replace the already developed part by the
observated data.



3 Other classical reserving methods
3.2 Bornhuetter-Ferguson method (BFM)

3.2.1 BFM without stocastics (2/2)

Remark 3.7

• Since the link ratios li should represent the proportion of the ultimate that has
already developed, we expect that lI−J = 1, provided we have no tail development.

• As actuaries we have to be very careful in using experts opinions, in particular, if we
take the a priori ultimate and the link ratios from the same expert. The reason is
that those experts often have own interests in a profitable (or sometimes non
profitable) outcome of the portfolio.

BFM as credibility weighted average

If we take a reserving method in order to determine the link ratios li :=
Ci,I−i

Ĉi,J
and if all

link ratios 0 ≤ li ≤ 1 then CBFM
i,J could be looked at as credibility like weighted average of

the a priori ultimate Upri
i and the estimated ultimate Ĉi,J with credibility weights (1− li)

and li, respectively:

CBFM
i,J = Ci,I−i + (1− li)U

pri
i =

Ci,I−i

Ĉi,J

Ĉi,J + (1− li)U
pri
i = liĈi,J + (1− li)U

pri
i .

Note, this formula is similar to the credibility like weighting of ultimates proposed in Es-
timator 2.15.
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3 Other classical reserving methods
3.2 Bornhuetter-Ferguson method (BFM)

3.2.2 Stochastic behind BFM

Remark 3.8 (BFM as Complementary-Loss-Ratio method)

If we take the Complementary-Loss-Ratio method with exposure Pi := Upri
i we get the

estimate (see 3.2)

ĈCLRM
i,J = Ci,(I−i)∧J +

J−1∑

k=I−i
f̂kPi.

Defining the link ratios via

l̂i := 1−
J−1∑

k=I−i
f̂k

we get the same form as in (3.1). Therefore, the Bornhuetter-Ferguson method can be
looked at as Complementary-Loss-Ratio method with exposures Upri

i .

Remark 3.9

There are other stochastic models that lead to estimators of the form (3.1), see for instance
[18, Section 6.6].
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3 Other classical reserving methods 3.3 Benktander-Hovinen method (BHM)

Basic idea behind the Benktander-Hovinen method

The basic idea of BHM is to apply the Bornhuetter-Ferguson method on the Chain-
Ladder method estimation with the weighted a priory ultimate

UBHM pri
i := l̂iĈ

CLM
i,J + (1− l̂i)U

pri
i = Ci,I−i + (1− l̂i)U

pri
i = ĈBFM

i,J ,

and the link ratios l̂i of the Chain-Ladder method. Therefore, we assume that
0 < l̂i ≤ 1.
Then we get the estimate

ĈBHM
i,J := Ci,I−i + (1− l̂i)Ĉ

BFM
i,J .

Remark 3.10

Connection between BHM, BFM and CLM

• BHM was independently developed by Benktander, see [14], and Hovinen,
see [16].

• The BHM is a twice iterated BFM with Chain-Ladder link ratios.
• Iterating BFM further will finally lead to the CLM Best Estimate, see [17].
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3 Other classical reserving methods 3.4 Cape-Cod method (1/2)

Basic idea behind the Cape-Cod method (CCM)

We have seen that the Best Estimate reserves of the Chain-Ladder method depend heavily
on the last known diagonal, which makes this method vulnerable to outliers of Ci,I−i.
The Cape-Cod method uses an external given exposure Pi to smooth the last diagonal.
Therefore,

1. We assume that there exists a κ with

Ci,I−i ≈ κl̂iPi ,

where l̂i :=
∏J−1

k=I−i(f̂
CLM
k )−1 are the link ratios of the CLM.

2. Then we estimate κ by

κ̂ :=

∑I
i=I−J Ci,I−i∑
i=I−J l̂iPi

.

3. Finally, we calculate the reserves with CLM where the values Ci,I−i are replaced by

ĈCCM
i,I−i := κ̂l̂iPi.

Then we get

ĈCCM
i,J := Ci,I−i +

(
J−1∏

k=I−i
f̂CLM
k ĈCCM

i,I−i − ĈCCM
i,I−i

)
= Ci,I−i + (1− l̂i)κ̂Pi. (3.2)
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3 Other classical reserving methods 3.4 Cape-Cod method (2/2)

Remark 3.11

• The name Cape-Cod refers to the place where this method has been
introduced for the first time.

• Because of (3.2), CCM can also be seen as a BFM with (by κ̂)
modified a priory ultimate κ̂Pi.
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3 Other classical reserving methods
3.5 Extended-Complementary-Loss-Ration method (ECLRM)

3.5.1 ECLRM without stochastic (1/2)

Basic idea behind the Extended-Complementary-Loss-Ration method

The Extended-Complementary-Loss-Ration method is based on a triangle of payments S1
i,k

and a triangle of the corresponding (changes of the) incurred losses S0
i,k.

The Extended-Complementary-Loss-Ration method is based on the idea that:

• The payments of the next development period are proportional to the case reserves
at the end of the current development period, i.e.

S1
i,k+1 ≈ f1

k

k∑

j=0

(
S0
i,j − S1

i,j

)
=: f1

kRi,k.

• The changes of the incurred losses during the next development period k ≥ 1 are
proportional to the case reserves at the end of the current development period, i.e.

S0
i,k+1 ≈ f0

kRi,k.

• Accident period are independent.

In particular, that means that all accident periods are comparable with respect to their
development.
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3 Other classical reserving methods
3.5 Extended-Complementary-Loss-Ration method (ECLRM)

3.5.1 ECLRM without stochastic (2/2)

Simple example

Changes of incurred losses S0
i,k

i\k 0 1 2 3

0 500 0.5 200 -0.4 -160 0.00
1 700 0.4 160 -0.4 -160 0.00
2 900 0.3 120 -0.4 -112 0.00
3 550 0.4 120 -0.4 -108 0.00

f̂0
k 0.4 -0.4 0.0

f̂0
0 = 200+160+120

400+400+400 = 0.4

f̂0
1 = −160−160

400+400 = −0.4

f̂0
2 = 0

40 = 0.0

Payments S1
i,k

i\k 0 1 2 3

0 100 0.5200 0.5200 1.040
1 300 0.4160 0.5200 1.040
2 500 0.6240 0.5140 1.028
3 250 0.5150 0.5135 1.027

f̂1
k 0.5 0.5 1.0

f̂1
0 = 200+160+240

400+400+400 = 0.5

f̂1
1 = 200+200

400+400 = 0.5

f̂1
2 = 40

40 = 1.0

Case reserves Ri,k

i\k 0 1 2 3

0 4001.0−→4000.1−→ 400.0−→0
1 4001.0−→4000.1−→ 400.0−→0
2 4000.7−→2800.1−→ 280.0−→0
3 3000.9−→2700.1−→ 270.0−→0

f̂k 0.9 0.1 0.0

f̂0 = 1 + 0.4− 0.5 = 0.9

f̂1 = 1− 0.4− 0.5 = 0.1

f̂2 = 1 + 0.0− 1.0 = 0.0

i Ultimate Reserves IBNR

0 540 0 0
1 700 40 0
2 908 168 -112
3 562 212 12∑

2710 520 -100

• The case reserves develop according to the
Chain-Ladder method with f̂k = 1 + f̂0

k − f̂1
k .

• If we use CLM we would get

CLM on Payments CLM on Incurred

Reserves 969 398
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3 Other classical reserving methods
3.5 Extended-Complementary-Loss-Ration method (ECLRM)

3.5.2 Stochastic behind ECLRM (1/3)

Assumption 3.B (ECLRM)

There exist development factors fm
k , m ∈ {0, 1}, and covariance parameters

σm1,m2

k , m1,m2 ∈ {0, 1}, such that

i)ECLRM E
[
Sm
i,k+1

∣∣∣Bi,k

]
= fm

k

∑k
j=0

(
S0
i,j − S1

i,j

)
=: fm

k Ri,k,

ii)ECLRM Cov
[
Sm1
i,k+1, S

m2
i,k+1

∣∣∣Bi,k

]
= σm1,m2

k Ri,k and

iii)ECLRM accident periods are independent.

Remark 3.12

• Since accident periods are independent, Bi,k could be replaced by Dk

or by Di+k
k .

• Usually, S0
i,k and S1

i,k representing changes of incurred losses and
payments during development period k for claims of accident period i,
respectively. Then Ri,k are the case reserves at the end of development
period k for claims of accident period i.
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3 Other classical reserving methods
3.5 Extended-Complementary-Loss-Ration method (ECLRM)

3.5.2 Stochastic behind ECLRM (2/3)

Estimator 3.13 (Future development for ECLRM)

Assume Assumption 3.B is fulfilled. Then for every set of Dk-conditionally
unbiased estimators f̂m

k of fm
k the estimators

Ĉm,ECLRM
i,J := Cm

i,(I−i)∧J +
J−1∑

k=I−i
f̂m
k

k−1∏

j=I−i
(1 + f̂0

j − f̂1
j )Ri,I−i

are DI−i-conditionally unbiased estimators for the ultimate outcome Cm
i,J .

Remark 3.14

Usually one takes

f̂m
k :=

I−k−1∑

i=0

Ri,k∑I−k−1
h=0 Ri,k

Sm
i,k+1

Ri,k
.
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From Assumption 3.B.i)ECLRM it follows that E
[
Ri,k+1

∣∣Dk

]
= (1 + f0

k − f1
k)Ri,k. Therefore, we get

E
[
Ĉ

m,ECLRM
i,J

∣∣∣DI−i

]
= C

m
i,(I−i)∧J +

J−1∑

k=I−i

E



f̂m
k

k−1∏

j=I−i

(1 + f̂
0
j − f̂

1
j )

∣∣∣∣∣∣
DI−i



Ri,I−i

= C
m
i,(I−i)∧J +

J−1∑

k=I−i

E



E
[
f̂
m
k

∣∣∣Dk

] k−1∏

j=I−i

(1 + f̂
0
j − f̂

1
j )

∣∣∣∣∣∣
DI−i



Ri,I−i

= C
m
i,(I−i)∧J +

J−1∑

k=I−i

f
m
k E




k−1∏

j=I−i

(1 + f̂
0
j − f̂

1
j )

∣∣∣∣∣∣
DI−i



Ri,I−i

= . . . = C
m
i,(I−i)∧J +

J−1∑

k=I−i

f
m
k

k−1∏

j=I−i

(1 + f
0
j − f

1
j )Ri,I−i

= C
m
i,(I−i)∧J +

J−1∑

k=I−i

f
m
k

k−1∏

j=I−i+1

(1 + f
0
j − f

1
j )E

[
Ri,I−i+1

∣∣DI−i

]

= . . . = C
m
i,(I−i)∧J +

J−1∑

k=I−i

f
m
k E

[
Ri,k

∣∣DI−i

]

= C
m
i,(I−i)∧J +

J−1∑

k=I−i

E
[
S
m
i,k+1

∣∣∣DI−i

]
= E

[
C

m
i,J

∣∣∣DI−i

]



3 Other classical reserving methods
3.5 Extended-Complementary-Loss-Ration method (ECLRM)

3.5.2 Stochastic behind ECLRM (3/3)

Remark 3.15

• ECLRM couples payments and incurred losses in a natural way via the case reserves such
that the projections of both triangles lead to the same ultimate, provided we don’t have
any tail development. But we will still get two estimates for the ultimate uncertainty as
well as for the solvency uncertainty.

• The method can deal with incomplete triangles, where some upper left sub-triangles are
missing, as long as case reserves are available for all recent calendar periods.

• It depends heavily on the case reserves. In particular, it may have problems dealing with
portfolios with a high reopening rate, because in such situation the case reserves may be
very small or even equal to zero.

• The method itself is not so well known, in particular under the name ECLRM.
• From a statistical point of view the estimation of the development factors and the variance

parameters is critical since we have to estimate 5J parameters based on 2J(I − J−1
2 )

observed development factors. Therefore, in practise the reserving actuary has to include
other information in order to overcome the lack of observed data (over parametrised
model).

• Because of part iii)ECLRM of Assumption 3.B, ECLRM cannot deal with diagonal effects
like inflation.

• Analogously to what we have done for the Chain-Ladder method, see Section 2, we could
derive formulas for the ultimate uncertainty as well as for the solvency uncertainty.
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We will analyse uncertainties in the more general case of Linear Stochastic Reserving methods,
see section 4.



3 Other classical reserving methods 3.6 Other methods

Other methods

There are many more methods used for reserving. Some of them are based on
a stochastic model and some not. For instance:

• Frequency severity models, which model the claim frequency and the
severity separately.

• Generalised linear models (GLMs) are sometimes used for reserving.
• Munich-Chain-Ladder method, which tries to project payments and

incurred losses simultaneously.
• Bayesian models, which model development factors as random variables.
• Distribution based models, which assume some kind of distribution and

fit the corresponding parameters based on the observed data.
• The over-dispersed Poisson model, which leads to the same estimates

for the reserves like the Chain-Ladder method we have discussed. But
the estimates for the corresponding ultimate (or solvency) uncertainties
are different.

• . . .
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3 Other classical reserving methods 3.7 Literature
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4 Linear-Stochastic-Reserving methods
4.1 How do Linear-Stochastic-Reserving methods (LSRM) work

4.1.1 LSRM without stochastic (1/2)

Motivation for LSRMs

All the methods we have seen up to now can only handle one or at most two
triangles. In order to estimate Best Estimate reserves we could simply add the
estimates of all portfolios, but how to deal with the uncertainties? Depending
of the portfolios we would expect some diversification effects, caused by the
law of large numbers, and some dependencies, caused for instance by:

• same underlying risk (hail storms for property and motor hull)
• monetary and superimposed inflation
• changes in insurance contracts (deductibles)
• . . .

In practice one often takes a covariance matrix to couple the uncertainties of
portfolios, but how to estimate such covariance matrices?

Moreover, there are simple dependencies, which cannot be modelled even for
the ultimate outcome. For instance, it is intuitive that future subrogation
(regress) may be approximately proportional to the sum of all payments up to
know.
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4 Linear-Stochastic-Reserving methods
4.1 How do Linear-Stochastic-Reserving methods (LSRM) work

4.1.1 LSRM without stochastic (2/2)

Basic idea behind Linear-Stochastic-Reserving methods

Linear-Stochastic-Reserving methods are reserving methods for a whole collection
of claim properties Sm

i,k (triangles), which may be

• payments
• incurred losses
• number of reported claims
• small or large claims
• . . .

of the same or different portfolios.
The basic assumption behind LSRMs is that the changes of each claim prop-
erty Sm

i,k are approximately proportional to an exposure Rm
i,k, which is a linear

combination of claim properties of the past.
For instance, denote subrogation by S0

i,k and other payments by S1
i,k. Then we

could take

S1
i,k+1 ≈ f1

k

k∑

j=0

S1
i,j and S0

i,k+1 ≈ f0
k

k∑

j=0

(S0
i,j + S1

i,j).
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4 Linear-Stochastic-Reserving methods
4.1 How do Linear-Stochastic-Reserving methods (LSRM) work

4.1.2 Stochastic behind LSRMs (1/8)

σ-algebras (repetition)

I

ac
ci

d
en

t
p
er

io
d

0 J
development period

I

calendar-
period

n

Dn

k

Dk

i

Di,k

• Bi,k is the σ-algebra of all information of accident period i up
to development period k:

Bi,k :=σ
(
Sm
i,j : 0 ≤ j ≤ k, 0 ≤ m ≤ M

)

=σ
(
Cm
i,j : 0 ≤ j ≤ k, 0 ≤ m ≤ M

)

• Di,k is the σ-algebra containing all information up to accident
period i and development period k:

Di,k :=σ
(
Si,j : 0 ≤ h ≤ i, 0 ≤ j ≤ k, 0 ≤ m ≤ M

)

=σ (Bh,k : 0 ≤ h ≤ i)

• Dn is the σ-algebra of all information up to calender period n:

Dn :=σ
(
Si,k : 0 ≤ i ≤ I, 0 ≤ k ≤ J ∧ (n− i), 0 ≤ m ≤ M

)

=σ




I⋃

i=0

J∧(n−i)⋃

k=0

Bi,k




• Dk is the σ-algebra of all information up to development
period k:

Dk :=σ
(
Si,j : 0 ≤ i ≤ I, 0 ≤ j ≤ k, 0 ≤ m ≤ M

)

=σ

(
I⋃

i=0

Bi,k

)

• Dn
k := σ (Dn ∪ Dk)
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The σ-algebra Dn
k is used in order to separate two arbitrary payments Sm1

i1,k1
and Sm2

i2,k2
with

(i1, k1) 6= (i2, k2). That means, for all (i1, k1) 6= (i2, k2) there exists n and k such that

(
Sm1
i1,k1

∈ Dn
k and Sm2

i2,k2
/∈ Dn

k

)
or

(
Sm1
i1,k1

/∈ Dn
k and Sm2

i2,k2
∈ Dn

k

)
.



4 Linear-Stochastic-Reserving methods
4.1 How do Linear-Stochastic-Reserving methods (LSRM) work

4.1.2 Stochastic behind LSRMs (2/8)

Assumption 4.A (Linear-Stochastic-Reserving method)

We call the stochastic model of the increments Sm
i,k a Linear-Stochastic-Reserving

method (LSRM) with

• development exposures Rm
i,k ∈ Di,k, which depend linearly on the claim

properties, and
• covariance exposures Rm1,m2

i,k ∈ Di,k,

if there exist constants fm
k and σm1,m2

k such that

i)LSRM for all m, i and k, the expectation of the claim property Sm
i,k+1 under the

condition of all information of its past Di+k
k is proportional to Rm

i,k, i.e.

E
[
Sm
i,k+1

∣∣Di+k
k

]
= fm

k Rm
i,k.

ii)LSRM for all m1, m2, i and k, the covariance of the claim properties Sm1
i,k+1 and

Sm2
i,k+1 under the condition of all information of their past Di+k

k is

proportional to Rm1,m2

i,k , i.e.

Cov
[
Sm1
i,k+1, S

m2
i,k+1

∣∣∣Di+k
k

]
= σm1,m2

k Rm1,m2

i,k .
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• We will call the parameters fm
k and σm1,m2

k development factors and covariance
parameters, respectively.

• The stochastic model of LSRMs was introduced in [21]. Unfortunately, this article
contains some typing errors, which make the implementation very hard. Therefore, a
corrected version can be obtained by the lecturer. However, in the next lectures we will
use a different approach to derive estimators of the uncertainties.

• A GPL-licensed implementation of LSRMs (ActiveX component and a corresponding
Excel interface) can be obtained from http://sourceforge.net/projects/lsrmtools/.

• The choice of the exposures Rm
i,k and Rm1,m2

i,k is of great importance. Unfortunately, we
neither can provide a statistical nor a general heuristic concept for this choice. In some
cases there is portfolio based information that may help with the choice of exposures, for
instance for subrogation. Another useful technique is back-testing, that means to look
for exposures for which we see now that the corresponding projections would have been
reliable in the past.

http://sourceforge.net/projects/lsrmtools/


4 Linear-Stochastic-Reserving methods
4.1 How do Linear-Stochastic-Reserving methods (LSRM) work

4.1.2 Stochastic behind LSRMs (3/8)

LSRM step by step
S0 k

S0
i,k+1

i

S1 k

S1
i,k+1

i · · ·

SM k

SM
i,k+1

i

k

R0
i,k

i

R0

Γ0
i,k ·f0

k

k

R1
i,k

i

R1

Γ1
i,k ·f1

k

· · ·

k

RM
i,k

i

RM

ΓM
i,k ·fM

k
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Γm
i,k denotes the linear operator that generates Rm

i,k.



4 Linear-Stochastic-Reserving methods
4.1 How do Linear-Stochastic-Reserving methods (LSRM) work

4.1.2 Stochastic behind LSRMs (4/8)

Remark 4.1 (Dependencies of accident periods)

• There is no additional assumption about independent accident periods
necessary!

bb

• Roughly spoken, part ii)LSRM means something like: ‘accident periods
are uncorrelated up to the first column’.
This means LSRMs are affected by (changes in) inflation, too!

bb

• But known diagonal effects can be easily compensated by changing the
exposures.

bb

• The choice of the exposures Rm1,m2

i,k is not completely free. They have

to fulfil the covariance assumption ii)LSRM, which means that all
resulting corresponding covariance matrices have to be positive
semi-definite.

bb
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4 Linear-Stochastic-Reserving methods
4.1 How do Linear-Stochastic-Reserving methods (LSRM) work

4.1.2 Stochastic behind LSRMs (5/8)

Lemma 4.2

Assume Sm
i,k satisfy Assumption 4.A. Then

a) E
[
Sm
i,k+1

∣∣Di+k
]
= E

[
Sm
i,k+1

∣∣Dk

]
= E

[
Sm
i,k+1

∣∣Di,k

]

= E
[
Sm
i,k+1

∣∣Di+k ∩ Dk

]
= fm

k Rm
i,k.

b) Cov
[
Sm1
i,k+1, S

m2
i,k+1

∣∣∣Di+k
]
= Cov

[
Sm1
i,k+1, S

m2
i,k+1

∣∣∣Dk

]
= Cov

[
Sm1
i,k+1, S

m2
i,k+1

∣∣∣Di,k

]

= Cov
[
Sm1
i,k+1, S

m2
i,k+1

∣∣∣Di+k ∩ Dk

]
= σm1,m2

k Rm1,m2

i,k .

c) Cov
[
Sm1
n+1−j1,j1 , S

m2
n+1−j2,j2

∣∣∣Dn
]
= 0, for j1 6= j2.

d) provided that all exposures Rm
i,k depend only on the i-th accident period, all accident

periods will be uncorrelated under the knowledge of some past, i.e. for all σ-algebras
Dn

k , all i1 6= i2 and arbitrary k1, k2, m1 and m2 we have

Cov
[
Sm1
i1,k1

, Sm2
i2,k2

∣∣∣Dn
k

]
= 0.

e) If we have independent accident periods the conditioning on Di+k
k could be replaced

by conditioning on Bi,k.
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a),b) Follows from the measurability of Rm
i,k and R

m1,m2
i,k

with respect to Di,k .

c) Assume that j1 > j2. Then S
m1
n+1−j2,j2

is Dn
j1−1-measurable and we get

Cov
[
S
m1
n+1−j1,j1

, S
m2
n+1−j2,j2

∣∣∣Dn
]

= Cov
[
E
[
S
m1
n+1−j1,j1

∣∣∣Dn
j1−1

]
,E
[
S
m2
n+1−j2,j2

∣∣∣Dn
j1−1

]∣∣∣Dn
]

︸ ︷︷ ︸

E

[
S
m1
n+1−j1,j1

∣∣∣∣Dn
j1−1

]
=f

m1
j1−1

R
m1
n+1−j1,j1−1

is Dn measurable

+ E
[
Cov

[
S
m1
n+1−j1,j1

, S
m2
n+1−j2,j2

∣∣∣Dn
j1−1

]∣∣∣Dn
]

︸ ︷︷ ︸
S
m1
n+1−j1,j1

is Dn
j1−1-measurable

= 0

d) If S
m1
i1,k1

or S
m2
i2,k2

is measurable with respect to Dn
k we are done. Otherwise, Dn

k is a subset of

Di1+k1−1
k1−1

and Di2+k2−1
k2−1

and S
m1
i1,k1

is measurable with respect to the past of S
m2
i2,k2

or vice versa.

Without loss of generality assume that S
m1
i1,k1

is Di2+k2−1
k2−1

-measurable. Then we get

Cov
[
S
m1
i1,k1

, S
m2
i2,k2

∣∣∣Dn
k

]
= E

[
Cov

[
S
m1
i1,k1

, S
m2
i2,k2

∣∣∣Di2+k2−1
k2−1

]∣∣∣Dn
k

]

+ Cov
[
E
[
S
m1
i1,k1

∣∣∣Di2+k2−1
k2−1

]
,E
[
S
m2
i2,k2

∣∣∣Di2+k2−1
k2−1

]∣∣∣Dn
k

]

= 0 + Cov
[
S
m1
i1,k1

, f
m2
k2−1

R
m2
i2,k2−1

∣∣∣Dn
k

]
.

Since R
m2
i2,k2−1

∈ Bi2,k2−1 and depends linearly on S it is enough to show that S
m1
i1,k1

and S
m2
i2,k2−1

are Dn
k -conditional uncorrelated. Iteration until S

m1
i1,k1−j

or S
m2
i2,k2−j

is Dn
k -measurable proves part d).

e) Because of independent accident periods.



4 Linear-Stochastic-Reserving methods
4.1 How do Linear-Stochastic-Reserving methods (LSRM) work

4.1.2 Stochastic behind LSRMs (6/8)

Remark 4.3 (CLM as LSRM)

Because of Corollary 2.3, i.e.

E
[
S0
i,k+1

∣∣Di+k
k

]
= (fk − 1)

k∑

j=0

S0
i,j = (fk − 1)Ci,k,

Cov
[
S0
i,k+1, S

0
i,k+1

∣∣Di+k
k

]
= σ2

k

k∑

j=0

S0
i,j = σ2

kCi,k,

the Chain-Ladder method is a LSRM with exposures

R0
i,k = R0,0

i,k = Ci,k

and parameters

f0
k = fk − 1,

σ0,0
k = σ2

k.
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4 Linear-Stochastic-Reserving methods
4.1 How do Linear-Stochastic-Reserving methods (LSRM) work

4.1.2 Stochastic behind LSRMs (7/8)

Remark 4.4 (CLRM as LSRM)

If we set
S1
i,k :=

{
Pi, for k = 0,
0, otherwise,

then the Complementary-Loss-Ratio method can be rewritten as

E
[
Sm
i,k+1

∣∣Di+k
k

]
= fm

k Pi

E
[
Sm1
i,k+1, S

m2
i,k+1

∣∣∣Di+k
k

]
= σm1,m2

k Pi

with parameters

f0
k = fk and f1

k = 0,

σ0,0
k = σ2

k and σ0,1
k = σ1,0

k = σ1,1
k = 0.

Therefore, it is a LSRM with exposures

R0
i,k = R1

i,k = R0,0
i,k = R0,1

i,k = R1,0
i,k = R1,1

i,k = Pi.
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4 Linear-Stochastic-Reserving methods
4.1 How do Linear-Stochastic-Reserving methods (LSRM) work

4.1.2 Stochastic behind LSRMs (8/8)

Remark 4.5 (BFM as LSRM)

Since we can look at BFM as a Complementary-Loss-Ratio method (see Re-
mark 3.8), it can also be interpreted as LSRM.

Remark 4.6 (ECLRM as LSRM)

By definition the Extended-Complementary-Loss-Ratio method is a LSRM
with exposures

R0,0
i,k = R0,1

i,k = R1,0
i,k = R1,1

i,k =

k∑

j=0

(S1
i,k − S0

i,k)

and parameters fm
k and σm1,m2

k .
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4 Linear-Stochastic-Reserving methods
4.2 Future development

4.2.1 Projection of the future development (1/5)

Estimator 4.7 (of the development parameter fm
k )

Let Sm
i,k satisfy Assumption 4.A. Then for each set of DI ∩ Dk-measurable weights wm

i,k with

• wm
i,k ≥ 0 and Rm

i,k = 0 implies wm
i,k = 0,

•
∑I−1−k

i=0 wm
i,k = 1 if at least one Rm

i,k 6= 0

we get that

• f̂m
k :=

I−1−k∑

i=0

wm
i,k

Sm
i,k+1

Rm
i,k

(4.1)

is a Dk-conditionally unbiased estimator of the development factor fm
k and the weights

wm
i,k :=

(
Rm

i,k

)2

Rm,m
i,k




I−1−k∑

h=0

(
Rm

h,k

)2

Rm,m
h,k




−1

, (4.2)

result in estimators f̂m
k with minimal (Dk-conditional) variance of all estimators of the

form (4.1).
• For every tuple f̂m1

k1
, . . . , f̂mr

kr
with k1 < k2 < · · · < kr we get

E
[
f̂m1
k1

· · · f̂mr
kr

∣∣∣Dk1

]
= fm1

k1
· · · fmr

kr
= E

[
f̂m1
k1

∣∣∣Dk1

]
· · ·E

[
f̂mr
kr

∣∣∣Dkr

]
,

which implies that the estimators are pairwise Dk1-conditionally uncorrelated.
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we get that

• f̂m
k :=

I−1−k∑

i=0

wm
i,k

Sm
i,k+1

Rm
i,k

(4.1)

is a Dk-conditionally unbiased estimator of the development factor fm
k and the weights

wm
i,k :=

(
Rm

i,k

)2

Rm,m
i,k




I−1−k∑

h=0

(
Rm

h,k

)2

Rm,m
h,k




−1

, (4.2)

result in estimators f̂m
k with minimal (Dk-conditional) variance of all estimators of the

form (4.1).
• For every tuple f̂m1

k1
, . . . , f̂mr

kr
with k1 < k2 < · · · < kr we get

E
[
f̂m1
k1

· · · f̂mr
kr

∣∣∣Dk1

]
= fm1

k1
· · · fmr

kr
= E

[
f̂m1
k1

∣∣∣Dk1

]
· · · E

[
f̂mr
kr

∣∣∣Dkr

]
,

which implies that the estimators are pairwise Dk1-conditionally uncorrelated.
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• unbiased:
E
[
f̂
m
k

∣∣∣Dk

]
=

I−1−k∑

i=0

w
m
i,k

E
[
E
[
Sm
i,k+1

∣∣∣Di+k
k

]∣∣∣Dk

]

Rm
i,k

=

I−1−k∑

i=0

w
m
i,k

fm
k Rm

i,k

Rm
i,k

= f
m
k

• minimal variance: Var
[
f̂m
k

]
= E

[
Var
[
f̂m
k

∣∣∣Dk

]]
+ Var

[
E
[
f̂m
k

∣∣∣Dk

]]
= E

[
Var
[
f̂m
k

∣∣∣Dk

]]
+ 0

Var
[
f̂
m
k

∣∣∣Dk

]
= Var




I−1−k∑

i=0

w
m
i,k

Sm
i,k+1

Rm
i,k

∣∣∣∣∣∣
Dk



=

I−1−k∑

i=0

(w
m
i,k)

2
Var
[
Sm
i,k+1

∣∣∣Dk

]

(Rm
i,k

)2

︸ ︷︷ ︸
measurable with respect to Dk

= σ
m,m
k

I−1−k∑

i=0

(w
m
i,k)

2
R

m,m
i,k

(Rm
i,k

)2

︸ ︷︷ ︸
ii)LSRM

Lagrange: minimize
∑I−1−k

i=0 (wm
i,k)2

R
m,m
i,k

(Rm
i,k

)2
+ λ

(
1 −

∑I−1−k
i=0 wm

i,k

)

∂

∂wm
i,k

• = 2w
m
i,k

R
m,m
i,k

(Rm
i,k

)2
−λ =⇒ w

m
i,k =

λ

2

(Rm
i,k)2

R
m,m
i,k

and λ = 2




I−1−k∑

i=0

(Rm
i,k)2

R
m,m
i,k




−1

︸ ︷︷ ︸
∑I−1−k

i=0
wm

i,k
=1

=⇒ (4.2)

• uncorrelated: E
[
f̂
m1
k1
· · · f̂mr

kr

∣∣∣Dk1

]
= E

[
E
[
f̂
m1
k1
· · · f̂mn

kr

∣∣∣Dkr

]∣∣∣Dk1

]

= E

[
f̂
m1
k1
· · · f̂

mr−1
kr−1

E
[
f̂
mr
kr

∣∣∣Dkr

]∣∣∣∣Dk1

]

= E

[
f̂
m1
k1
· · · f̂

mr−1
kr−1

∣∣∣∣Dk1

]
f
mr
kr

= . . . = f
m1
k1
· · · fmr

kr
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4.2 Future development

4.2.1 Projection of the future development (2/5)

Definition 4.8 (Diagonal by diagonal projection)

Since the exposures Rm
i,k depend linearly on claim properties, there exist linear operators

Γm
i,k, which generate these exposures. We now want to formalise the diagonal by diagonal

projection. Therefore, we denote by

#n := #{(m, i, k) : 0 ≤ m ≤ M, 0 ≤ i ≤ I, 0 ≤ k ≤ J − 1, 0 ≤ i+ k ≤ n}

the number of claim properties below or on the diagonal n and define

Fm
i,k(g) : R

#i+k → R : Fm
i,k(g):= gmi,kΓ

m
i,k,

F
n(g) : R#n → R#n+1

: (Fn(g)x)mi,k :=

{
xmi,k, if i+ k ≤ n,

Fm
i,k−1(g)x, otherwise,

F
n2←n1(g) : R#n1 → R#n2+1

: F
n2←n1(g):=

{
F

n2(g) ◦ · · · ◦Fn1(g) , if n2 ≥ n1,

Π#n2+1
, otherwise,

Fm,n
i,k (g) : R#n → R : Fm,n

i,k (g)x :=
(
F

i+k←n(g) x
)m
i,k+1

,

where Π#n
denotes the projection onto R#n

and g is any large enough vector with co-
ordinates gmi,k.
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• Since the operators Γm
i,k and Fm

i,k(g) only depend on coordinates (l, h, j) with

0 ≤ m ≤M, 0 ≤ h ≤ i, 0 ≤ j ≤ k

they could be defined on a smaller domain, but than concatenation would not be
possible.

• We added the parameter g in order to denote which development factors are used, for
instance the real, but unknown, development vectors fm

k or their estimates f̂m
k .

• Often we will use parameters g, which do not depend on the accident period i. Then we
will skip the index i in gmi,k.



4 Linear-Stochastic-Reserving methods
4.2 Future development

4.2.1 Projection of the future development (3/5)

Lemma 4.9 (multi-linear structure of F)

For all i + k ≥ n and for all Y ∈ Dn there exist random variables
Xn,m,l1,...,lr

i,k,h1,...,hr,j1,...,jr
∈ Di,k ∩ Dn, which depend linearly on the coordinates

of Y, such that for all g

Fm,n
i,k (g)Y =

k+i+1−n∑

r=1

∑

0≤l1,...,lr≤M
0≤h1,...,hr≤i

n−i≤j1<···<jr≤k

gl1
h1,j1

· · · glr
hr,jr

Xn,m,l1,...,lr
i,k,h1,...,hr,j1,...,jr

.

Remark 4.10

That means we have a multi-linear structure in the development factors as
well as in the claims properties, like in the Chain-Ladder case.
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If i+ k < n then
Fm,n

i,k (g)Y = Yi,k ∈ Di,k ∩ Dn.

If i+ k = n we get
Fm,n

i,k (g)Y = gm
i,k Γm

i,kY︸ ︷︷ ︸
∈Di,k∩Di+k

,

because Γm
i,kY depends only on coordinates of Y which are Di,k ∩Di+k measurable.

Now assume that the statement is fulfilled for all n, h, j with n ≤ h+ j < i+ k. Then we get

Fm,n
i,k (g)Y = Fm

i,k(g) ◦F i+k−1←n(g)Y = gm
i,kΓ

m
i,k ◦F i+k−1←n(g)Y.

By assumption the statement is fulfilled for each coordinate of
(
F

i+k−1←n(g)Y
)l
h,j

and since

Γm
i,k depends only on coordinates h ≤ i and j ≤ k, only development factors gl

h,j with n− i ≤
j < k are involved, which by induction proves our statement.



4 Linear-Stochastic-Reserving methods
4.2 Future development

4.2.1 Projection of the future development (4/5)

Remark 4.11

• The mapping F
n(g) fills the (n+ 1)-th diagonal of all claim property

triangles based on all diagonals up to the n-th diagonal.
• The functional Fm

i,k(g) does depend on coordinates up to accident period i
and development period k, only.

• Fm
i,k(g)x =

(
F

i+k(g)x
)m
i,k+1

,

• Rm
i,k = Γm

i,kS
i+k,

• E
[
Sm
i,k+1

∣∣∣Di+k
k

]
= Fm

i,k(f )S
i+k,

• E
[
Sn1+n2+1

∣∣Dn1
]
= F

n1+n2←n1(f )Sn1 ,

• E
[
Sm
i,k+n+1

∣∣∣Di+k ∩ Dk

]
= E

[
Sm
i,k+n+1

∣∣∣Di+k
k

]
= Fm,i+k

i,k+n (f )Si+k,

where f := (fm
k )0≤m≤M0≤k<J denotes the vector of the real (but unknown) develop-

ment factors and
Sn :=

(
Sm
i,k

)0≤m≤M
0≤i≤I, 0≤k<J, 0≤i+k≤n

is the vector of all claim properties below or on the diagonal n.
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E
[
Sn1+n2+1

∣∣Dn1
]
= E

[
E
[
Sn1+n2+1

∣∣Dn1+n2
]∣∣Dn1

]
= E

[
F

n1+n2 (f )Sn1+n2
∣∣Dn1

]

= F
n1+n2 (f )E

[
Sn1+n2

∣∣Dn1
]
= . . . = F

n1+n2←n1 (f )Sn1

E
[
Sm
i,k+n+1

∣∣∣Di+k
k

]
=

(
F

i+k+n←i+k(f )Si+k
)m

i,k+n+1
= Fm,i+k

i,k+n (f )Si+k



4 Linear-Stochastic-Reserving methods
4.2 Future development

4.2.1 Projection of the future development (5/5)

Estimator 4.12 (of the future development)

Let Sm
i,k satisfy Assumption 4.A. Then

Ŝm
i,k+1 := Fm,I

i,k

(
f̂
)
SI , I − i ≤ k < J,

are DI−i-conditional unbiased estimators of E
[
Sm
i,k+1

∣∣∣DI
]
.

Moreover, we define Ŝm
i,k := Sm

i,k, for i+ k ≤ I, and

R̂m
i,k := Γm

i,kŜ
i+k and R̂m1,m2

i,k =: Γm1,m2

i,k Ŝi+k,

where Γm1,m2

i,k denotes the operator that generates Rm1,m2

i,k based on Si+k.
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Ŝm
i,k+1 := Fm,I

i,k

(
f̂
)
SI , I − i ≤ k < J,

are DI−i-conditional unbiased estimators of E
[
Sm
i,k+1

∣∣∣DI
]
.

Moreover, we define Ŝm
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We will even prove that Ŝm
i,k+1 is an DI−h-conditionally unbiased estimator of E

[
Sm
i,k+1

∣∣∣DI
]
for all h ≥ i. We

will do that by induction. If i + k = I we get for all h ≥ i

E
[
Ŝ
m
i,k+1

∣∣∣DI−h

]
= E

[
E
[
Ŝ
m
i,k+1

∣∣∣Dk

]∣∣∣DI−h

]
= E

[
E
[
f̂
m
k R

m
i,k

∣∣∣Dk

]∣∣∣DI−h

]
= E

[
E
[
f̂
m
k

∣∣∣Dk

]
R

m
i,k

∣∣∣DI−h

]

= E
[
f
m
k R

m
i,k

∣∣∣DI−h

]

︸ ︷︷ ︸
Estimator 4.7

= E
[
Fm

i,k

(
f
)
S
I
∣∣∣DI−h

]
= E

[
E
[
S
m
i,k+1

∣∣∣DI
]∣∣∣DI−h

]

︸ ︷︷ ︸
Remark 4.11

.

Now assume that the statement is fulfilled for all i + k < n. Then we get for i + k = n and all h ≥ i

E
[
Ŝ
m
i,k+1

∣∣∣DI−h

]
= E

[
Fm

i,k

(
f̂
)
Ŝ
i+k

∣∣∣DI−h

]
= E

[
E
[
Fm

i,k

(
f̂
)∣∣∣Dk

]
Ŝ
i+k

∣∣∣DI−h

]

= E
[
Fm

i,k

(
f
)
Ŝ
i+k

∣∣∣DI−h

]
= Fm

i,k

(
f
)
E
[
Ŝ
i+k

∣∣∣DI−h

]
.

Since Fm
i,k

(
f
)

depends only on accident periods h1 ≤ i, all coordinates E
[
Ŝl
h1,j

∣∣∣DI−h

]
of E

[
Ŝi+k

∣∣∣DI−h

]
with

h1 > i will not be taken into account. For all others we can apply the induction hypotheses and proceed with

= Fm
i,k

(
f
)
E
[
S
i+k

∣∣∣DI−h

]

︸ ︷︷ ︸
induction hypothesis

= E
[
E
[
S
m
i,k+1

∣∣∣DI
k

]∣∣∣DI−h

]

︸ ︷︷ ︸
Remark 4.11

= E
[
E
[
S
m
i,k+1

∣∣∣DI
]∣∣∣DI−h

]
.

Note, since R
m1,m2
i,k

is Di+k measureable, there always extists an operator Γ
m1,m2
i,k

such that

R
m1,m2
i,k

= Γ
m1,m2
i,k

Si+k.
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4.2 Future development

4.2.2 Examples (1/4)

Example 4.13 (Swiss mandatory accident portfolio: part 1 of 3, see
LSRM_Accident_ActiveX.xlsx)

We have the following three main types of (non annuity) payments:

• Medical expenses (ME) will be estimated by CLM, because it worked fine in the
past.

• Payments for incapacitation for work (IW) are by law proportional to the
insured salary Pi, which is limited to a maximum amount. Moreover, during
accident period 7 the maximum insured salary has been increased by about 20%,
valid for all claims happening afterwards. Therefore, we would like to take CLRM
with the insured salary as external exposure.
On the other side, we know from the past that the claim frequency is influenced by
the economic situation, which is better reflected by CLM than by CLRM.
Combining both we take a mixture of the exposures of both methods, whereas the
weight of the insured salary is κk+1.

• Subrogation (Sub) possibilities are huge, because many claims are caused by car
accidents and by law the accident insurer of the insured persons has to pay first and
may take subrogation against the motor liability insurer afterwards.
Therefore, we assume that the amount of possible subrogation is proportional to
the total amount that already has been paid, i.e. to ME+IW+Sub.
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4.2 Future development

4.2.2 Examples (2/4)

Mathematical that means:

We have four claim properties with exposures

ME: R0
i,k = R0,0

i,k =
∑k

j=0 S
0
i,j

IW: R1
i,k = R1,1

i,k =
∑k

j=0

(
κj+1S3

i,j + (1− κj+1)S1
i,j

)

Sub: R2
i,k = R2,2

i,k =
∑k

j=0

(
S0
i,j + S1

i,j + S2
i,j

)

Salary: S3
i,0 = Pi, S

3
i,j = 0, for j > 0, and

R3
i,k = R3,0

i,k = R0,3
i,k = R3,1

i,k = R1,3
i,k = R3,2

i,k = R2,3
i,k = R3,3

i,k = 0

For the not yet defined exposures we take the total payments up to now, i.e.

R0,1
i,k = R1,0

i,k = R0,2
i,k = R2,0

i,k = R1,2
i,k = R2,1

i,k =
∑k

j=0

(
S0
i,j + S1

i,j + S2
i,j

)
.

Resulting Best Estimate reserves

• Depend almost linear on κ, because it practically influences only the first
development period, that means the most recent accident period i = 8.

• Are much higher than the CLM on total payments (small circle on the left), if
κ = 1. The main difference is in the most recent accident period i = 8.

• Are slightly smaller than CLM, if κ = 0. This may be a consequence of the more
detailed modelling of subrogation.
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i,k = R1,2
i,k = R2,1

i,k =
∑k

j=0

(
S0
i,j + S1

i,j + S2
i,j

)
.

Resulting Best Estimate reserves

• Depend almost linear on κ, because it practically influences only the first
development period, that means the most recent accident period i = 8.

• Are much higher than the CLM on total payments (small circle on the left), if
κ = 1. The main difference is in the most recent accident period i = 8.

• Are slightly smaller than CLM, if κ = 0. This may be a consequence of the more
detailed modelling of subrogation.
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4 Linear-Stochastic-Reserving methods
4.2 Future development

4.2.2 Examples (3/4)

Example 4.13: Best Estimate reserves in dependence of κ

claim reserves

κ0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
142’000

147’000

152’000

157’000

CLM
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• The estimated covariance parameters σ̂m1,m2
k together with the estimated exposures

R̂m1,m2
i,k lead to covariance matrices which are slightly non-positive definite for

development periods k ∈ {5, 6, 7}. Since the corresponding negative eigenvalues are
almost zero, we believe that it is not a model but an estimation problem. We could
change the estimated covariance parameters slightly in order to get non-negative
covariance matrices without changing uncertainties a lot.



4 Linear-Stochastic-Reserving methods
4.2 Future development

4.2.2 Examples (4/4)

Example 4.14 (ECLRM vs. CLM, see Examples 2.7 and 2.8: part 1 of 3, see
LSRM_Examples_ActiveX.xlsx)

We have seen that the Chain-Ladder method leaves a gap between the Best Estimate
reserves based on payments and the one based on incurred losses. Moreover, we have
closed this gap by a credibility like weighting.
Now we want to look at the corresponding results, if we take the case reserves as exposure
(ECLRM):

Best Estimate reserves

AP CLM paid CLM incurred CLM weighting ECLRM Case Reserve

0 --- --- --- --- ---
1 114 086 337 984 228 182 314 902 352 899
2 394 121 31 884 203 653 66 994 75 316
3 608 749 331 436 458 946 359 384 410 496
4 697 742 1 018 350 877 247 981 883 1 148 647
5 1 234 157 1 103 928 1 157 520 1 115 768 1 317 088
6 1 138 623 1 868 664 1 587 838 1 786 947 2 216 536
7 1 638 793 1 997 651 1 862 844 1 942 518 2 923 692
8 2 359 939 1 418 779 1 750 635 1 569 657 2 756 633
9 1 979 401 2 556 612 2 412 410 2 590 718 2 203 446

Total 10 165 612 10 665 287 10 539 276 10 728 771 13 404 753
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• CLM on incurred, CLM weighting and ECLRM lead to similar results, whereas the later
reflects the information contained in the case reserves at best (see third accident period
i = 2).

• In total the results of CLM on payments are in the same range like the others, but the
estimated reserves for individual accident periods are quit different.
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4 Linear-Stochastic-Reserving methods
4.2 Future development

4.2.2 Examples

4 Linear-Stochastic-Reserving methods
4.1 How do Linear-Stochastic-Reserving methods (LSRM) work
4.1.1 LSRM without stochastic
4.1.2 Stochastic behind LSRMs
4.2 Future development
4.2.1 Projection of the future development
4.2.2 Examples
4.3 Ultimate uncertainty
4.3.1 Mixing of claim properties
4.3.2 Ultimate uncertainty
4.3.3 Estimation of the covariance parameters
4.3.4 Examples
4.4 Solvency uncertainty
4.4.1 Estimation at time I + 1
4.4.2 Solvency uncertainty
4.4.3 Uncertainties of further CDR’s
4.5 Examples
4.6 Estimation of correlation of reserving Risks
4.6.1 Avoiding correlation matrices for the reserving risks
4.6.2 Using LSRMs to estimate a correlation matrix
4.7 Literature
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4 Linear-Stochastic-Reserving methods
4.3 Ultimate uncertainty

4.3.1 Mixing of claim properties

Mixing weights

In the last lecture we derived unbiased estimators for the future development of Linear-
Stochastic-Reserving methods. Now we want to look at the corresponding ultimate
uncertainty.
We have seen in Estimator 2.15 and Examples 4.13 that we are often interested in
a linear combination of claim properties. Since claim reserves are expectations such
mixing can be transferred to the corresponding Best Estimate reserves. But, because
of diversification and dependencies, the mixing of claim properties has an influence on
the estimated uncertainties. Therefore, we will look at the ultimate uncertainty of

M∑

m=0

αm
i

J−1∑

k=I−i
Ŝm
i,k+1 and

M∑

m=0

I∑

i=0

αm
i

J−1∑

k=I−i
Ŝm
i,k+1,

where αm
i are DI -measurable real numbers.

That means we want to estimate

mseDI

[
M∑

m=0

αm
i

J−1∑

k=I−i
Ŝm
i,k+1

]
and mseDI

[
M∑

m=0

I∑

i=0

αm
i

J−1∑

k=I−i
Ŝm
i,k+1

]
.
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Exapmles for mixing:

• Combination of two portfolios (weights are equal to one).

• Combination of two Chain-Ladder projections, one for payments and one for incurred
losses (weights sum up to one for each i).

• Adding dependent payments, for instance subrogation and normal payments, which are
projected separately (weights are equal to one).



4 Linear-Stochastic-Reserving methods
4.3 Ultimate uncertainty

4.3.2 Ultimate uncertainty (1/7)

Decomposition of the ultimate uncertainty

mseDI

[
M∑

m=0

I∑

i=0

αm
i

J−1∑

k=I−i
Ŝm
i,k+1

]
= Var

[
M∑

m=0

I∑

i=0

αm
i

J−1∑

k=I−i
Sm
i,k+1

∣∣∣∣∣D
I

]

︸ ︷︷ ︸
random error

+

(
M∑

m=0

I∑

i=0

αm
i

J−1∑

k=I−i
E
[
Sm
i,k+1 − Ŝm

i,k+1

∣∣∣DI
])2

︸ ︷︷ ︸
parameter error

Remark 4.15

The ultimate uncertainty of a single accident period or a single claim property
can easily be obtained from the general formula by setting some of the αm

i

to zero.
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Ŝm
i,k+1

]
= Var

[
M∑

m=0

I∑

i=0

αm
i

J−1∑

k=I−i
Sm
i,k+1

∣∣∣∣∣D
I

]

︸ ︷︷ ︸
random error

+

(
M∑

m=0

I∑

i=0

αm
i

J−1∑

k=I−i
E
[
Sm
i,k+1 − Ŝm
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4 Linear-Stochastic-Reserving methods
4.3 Ultimate uncertainty

4.3.2 Ultimate uncertainty (2/7)

Taylor approximation

Like in the Chain-Ladder case we will look at the functional

U(g)x :=
M∑

m=0

I∑

i=0

αm
i

(
I−i∑

k=0

xmi,k +
J−1∑

k=I−i
Fm,I
i,k (g)x

)
.

Then we get:

∂l
h,jU(ḡ)x :=

∂U(g)x

∂glh,j

∣∣∣∣∣
g=ḡ

=
U(ḡ)x− U

(
ḡl
h,j|0

)
x

ḡlh,j
= U

(
ḡl
h,j|1

)
x− U

(
ḡl
h,j|0

)
x,

where ḡl
h,j|a denotes the vector ḡ with exchanged coordinate ḡlh,j = a.

Moreover, we have

U(f )SI =

M∑

m=0

I∑

i=0

αm
i

J∑

k=0

E
[
Sm
i,k

∣∣DI
]
,

U
(
f̂
)
SI =

M∑

m=0

I∑

i=0

αm
i

J∑

k=0

Ŝm
i,k, U(F)SI =

M∑

m=0

I∑

i=0

αm
i

J∑

k=0

Sm
i,k,

M∑

m=0

I∑

i=0

αm
i

J∑

k=0

(
Ŝm
i,k − Sm

i,k

)
≈

M∑

l=0

I∑

h=0

J−1∑

j=I−h
∂l
h,jU

(
f̂
)
SI
(
F l
h,j − f̂ l

j

)

where we used a first order Taylor approximation and F and f̂ denote the vector of all link ratios
Fm
i,k := Sm

i,k+1/Rm
i,k and the vector of all estimated development factors f̂m

k , respectively.
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Because of Lemma 4.9 U(g) is an afine operator in each coordinate gmi,k of g. This implies the formula for its partial

derivative.
Moreover, the representations of the expected, estimated and real ultimate are a direct consequence of the definitions
of U and F .



4 Linear-Stochastic-Reserving methods
4.3 Ultimate uncertainty

4.3.2 Ultimate uncertainty (3/7)

Comparison with Chain-Ladder

Except for some additional summations (and the mixing parameters αm
i ) we

have the same form like in the Chain-Ladder case:

I∑

i=0

J∑

k=0

(
Ŝm
i,k − Sm

i,k

)
=

I∑

i=0

(
Ĉi,J − Ci,J

)

≈
I∑

h=0

J−1∑

j=I−i

Ĉh,J

f̂j︸ ︷︷ ︸
=∂h,jU(f̂ )SI

(
Fh,j − f̂j

)
.

LSRM case:

M∑

m=0

I∑

i=0

αm
i

J∑

k=0

(
Ŝm
i,k − Sm

i,k

)
≈

M∑

l=0

I∑

h=0

J−1∑

j=I−h
∂l
h,jU

(
f̂
)
SI
(
F l
h,j − f̂ l

j

)
.
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The partial derivative of the ultimate is a bit simpler in the Chain-Ladder case, because if we
set some development factor fj to zero we get U

(
f̂j |0

)
= 0.



4 Linear-Stochastic-Reserving methods
4.3 Ultimate uncertainty

4.3.2 Ultimate uncertainty (4/7)

Preparation for the derivation of the ultimate uncertainty

Like in the Chain-Ladder case we need some expectations and covariances of f̂m
k

and Fm
i,k:

E
[
Fm
i,k

∣∣DI
]
= E

[
f̂m
k

∣∣∣Dk

]
= fm

k i+ k ≥ I

Cov
[
Fm1
i,k , Fm2

i,k

∣∣∣DI
]
= E

[
σm1,m2

k Rm1,m2

i,k

Rm1
i,k R

m2
i,k

∣∣∣∣∣D
I

]
≈

σ̂m1,m2

k R̂m1,m2

i,k

R̂m1
i,k R̂

m2
i,k

i+ k ≥ I

Cov
[
f̂m1
k , f̂m2

k

∣∣∣Dk

]
= σm1,m2

k

I−1−k∑

i=0

wm1
i,k w

m2
i,k

Rm1,m2

i,k

Rm1
i,k R

m2
i,k

Cov
[
Fm1
i1,k1

, Fm2
i2,k2

∣∣∣DI
]
= 0 (i1, k1) 6= (i2, k2)

Cov
[
f̂m1
k1

, f̂m2
k2

∣∣∣Dk1

]
= 0 k1 < k2

E
[(

Fm1
i1,k1

− f̂m1
k1

)(
Fm2
i2,k2

− f̂m2
k2

)∣∣∣DI
]

= Cov
[
Fm1
i1,k1

, Fm2
i2,k2

∣∣∣DI
]
+
(
f̂m1
k1

− fm1
k1

)(
f̂m2
k2

− fm2
k2

)
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R
m1
i,k

R
m2
i,k

∣∣∣∣∣∣
DI



≈
σ̂
m1,m2
k

R̂
m1,m2
i,k

R̂
m1
i,k

R̂
m2
i,k
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[
f̂
m1
k1

, f̂
m2
k2

∣∣∣Dk1

]
= Cov

[
E
[
f̂
m1
k1

∣∣∣Dk2

]
, E
[
f̂
m2
k2

∣∣∣Dk2

]∣∣∣Dk1

]
+ E

[
Cov

[
f̂
m1
k1

, f̂
m2
k2

∣∣∣Dk2

]∣∣∣Dk1

]
= 0

E
[(

F
m1
i,k1

− f̂
m1
k1

) (
F

m2
i,k2

− f̂
m2
k2

)∣∣∣DI
]

= E
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F
m1
i,k1

− f
m1
k1

)
−
(
f̂
m1
k1
− f

m1
k1

))((
F

m2
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− f
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−
(
f̂
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− f

m2
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= E
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F
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− f
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)(
F

m2
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− f
m2
k2

)∣∣∣DI
]
− E

[(
F

m1
i,k1

− f
m1
k1

)(
f̂
m2
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− f

m2
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)∣∣∣DI
]

− E
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f̂
m1
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− f

m1
k1

)(
F

m2
i,k2

− f
m2
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)∣∣∣DI
]
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m1
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− f

m1
k1

)(
f̂
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− f

m2
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)∣∣∣DI
]
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[
F

m1
i,k1

, F
m2
i,k2

∣∣∣DI
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(
f̂
m1
k1
− f

m1
k1

)(
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m2
k2
− f

m2
k2

)

If i1 + k1 < I or i2 + k2 < I then F
m1
i1,k1

∈ DI or F
m2
i2,k2

∈ DI and we are done. Otherwise, since

(i1, k1) 6= (i2, k2), either F
m1
i1,k1

∈ Di2+k2
k2

or F
m2
i2,k2

∈ Di1+k1
k1

. Lets assume the first:
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[
F

m1
i,k1

, F
m2
i,k2

∣∣∣DI
]
= E

[
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[
F

m1
i,k1

, F
m2
i,k2

∣∣∣DI
k2

]∣∣∣DI
]
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[
E
[
F

m1
i,k1

∣∣∣DI
k2

]
,E
[
F

m2
i,k2

∣∣∣DI
k2

]∣∣∣DI
]

= 0 + Cov
[
F

m1
i,k1

, f
m2
k2

∣∣∣DI
]
= 0



4 Linear-Stochastic-Reserving methods
4.3 Ultimate uncertainty

4.3.2 Ultimate uncertainty (5/7)

Estimator 4.16 (Linear approximation of the ultimate uncertainty)

mseDI

[
U
(
f̂
)
SI
]
= E



(

M∑

m=0

I∑

i=0

αm
i

J∑

k=0

(
Ŝm
i,k − Sm

i,k

))2
∣∣∣∣∣∣
DI


= E

[
U(F)SI − U

(
f̂
)
SI
∣∣∣DI
]

≈ E






M∑

l=0

I∑

h=0

J−1∑

j=I−h
∂l
h,jU

(
f̂
)
SI
(
F l
h,j − f̂ l

j

)



2∣∣∣∣∣∣
DI


 (Taylor approximation)

≈
M∑

l1,l2=0

J−1∑

j1,j2=0

I∑

h1=I−j1

I∑

h2=I−j2
∂l1
h1,j1

U
(
f̂
)
SI∂l2

h2,j2
U
(
f̂
)
SI


Cov

[
F l1
h1,j1

, F l2
h2,j2

∣∣∣DI
]

︸ ︷︷ ︸
random error

+Cov
[
f̂ l1
j1
, f̂ l2

j2

∣∣∣Dj1∧j2
]

︸ ︷︷ ︸
parameter error




≈
M∑

l1,l2=0

J−1∑

j=0

I∑

h=I−j
∂l1
h,jU

(
f̂
)
SI ∂l2

h,jU
(
f̂
)
SI σ̂l1,l2

j

R̂l1,l2
h,j

R̂l1
h,jR̂

l2
h,j︸ ︷︷ ︸

random error

+

M∑

l1,l2=0

J−1∑

j=0

I∑

h1,h2=I−j
∂l1
h1,j

U
(
f̂
)
SI ∂l2

h2,j
U
(
f̂
)
SI σ̂l1,l2

j

I−j−1∑

h=0

wl1
h,jw

l2
h,j

R̂l1,l2
h,j

R̂l1
h,jR̂

l2
h,j︸ ︷︷ ︸

parameter error

.
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(
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)
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(
f̂
)
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j
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h,j
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random error

+
M∑

l1,l2=0

J−1∑

j=0

I∑

h1,h2=I−j
∂l1
h1,j

U
(
f̂
)
SI ∂l2

h2,j
U
(
f̂
)
SI σ̂l1,l2

j

I−j−1∑

h=0

wl1
h,jw

l2
h,j

R̂l1,l2
h,j

R̂l1
h,jR̂

l2
h,j︸ ︷︷ ︸

parameter error
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0
2
1
-0

4
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Ultimate uncertainty

In the second approximation we used

E
[(

F
l1
h1,j1

− f̂
l1
j1

) (
F

l2
h2,j2

− f̂
l2
j2

)∣∣∣DI
]
= Cov

[
F

l1
h1,j1

, F
l2
h2,j2

∣∣∣DI
]
+
(
f̂
l1
j1
− f

l1
j1

)(
f̂
l1
j2
− f

l2
j2

)

≈ Cov
[
F

l1
h1,j1

, F
l2
h2,j2

∣∣∣DI
]
+ Cov

[
f̂
l1
j1

, f̂
l2
j2

∣∣∣Dj1∧j2

]

and from the preparations above we know

Cov
[
F

l1
h1,j1

, F
l2
h2,j2

∣∣∣DI
]
≈ 1j1=j2

1h1=h2
σ̂
l1,l2
j1

R̂
l1,l2
h1,j1

R̂
l1
h1,j1

R̂
l2
h2,j2

Cov
[
f̂
l1
j1

, f̂
l2
j2

∣∣∣Dj1∧j2

]
≈ 1j1=j2

σ̂
l1,l2
j1

I−j1−1∑

h=0

w
l1
h,j1

w
l2
h,j2

R̂
l1,l2
h,j1

R̂
l1
h,j1

R̂
l2
h,j2

.

This leads directly to the stated estimator.



4 Linear-Stochastic-Reserving methods
4.3 Ultimate uncertainty

4.3.2 Ultimate uncertainty (6/7)

Chain-Ladder estimator for the ultimate uncertainty

mseDI

[
Ĉi,J

]
≈

J−1∑

k=0

σ̂2
k

f̂2
k

I∑

i=I−k
Ĉ2
i,J

1

Ĉi,k

+

J−1∑

k=0

σ̂2
k

f̂2
k

(
I∑

i=I−k
Ĉi,J

)2 I−k−1∑

h=0

w2
h,k

Ch,k

LSRM estimator for the ultimate uncertainty

mseDI

[
U
(
f̂
)
SI
]

≈
M∑

l1,l2=0

J−1∑

j=0

I∑

h=I−j
∂l1
h,jU

(
f̂
)
SI ∂l2

h,jU
(
f̂
)
SI σ̂l1,l2

j

≈Cov
[
F

l1
h,j ,F

l2
h,j

∣∣∣DI
]

︷ ︸︸ ︷
R̂l1,l2

h,j

R̂l1
h,jR̂

l2
h,j

+

M∑

l1,l2=0

J−1∑

j=0

I∑

h1,h2=I−j
∂l1
h1,j

U
(
f̂
)
SI ∂l2

h2,j
U
(
f̂
)
SI σ̂l1,l2

j

I−j−1∑

h=0

wl1
h,jw

l2
h,j

R̂l1,l2
h,j

R̂l1
h,jR̂

l2
h,j︸ ︷︷ ︸

≈Cov
[
f̂
l1
j ,f̂

l2
j

∣∣∣Dj1∧j2

]
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Chain-Ladder estimator for the ultimate uncertainty
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Ĉ2
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LSRM estimator for the ultimate uncertainty

mseDI

[
U
(
f̂
)
SI
]

≈
M∑
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J−1∑

j=0

I∑

h=I−j
∂l1
h,jU

(
f̂
)
SI ∂l2

h,jU
(
f̂
)
SI σ̂l1,l2

j

≈Cov
[
F

l1
h,j ,F

l2
h,j

∣∣∣DI
]

︷ ︸︸ ︷
R̂l1,l2

h,j

R̂l1
h,jR̂

l2
h,j

+
M∑

l1,l2=0

J−1∑

j=0

I∑

h1,h2=I−j
∂l1
h1,j

U
(
f̂
)
SI ∂l2

h2,j
U
(
f̂
)
SI σ̂l1,l2

j

I−j−1∑

h=0

wl1
h,jw

l2
h,j

R̂l1,l2
h,j

R̂l1
h,jR̂

l2
h,j︸ ︷︷ ︸

≈Cov
[
f̂
l1
j ,f̂

l2
j

∣∣∣Dj1∧j2

]2
0
2
1
-0

4
-2
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Ultimate uncertainty

Because we have several claim properties, squared terms for Chain-Ladder are replaced by
products of claim properties and the corresponding double sum.



4 Linear-Stochastic-Reserving methods
4.3 Ultimate uncertainty

4.3.2 Ultimate uncertainty (7/7)

Change of the variance exposures in Chain-Ladder

The Chain-Ladder method assumes variances to be proportional to the cumulative pay-
ments, i.e.

Var
[
Ci,k+1

∣∣Di+k
k

]
= σ2

kCi,k,

which leads to vanishing coefficient of variation of (ultimate) uncertainties with increas-
ing volume, see Corollary 2.10. This is one of many arguments against Chain-Ladder.
One way to solve this is to change the variance exposure, for instance to C2

i,k. Then we
get

(
V̂aC

(
I∑

i=0

Ci,J

))2

≈
∑I

i=0 Ĉ
2
i,J(∑I

i=0 Ĉi,J

)2
J−1∑

k=I−i

σ̂2
k

f̂2
k

+
J−1∑

k=0

σ̂2
k

f̂2
k

(∑I
i=I−k Ĉi,J

)2∑I−k−1
h=0 w2

i,k
(∑I

i=0 Ĉi,J

)2 ,

which does not decrease with increasing volume. Nevertheless, you should always add
some model error.
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Ultimate uncertainty

In practice, the choice of the variance exposure does not matter so much, because the estimation
of the variance parameters σ2

k will change, too, which compensates some effects.



4 Linear-Stochastic-Reserving methods
4.3 Ultimate uncertainty

4.3.3 Estimation of the covariance parameters (1/2)

Estimator 4.17 (of covariance parameter σm1,m2

k )

If the normalizing constant

Zm1,m2

k :=

I−1−k∑

i=0

wm1
i,k w

m2
i,k

Rm1
i,k R

m2
i,k

(
1−wm1

i,k − wm2
i,k +Rm1,m2

i,k

I−1−k∑

h=0

wm1
h,kw

m2
h,k

Rm1,m2

h,k

)
> 0

then the covariance parameter σm1,m2

k can be estimated by the following Dk-unbiased
estimator

σ̂m1,m2

k :=
1

Zm1,m2

k

I−1−k∑

i=0

wm1
i,k w

m2
i,k

Rm1,m2

i,k

(
Sm1
i,k+1

Rm1
i,k

− f̂m1
k

)(
Sm2
i,k+1

Rm2
i,k

− f̂m2
k

)

For Zm1,m2

k = 0 and in particular for k = I − 1 one could take the following extra-
polations,

σ̂m,m
k := min

(
(σ̂m,m

k−1 )
2

σ̂m,m
k−2

, σ̂m,m
k−2 , σ̂

m,m
k−1

)
,

σ̂m1,m2

k := σ̂m1,m2

k−1

(
σ̂m1,m1

k σ̂m2,m2

k

σ̂m1,m1

k−1 σ̂m2,m2

k−1

) 1
2

, for m1 6= m2.
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E








S
m1
i,k+1

R
m1
i,k

− f̂
m1
k








S
m2
i,k+1

R
m2
i,k

− f̂
m2
k





∣∣∣∣∣∣
Dk



= Cov








S
m1
i,k+1

R
m1
i,k

− f̂
m1
k



 ,




S
m2
i,k+1

R
m2
i,k

− f̂
m2
k





∣∣∣∣∣∣
Dk





︸ ︷︷ ︸
i)LSRM and Estimator 4.7

= Cov




S
m1
i,k+1

R
m1
i,k

,
S
m2
i,k+1

R
m2
i,k

∣∣∣∣∣∣
Dk


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Cov



wm1
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S
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R
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S
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R
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Dk


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


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ii)LSRM and Lemma 4.2

=⇒ E
[
σ̂
m1,m2
k

∣∣∣Dk

]
=

σ
m1,m2
k

Z
m1,m2
k

I−1−k∑

i=0

w
m1
i,k

w
m2
i,k

R
m1
i,k

R
m2
i,k



1− w
m1
i,k
− w

m2
i,k

+
R

m1
i,k

R
m2
i,k

R
m1,m2
i,k

I−k−1∑

h=0

w
m1
h,k

w
m2
h,k

R
m1,m2
h,k

R
m1
h,k

R
m2
h,k





︸ ︷︷ ︸
change order of summation in the fourth term

= σ
m1,m2
k



4 Linear-Stochastic-Reserving methods
4.3 Ultimate uncertainty

4.3.3 Estimation of the covariance parameters (2/2)

Remark 4.18 (estimation of the covariance parameter σm1,m2

k )

• Even if the real covariance parameter σm1,m2

k lead to positive
semi-defined covariance matrices

(
σm1,m2

k Rm1,m2

i,k

)
0≤m1,m2≤M

the estimated values may not. In particular this may be the case if one
eigenvalue of the real covariance matrix is (almost) equal to zero.
Therefore, we always have to check the positive semi-definiteness of
the estimated covariance matrices.

• The first part of the extrapolation goes back to Mack [22]. Roughly
spoken it assumes that the variance parameter decay exponentially for
later development periods.

• Depending on the data we may get better estimators if we introduce
weights or use other extrapolations.
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4 Linear-Stochastic-Reserving methods
4.3 Ultimate uncertainty

4.3.4 Examples (1/3)

Swiss mandatory accident portfolio: part 2 of 3, see Example 4.13

We have four claim properties with exposures

ME: R0
i,k = R0,0

i,k =
∑k

j=0 S
0
i,j

IW: R1
i,k = R1,1

i,k =
∑k

j=0

(
κj+1S3

i,j + (1− κj+1)S1
i,j

)

Sub: R2
i,k = R2,2

i,k =
∑k

j=0

(
S0
i,j + S1

i,j + S2
i,j

)

Salary: S3
i,0 = Pi, S

3
i,j = 0, for j > 0, and

R3
i,k = R3,0

i,k = R0,3
i,k = R3,1

i,k = R1,3
i,k = R3,2

i,k = R2,3
i,k = R3,3

i,k = 0

For the not yet defined exposures we take the total payments up to now, i.e.

R0,1
i,k = R1,0

i,k = R0,2
i,k = R2,0

i,k = R1,2
i,k = R2,1

i,k =
∑k

j=0

(
S0
i,j + S1

i,j + S2
i,j

)
.

Resulting ultimate uncertainty

• The estimated ultimate uncertainty varies much less then the Best Estimate reserves
(5% vs. 11%).

• Although the estimated ultimate uncertainty is minimal for κ ≈ 0.3 you should never use
this as criteria to chose the reserving method. For this portfolio, I would go for κ = 1
(at least for the first development periods).

• For κ = 0 the ultimate uncertainty is slightly smaller than CLM on total payments
(green circle on the left).
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4 Linear-Stochastic-Reserving methods
4.3 Ultimate uncertainty

4.3.4 Examples (2/3)

Example 4.13: Ultimate uncertainty in dependence of κ

claim reserves

κ0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
142’000

147’000

152’000

157’000

CLM

8200

8300

8400

8500

8600ultimate uncertainty
CLM

We always show the square root of uncertainties.
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Even if it looks tempting you must not use the estimates of the ultimate uncertainty to evaluate
which model is the best!



4 Linear-Stochastic-Reserving methods
4.3 Ultimate uncertainty

4.3.4 Examples (3/3)

Example 4.19 (ECLRM vs. CLM: part 2 of 3, see Example 4.14)

In the first part we have compared the Best Estimate reserves. Now we want to look
at the ultimate uncertainty.
For the weighing of uncertainties we define R0,1

i,k = R1,0
i,k as arithmetic mean of pay-

ments and incurred losses.:

Square root of the ultimate uncertainty

CLM ECLRM

AP payments incurred weighting payments incurred weighting

0 --- --- --- --- --- ---
1 89 423 2 553 43 873 194 14 639 7 695
2 234 666 5 186 109 257 4 557 5 538 4 825
3 255 612 9 264 114 052 10 569 12 619 11 170
4 261 298 10 874 112 326 36 825 38 319 37 335
5 323 899 33 243 128 299 43 971 44 889 44 284
6 274 942 55 884 100 542 65 091 65 971 65 477
7 373 634 165 086 187 882 176 720 176 999 176 835
8 492 894 209 163 249 463 197 790 197 930 197 841
9 468 137 321 566 292 510 322 922 323 076 323 017

Total 1 517 861 455 802 676 047 467 964 472 131 469 518
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• Taking the arithmetic mean

Rm1 ,m2
i,k :=

1

2

(
Rm1 ,m1

i,k + Rm2,m2
i,k

)

for the coupling exposures works fine if Rm1 ,m1
i,k and Rm2,m2

i,k are similar. In general the
geometric mean

Rm1,m2
i,k :=

√
Rm1 ,m1

i,k Rm2,m2
i,k

usually works better.
• Although the Best Estimate reserves are similar, the ultimate uncertainties are not, in

particular CLM on payments leads to a much higher ultimate uncertainty than the others.
• Again, you must not use estimates of the ultimate uncertainty to evaluate which model

is the best.
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4 Linear-Stochastic-Reserving methods
4.3 Ultimate uncertainty

4.3.4 Examples

4 Linear-Stochastic-Reserving methods
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4.2 Future development
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4.3.2 Ultimate uncertainty
4.3.3 Estimation of the covariance parameters
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4.4 Solvency uncertainty
4.4.1 Estimation at time I + 1
4.4.2 Solvency uncertainty
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4 Linear-Stochastic-Reserving methods
4.4 Solvency uncertainty

4.4.1 Estimation at time I + 1 (1/3)

Consistent estimation over time

In this section we want to look at the solvency uncertainty, i.e. the uncertainty
of the claims development result

CDRI+1
i :=

M∑

m=0

αm
i

J−1∑

k=I−i

(
Ŝm,I
i,k+1 − Ŝm,I+1

i,k+1

)
and CDRI+1 :=

I∑

i=0

CDRI+1
i ,

where the additional upper index represents the time of estimation and αm
i are

DI -measurable real numbers.
In order to do so, the estimates have to be consistent. That means we do not
change our (relative) believes into the old development periods and only put some

credibility wm,I+1M

I−k,k to the at time I + 1 newly encountered development:

Assumption 4.B

There exist DI ∩ Dk-measurable weights 0 ≤ wm,I+1
I−k,k ≤ 1 with

• Rm
I−k,k = 0 implies wm,I+1

I−k,k = 0,

• wm,I+1
i,k = (1− wm,I+1

I−k,k )w
m,I
i,k for 0 ≤ i ≤ I − 1− k.
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• We do not allow an estimation time dependence of the mixing weights.
• The variance minimizing weights, defined in Estimator 4.7, fulfil Assumption 4.B.



4 Linear-Stochastic-Reserving methods
4.4 Solvency uncertainty

4.4.1 Estimation at time I + 1 (2/3)

Lemma 4.20 (Estimation of development factors at time I + 1)

Let Assumptions 4.A and 4.B be fulfilled. Then the at time I + 1 estimated develop-
ment factors

f̂m,I+1
k :=

I−k∑

i=0

wm,I+1
i,k

Sm
i,k+1

Rm
i,k

= (1− wm,I+1
I−k,k )f̂

m,I
k + wm,I+1

I−k,k
Sm
I−k,k+1

Rm
I−k,k

satisfy:

1. E
[
f̂m,I+1
k

∣∣∣DI
]
= E

[
f̂m,I+1
k

∣∣∣DI
k

]
= (1− wm,I+1

I−k,k )f̂
m,I
k + wm,I+1

I−k,k f
m
k =: f̄m

k

2. For every tuple f̂m1,I+1
k1

, . . . , f̂mr ,I+1
kr

with k1 < k2 < · · · < kr we get

E
[
f̂m1,I+1
k1

· · · f̂mr,I+1
kr

∣∣∣DI
]
= E

[
f̂m1,I+1
k1

· · · f̂mr,I+1
kr

∣∣∣DI
k1

]
= f̄m1

k1
· · · f̄mr

kr
,

which implies that the estimators are pairwise DI-conditionally uncorrelated.

Remark 4.21

Because of part 1. of Lemma 4.20, we will use the estimates ̂̄f
m

k := f̂m,I
k .
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E
[
f̂m,I+1
k

∣∣∣DI
]
= E

[
E
[
f̂m,I+1
k

∣∣∣DI
k

]∣∣∣DI
]
= (1 −wm,I+1

I−k,k )f̂m,I
k + wm,I+1

I−k,k

E
[
E
[
Sm
I−k,k+1

∣∣∣DI
k

]∣∣∣DI
]

Rm
I−k,k

= (1 −wm,I+1
I−k,k )f̂m,I

k + wm,I+1
I−k,k fm

k = f̄m
k

E
[
f̂m1,I+1
k1

· · · f̂mr ,I+1
kr

∣∣∣DI
]
= E

[
f̂m1 ,I+1
k1

· · · f̂mr−1,I+1

k E
[
f̂mr ,I+1
kr

∣∣∣DI
kr

]∣∣∣DI
]

= E
[
f̂m1 ,I+1
k1

· · · f̂mr−1,I+1

k f̄mr
kr

∣∣∣DI
]

= · · · = f̄m1
k1
· · · f̄mr

kr

and similar for DI
k1

instead of DI .



4 Linear-Stochastic-Reserving methods
4.4 Solvency uncertainty

4.4.1 Estimation at time I + 1 (3/3)

Lemma 4.22 (Best Estimate reserves)

Let Assumptions 4.A and 4.B be fulfilled. Then the at time I+1 estimated claim
properties satisfy

S̄m
i,k+1 := E

[
Ŝm,I+1
i,k+1

∣∣∣DI
]
= Fm,I+1

i,k

(
f̄
)
F

I(f )SI .

Hence, we will use the estimates

Ê
[
Ŝm,I+1
i,k+1

∣∣∣DI
]
= ̂̄S

m

i,k+1 := Fm,I+1
i,k

(̂̄f
)
F

I
(
f̂ I
)
SI = Fm,I

i,k

(
f̂ I
)
SI ,

which implies Ê
[
CDRI+1

∣∣DI
]
:= 0. That means, we have Best Estimate reserves.

Notation

As always we will use Ŝm,I+1
i,k := Sm

i,k for i+ k ≤ I + 1 and

R̂m,I+1
i,k := Γm

i,kŜ
i+k,I+1 and R̂m1,m2,I+1

i,k := Γm1,m2

i,k Ŝi+k,I+1.
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At estimation time I + 1 we have

Ŝ
m,I+1
i,k+1

= Fm,I+1
i,k

(
f̂
I+1

)
S
I+1

.

Induction: If i + k ≤ I then Ŝ
m,I+1
i,k+1

= Sm
i,k+1 and therefore

E
[
Ŝ
m,I+1
i,k+1

∣∣∣DI
]
= E

[
S
m
i,k+1

∣∣∣DI
]
= f

m
k R

m
i,k

︸ ︷︷ ︸
i)LSRM

= Fm,I
i,k

(
f
)
S
I
.

Now assume that Lemma 4.22 is fulfilled for all i + k < n. Then we get for i + k = n

E
[
Ŝ
m,I+1
i,k+1

∣∣∣DI
]
= E

[
f̂
I+1
k

R̂
m,I+1
i,k

∣∣∣DI
]

= E
[
E
[
f̂
I+1
k

∣∣∣DI
k

]
R̂

I+1
i,k

∣∣∣DI
]

= E
[
f̄kR̂

m
i,k

∣∣∣DI
]

= Fm,n
i,k

(
f̄
)
E
[
Ŝ
n
∣∣∣DI

]

= Fm,n
i,k

(
f̄
)
F

n←I+1(
f̄
)
F

I(
f
)
S
I

︸ ︷︷ ︸
induction hypothesis

= Fm,I+1
i,k

(
f̄
)
F

I(
f
)
S
I
.

Note, a proof without induction can be done by a combination of the tower property, the multilinearity of F
n(f

)
,

see Lemma 4.9, and the product formula of Lemma 4.20.
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4.4 Solvency uncertainty

4.4.2 Solvency uncertainty (1/5)

Decomposition of the solvency uncertainty

mse0|DI

[
CDRI+1

]
= Var

[
M∑

m=0

I∑

i=0

J−1∑

k=I−i
αm
i Ŝm,I+1

i,k+1

∣∣∣∣∣D
I

]

︸ ︷︷ ︸
random error

+

(
M∑

m=0

I∑

i=0

J−1∑

k=I−i
αm
i

(
Ŝm,I
i,k+1 − E

[
Ŝm,I+1
i,k+1

∣∣∣DI
]))2

︸ ︷︷ ︸
parameter error

The solvency uncertainty of a single accident period or a single claim property
can be obtained by choosing corresponding mixing parameters αm

i .
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Ŝm,I+1
i,k+1

∣∣∣DI
]))2

︸ ︷︷ ︸
parameter error

The solvency uncertainty of a single accident period or a single claim property
can be obtained by choosing corresponding mixing parameters αm

i .2
0
2
1
-0

4
-2

6

Stochastic Reserving

Linear-Stochastic-Reserving methods

Solvency uncertainty



4 Linear-Stochastic-Reserving methods
4.4 Solvency uncertainty

4.4.2 Solvency uncertainty (2/5)

Taylor approximation of next years estimates

Recall the (multi-linear) functional:

U(g)x :=
M∑

m=0

I∑

i=0

αm
i

(
I−i∑

k=0

xmi,k +
J−1∑

k=I−i
Fm,I
i,k (g)x

)
.

Then we have

U(f )SI =
M∑

m=0

I∑

i=0

αm
i

J∑

k=0

E
[
Sm
i,k

∣∣DI
]
,

U
(
f̂ I
)
SI =

M∑

m=0

I∑

i=0

αm
i

J∑

k=0

Ŝm,I
i,k , U

(
FI+1

)
SI =

M∑

m=0

I∑

i=0

αm
i

J∑

k=0

Ŝm,I+1
i,k ,

ĈDR
I+1

≈
M∑

l=0

I∑

h=0

J−1∑

j=I−h
∂l
h,jU

(
f̂ I
)
SI
(
F l,I+1
h,j − f̂ l,I

j

)

=
M∑

l=0

I∑

h=0

∂l
h,I−hU

(
f̂ I
)(

F l
h,I−h − f̂ l,I

I−h

)
+

M∑

l=0

I∑

h=0

J−1∑

j=I−h+1

∂l
h,jU

(
f̂ I
)
wl,I+1
I−j,j

(
F l
I−j,j − f̂ l,I

j

)
,

where FI+1 is the vector with coordinates

Fm,I+1
i,k :=

{
Fm
i,k, for i+ k = I

f̂m,I+1
k , for i+ k > I
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For k = I − i we get, see Lemma 4.20,

Fm,I+1
i,I−i − f̂m,I

I−i = Fm
i,I−i − f̂m,I

I−i

and for k > I − i it is

Fm,I+1
i,k − f̂m,I

k = f̂m,I+1
k − f̂m,I

k = (1 −wm,I+1
I−k,k )f̂m,I

k + wm,I+1
I−k,k Fm

I−k,k − f̂m,I
k

= wm,I+1
I−k,k

(
Fm
I−k,k − f̂m,I

k

)
.

Note, since

Fm,I+1
i,I−i = Fm

i,I−i =
Sm
i,I−i+1

Rm
i,I−i

we get
Fm,I

i,I−i

(
FI+1

)
SI = Fm,I+1

i,I−i Rm
i,I−i = Sm

i,I−i+1.

That means, the operator U
(
FI+1

)
(re)contructs in the first step the I + 1-th diagonal of the

claim property triangles.



4 Linear-Stochastic-Reserving methods
4.4 Solvency uncertainty

4.4.2 Solvency uncertainty (3/5)

Linear approximation of the CDR

If we replace in the linear approximation of the ultimate, i.e. in

M∑

m=0

I∑

i=0

αm
i

J∑

k=0

(
Ŝm,I
i,k − Sm

i,k

)
≈

M∑

l=0

I∑

h=0

J−1∑

j=I−h
∂l
h,jU

(
f̂
)
SI
(
F l
h,j − f̂ l,I

j

)
,

the term
(
F l
h,j − f̂ l,I

j

)
by

F̃ l,I
h,j −

˜̂
f
l,I

h,j :=

{
F l
I−j,j − f̂ l,I

j , for j = I − h,

wl,I+1
I−j,j

(
F l
I−j,j − f̂ l,I

j

)
, for j > I − h,

=
(
1j=I−h + 1j>I−hw

l,I+1
I−j,j

)(
F l
I−j,j − f̂ l,I

j

)
.

we get the linear approximation of the CDR, i.e.

ĈDR
I+1

≈
M∑

l=0

I∑

h=0

∂l
h,I−hU

(
f̂ I
)(

F l
h,I−h − f̂ l,I

I−h

)

+

M∑

l=0

I∑

h=0

J−1∑

j=I−h+1

∂l
h,jU

(
f̂ I
)
wl,I+1
I−j,j

(
F l
I−j,j − f̂ l,I

j

)
.
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∂l
h,I−hU

(
f̂ I
)(

F l
h,I−h − f̂ l,I

I−h

)

+
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l=0

I∑

h=0
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∂l
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)
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(
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j
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The term F̃ l,I
h,j −

˜̂
f

l,I

h,j depends on the accident period h only via the indicator functions 1j=I−h

and 1j>I−h.



4 Linear-Stochastic-Reserving methods
4.4 Solvency uncertainty

4.4.2 Solvency uncertainty (4/5)

Estimator 4.23 (Solvency uncertainty of all accident periods)

mse0|DI

[
ĈDR

]
= E




M∑

m=0

(
I∑

i=0

J−1∑

k=0

(
Ŝm,I+1
i,k − Ŝm,I

i,k

))2
∣∣∣∣∣∣
DI




≈ E






M∑

l=0

I∑

h=0

J−1∑

j=I−h
∂l
h,jU

(
f̂ I
)
SI

(
F̃ l,I
h,j −

˜̂
f
l,I

h,j

)


2∣∣∣∣∣∣
DI


 (Taylor approximation)

≈
M∑

l1,l2=0

J−1∑

j=0

σ̂l1,l2
j

(
I∑

i

R̂l1,l2
I−j,j

R̂l1
I−j,jR̂

l2
I−j,j︸ ︷︷ ︸

random error

+

I−j−1∑

h=0

wl1
h,jw

l2
h,j

R̂l1,l2
h,j

R̂l1
h,jR̂

l2
h,j︸ ︷︷ ︸

parameter error

I∑

i

)

I∑

h1=I−j

I∑

h2=I−j

(
1j=I−h1 + 1j>I−h1w

l1,I+1
I−j,j

)
∂l1
h1,j

U
(
f̂ I
)
SI

(
1j=I−h2 + 1j>I−h2w

l2,I+1
I−j,j

)
∂l2
h2,j

U
(
f̂ I
)
SI

The red terms indicate the differences to our estimator of the ultimate uncertainty.
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ĈDR

]
= E




M∑

m=0

(
I∑

i=0

J−1∑

k=0

(
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After the Taylor approximation we can exchange expectation and summation to get

mse
0|DI

[
ĈDR

]

=

M∑

l1,l2=0

I∑

h1,h2=0

J−1∑

j1=I−h1

J−1∑

j2=I−h2

(
1j1=I−h1

+ 1j1>I−h1
w

l1,I+1
I−j1 ,j1

)(
1j2=I−h2

+ 1j2>I−h2
w

l2,I+1
I−j2 ,j2

)

∂
l1
h1,j1

U
(
f̂
I
)
S
I
∂
l2
h2,j2

U
(
f̂
I
)
S
I
E
[(

F
l1
I−j1,j1

− f̂
l1,I

j1

) (
F

l2
I−j2,j2

− f̂
l2,I

j2

)∣∣∣DI
]

and from the estimation of the ultimate uncertainty we know

E
[(
F

l1
I−j1,j1

− f̂
l1,I

j1

)(
F

l2
I−j2,j2

− f̂
l2,I

j2

)∣∣∣DI
]
≈ 1j1=j2

σ̂
l1,l2
j1




R̂

l1,l2
I−j,j

R̂
l1
I−j,j

R̂
l2
I−j,j

+

I−j−1∑

h=0

w
l1
h,j

w
l2
h,j

R̂
l1,l2
h,j

R̂
l1
h,j

R̂
l2
h,j



.

Both together lead to the stated estimator.
Note, if it wasn’t for different claim properties (indeces l1 and l2) the last two lines of the estimator would have
been a square of a sum over accident periods.
Moreover, for the random error part we had in the ultimate uncertainty case only one sum over accident periods h
from I − j to I, i.e. we had h1 = h2.



4 Linear-Stochastic-Reserving methods
4.4 Solvency uncertainty

4.4.2 Solvency uncertainty (5/5)

Chain-Ladder estimator for the solvency uncertainty

mse0|DI

[
I∑

i=0

ĈDRi

]
≈

J−1∑

j=0

σ̂2
j(

f̂ I
j

)2


 1

CI−j,j
+

I−j−1∑

h=0

(
wI
h,j

)2

Ch,j







I∑

h=I−j

(
1j=I−h + 1j>I−hw

I+1
I−j,j

)
ĈI
h,J



2

LSRM estimator for the solvency uncertainty

mse0|DI

[
ĈDR

]
≈

M∑

l1,l2=0

J−1∑

j=0

σ̂l1,l2
j

(
≈Cov

[
F

l1
I−j,j ,F

l2
I−j,j

∣∣∣DI
]

︷ ︸︸ ︷
R̂l1,l2

I−j,j

R̂l1
I−j,jR̂

l2
I−j,j

+

≈Cov
[
f̂
l1,I
j ,f̂

l2,I
j

∣∣∣Dj1∧j2

]

︷ ︸︸ ︷
I−j−1∑

h=0

wl1
h,jw

l2
h,j

R̂l1,l2
h,j

R̂l1
h,jR̂

l2
h,j

)

I∑

h1=I−j

I∑

h2=I−j

(
1j=I−h1 + 1j>I−h1w

l1,I+1
I−j,j

)
∂l1
h1,j

U
(
f̂ I
)
SI

(
1j=I−h2 + 1j>I−h2w

l2,I+1
I−j,j

)
∂l2
h2,j

U
(
f̂ I
)
SI
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ĈDRi

]
≈

J−1∑

j=0

σ̂2
j(

f̂ I
j

)2


 1

CI−j,j
+

I−j−1∑

h=0

(
wI
h,j

)2

Ch,j







I∑

h=I−j

(
1j=I−h + 1j>I−hw

I+1
I−j,j

)
ĈI
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wl1
h,jw

l2
h,j

R̂l1,l2
h,j

R̂l1
h,jR̂

l2
h,j
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h1=I−j
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h2=I−j
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l1,I+1
I−j,j
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f̂ I
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SI
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(
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Because we have several claim properties, squared terms for Chain-Ladder are replaced by
products of claim properties and the double sum over them.



4 Linear-Stochastic-Reserving methods
4.4 Solvency uncertainty

4.4.3 Uncertainties of further CDR’s (1/4)

Estimation at time n

The development factors are estimated by

f̂n,n
k :=

n−k−1∑

h=0

wm,n
h,k Fm

h,k

with consistent future weights wm,n
i,k , which means there exists Dn

k -measurable weights

0 ≤ wm,n
i,k ≤ 1, for I − k ≤ i ≤ n− k − 1, with

• Rm
i,k = 0 implies wm,n

i,k = 0,

• wm,n
i,k = (1− wm,n

n−k,k)w
m,n−1
i,k , for i+ k < n.

Then the estimate of the ultimate at time n is

M∑

m=0

I∑

i=0

αm
i

J∑

k=0

Ŝm,n
i,k = U(Fn)SI

with

Fm,n
i,k := (Fn)mi,k :=

{
Fm
i,k, for i+ k < n,

f̂m,n
k , for i+ k ≥ n.
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• Consistent weights mean, that for each future estimation time n we keep our relative believes in the old

weights w
m,n−1
i,k

and only choose some weights w
m,n
n−k,k

for the newly observes development.

• Note, although if the weights are no longer DI measurable, we will consider them as constant in our
estimations.



4 Linear-Stochastic-Reserving methods
4.4 Solvency uncertainty

4.4.3 Uncertainties of further CDR’s (2/4)

Taylor approximation of the n-th CDR

CDRn :=

M∑

m=0

I∑

i=0

αm
i

J−1∑

k=0

(
Ŝm,n
i,k − ŜI

i,k

)

≈
M∑

l=0

I∑

h=0

J−1∑

j=I−h
∂l
h,jU

(
f̂ I
)(

Fm,n
i,k − f̂m,I

k

)

≈
M∑

l=0

J−1∑

j=0

(n−j−1)∧I∑

h=I−j


∂l

h,jU
(
f̂ I
)
SI + ŵl,n

h,j

I∑

i=n−j
∂l
i,jU
(
f̂ I
)
SI



(
F l
h,j − f̂ l

j

)
.
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Ŝm,n
i,k − ŜI
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Here we used that

f̂
m,n
k

:=

n−k−1∑

i=0

w
m,n
i,k

F
m
i,k =

n−k−1∑

i=I−k

w
m,n
i,k

F
m
i,k +



1 −
n−k−1∑

i=I−k

w
m,n
i,k



 f̂
m,I
k

.



4 Linear-Stochastic-Reserving methods
4.4 Solvency uncertainty

4.4.3 Uncertainties of further CDR’s (3/4)

Estimator 4.24 (of the uncertainty between two estimation times n1 and n2)

m̂se[CDRn1,n2 ]

:=
M∑

l1,l2=0

J−1∑

j=0

σ̂l1,l2
j



(n2−j−1)∧I∑

h=n1−j


∂l1

h,jU
(
f̂ I
)
SI + ŵl1,n2

h,j

I∑

i=n2−j
∂l1
i,jU
(
f̂ I
)
SI





∂l2

h,jU
(
f̂ I
)
SI + ŵl2,n2

h,j

I∑

i=n2−j
∂l2
i,jU
(
f̂ I
)
SI


 R̂l1,l2,I

h,j

R̂l1,I
h,j R̂

l2,I
h,j

+

(n1−j−1)∧I∑

h=0

ŵl1,n1

h,j ŵl2,n1

h,j

R̂l1,l2,I
h,j

R̂l1,I
h,j R̂

l2,I
h,j


I∑

i=n1−j
∂l1
i,jU
(
f̂ I
)
SI −

Ωl1,n2

j

Ωl1,n1

j

I∑

i=n2−j
∂l1
i,jU
(
f̂ I
)
SI







I∑

i=n1−j
∂l2
i,jU
(
f̂ I
)
SI −

Ωl2,n2
j

Ωl2,n1
j

I∑

i=n2−j
∂l2
i,jU
(
f̂ I
)
SI




,

where Ωl,n
j =

∑I−j−1
i=0 ŵl,n

i,j .
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Estimator 4.24 (of the uncertainty between two estimation times n1 and n2)
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j
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∂l1
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f̂ I
)
SI







I∑
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∂l2
i,jU
(
f̂ I
)
SI −

Ωl2,n2

j

Ωl2,n1
j

I∑

i=n2−j
∂l2
i,jU
(
f̂ I
)
SI




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∑I−j−1
i=0 ŵl,n
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The derivation can be obtained from the lecturer (unpublished working paper).



4 Linear-Stochastic-Reserving methods
4.4 Solvency uncertainty

4.4.3 Uncertainties of further CDR’s (4/4)

Remark 4.25

• If we take n1 = I and n2 = I + 1 we get the same formula as in
Estimator 4.23 (solvency uncertainty).

• If we take n1 = I and n2 = ∞ we get the same formula as in
Estimator 4.16 (ultimate uncertainty).

• In the Chain-Ladder case with variance minimizing weights we get the
same formula as in Estimator 2.25.

• If the exposures Rm
i,k do not depend on other accident periods h 6= i

then a similar approach like in the Chain-Ladder case may work to
derive Estimator 4.24.

• Estimators for the uncertainty of the CDR between two estimation
times are important for SST and Solvency II to estimate the MVM.
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4 Linear-Stochastic-Reserving methods 4.5 Examples (1/3)

Swiss mandatory accident portfolio: part 3 of 3, see Example 4.13

We have four claim properties with exposures

ME: R0
i,k = R0,0

i,k =
∑k

j=0 S
0
i,j

IW: R1
i,k = R1,1

i,k =
∑k

j=0

(
κj+1S3

i,j + (1− κj+1)S1
i,j

)

Sub: R2
i,k = R2,2

i,k =
∑k

j=0

(
S0
i,j + S1

i,j + S2
i,j

)

Salary: S3
i,0 = Pi, S

3
i,j = 0, for j > 0, and

R3
i,k = R3,0

i,k = R0,3
i,k = R3,1

i,k = R1,3
i,k = R3,2

i,k = R2,3
i,k = R3,3

i,k = 0

For the not yet defined exposures we take the total payments up to now, i.e.

R0,1
i,k = R1,0

i,k = R0,2
i,k = R2,0

i,k = R1,2
i,k = R2,1

i,k =
∑k

j=0

(
S0
i,j + S1

i,j + S2
i,j

)
.

Resulting solvency uncertainty

• The estimated ultimate and solvency uncertainties behave almost alike, but on a
different level.

• Although the estimated solvency uncertainty is minimal for κ ≈ 0.35 you should never
use this as criteria to evaluate which model is the best. For this portfolio I, would go for
κ = 1 (at least for the first development periods).

• For κ = 0 the solvency uncertainty is slightly smaller than CLM on total payments
(small blue circle on the left).
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4 Linear-Stochastic-Reserving methods 4.5 Examples (2/3)

Example 4.13: Solvency uncertainty in dependence of κ

claim reserves

κ0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
142’000

147’000

152’000

157’000

CLM

8200

8300

8400

8500

8600ultimate uncertainty
CLM

5800

5900

6000

6100

6200

6300

6400

solvency uncertainty

CLM

We always show the square root of uncertainties.
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Be aware that each curve has its own scale. So although the curve of the solvency and the
ultimate uncertainty cross each other, we always have that the solvency uncertainty is smaller
than the ultimate uncertainty.
In our example the solvency uncertainty is about 70% of the ultimate uncertainty. In general
this ratio usually lies between 50% (general liability) and 90% (NatCat). One minus this ratio
represents the gain of information over one year in comparission to all unknown information
about the reserves.



4 Linear-Stochastic-Reserving methods 4.5 Examples (3/3)

Example 4.26 (ECLRM vs. CLM: part 3 of 3, see Example 4.14)

In the first two parts we have compared the Best Estimate reserves and the ultimate
uncertainty. Now we want to look at the solvency uncertainty.
For the weighing of uncertainties we define R0,1

i,k = R1,0
i,k as the arithmetic mean of

payments and incurred losses:

Square root of the solvency uncertainty

CLM ECLRM

AP payments incurred weighting payments incurred weighting

0 --- --- --- --- --- ---
1 89 423 2 553 43 873 194 14 639 7 695
2 212 847 4 561 98 690 4 557 4 679 4 588
3 131 605 7 825 57 107 5 663 6 790 5 994
4 161 223 6 666 70 958 33 688 34 303 33 896
5 145 975 31 325 54 474 30 612 31 059 30 763
6 104 800 45 866 38 046 42 612 43 110 42 830
7 230 780 155 175 155 764 166 162 166 268 166 206
8 283 765 150 879 170 125 138 697 138 755 138 718
9 229 170 223 154 181 603 210 928 211 012 210 980

Total 1 004 481 347 709 478 785 346 640 350 692 348 110

c©R. Dahms (ETH Zurich, Spring 2021) Stochastic Reserving: Lecture 8 21 April 2021 142 / 240



Example 4.26 (ECLRM vs. CLM: part 3 of 3, see Example 4.14)

In the first two parts we have compared the Best Estimate reserves and the ultimate
uncertainty. Now we want to look at the solvency uncertainty.
For the weighing of uncertainties we define R0,1

i,k = R1,0
i,k as the arithmetic mean of

payments and incurred losses:

Square root of the solvency uncertainty

CLM ECLRM

AP payments incurred weighting payments incurred weighting

0 --- --- --- --- --- ---
1 89 423 2 553 43 873 194 14 639 7 695
2 212 847 4 561 98 690 4 557 4 679 4 588
3 131 605 7 825 57 107 5 663 6 790 5 994
4 161 223 6 666 70 958 33 688 34 303 33 896
5 145 975 31 325 54 474 30 612 31 059 30 763
6 104 800 45 866 38 046 42 612 43 110 42 830
7 230 780 155 175 155 764 166 162 166 268 166 206
8 283 765 150 879 170 125 138 697 138 755 138 718
9 229 170 223 154 181 603 210 928 211 012 210 980

Total 1 004 481 347 709 478 785 346 640 350 692 348 110

2
0
2
1
-0

4
-2

6

Stochastic Reserving

Linear-Stochastic-Reserving methods

Examples

• Taking the arithmetic mean

Rm1 ,m2
i,k :=

1

2

(
Rm1 ,m1

i,k + Rm2,m2
i,k

)

for the coupling exposures works fine if Rm1 ,m1
i,k and Rm2,m2

i,k are similar. In general the
geometric mean

Rm1,m2
i,k :=

√
Rm1 ,m1

i,k Rm2,m2
i,k

usually works better.
• Although the Best Estimate reserves are similar, the solvency uncertainties are not, in

particular CLM on payments leads to a much higher solvency uncertainty than the others.
• Again, you must not use estimates of the ultimate uncertainty to evaluate which model

is the best.



4 Linear-Stochastic-Reserving methods 4.6 Estimation of correlation of reserving Risks (1/2)

Measurement of reserving risks under IFRS 17, SST and Solvency II

• In recent years the reserving risk has got more and more attention, for
instance under IFRS 17, SST and Solvency II.

• Probably, the most common method to estimate reserving risk is the
following:

1. Make assumptions about the distribution family for the reserves for each
portfolio.

2. Estimate the corresponding parameters, for instance mean (Best Estimate
reserves) and variance (mse + model error).

=⇒ Calculate the reserving risk for each portfolio, for instance, value at risk
or expected shortfall.

3. Make assumptions on the correlation (or copula) of portfolios.
=⇒ Calculate the reserving risk of the aggregation of all portfolios.

• In particular step 3 is usually based mostly on actuarial judgement.

• LSRMs can be used to avoid correlation matrices or to get some
estimates of them.
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4 Linear-Stochastic-Reserving methods 4.6 Estimation of correlation of reserving Risks (2/2)

Part of the correlation matrix of the SST-Standardmodel 2014

MFH MFK Sach ES-Pool Haft UVG

MFH 1.00 0.15 0.15 0.15 0.25 0.50
MFK 0.15 1.00 0.15 0.15 0.15 0.15
Sach 0.15 0.15 1.00 0.15 0.15 0.15 · · ·

ES-Pool 0.15 0.15 0.15 1.00 0.15 0.15
Haft 0.25 0.15 0.15 0.15 1.00 0.25
UVG 0.50 0.15 0.15 0.15 0.25 1.00

...
. . .

• The entries are based on actuarial judgement.

• The correlation matrix under Solvency II contains similar entries.
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4 Linear-Stochastic-Reserving methods
4.6 Estimation of correlation of reserving Risks

4.6.1 Avoiding correlation matrices for the reserving risks

If we use LSRMs we can avoid correlation matrices for the reserve risks:

1. Set up a LSRM for all portfolios together. That means we have to
specify coupling exposures Rm1,m2

i,k for all m1 6= m2, too. Here,
heuristic arguments can help to do so. For instance, if you use the
same method for claim properties m1 and m2 it may be appropriate to
take the geometric mean of Rm1,m1

i,k and Rm2,m2

i,k .

2. Chose a distribution family for the total reserve of all portfolios.

3. Estimate the corresponding parameter, for instance

mean = Best Estimate reserves and

variance = ultimate or solvency uncertainty + model error.

Here you may have to scale the variance in case that the Best Estimate
reserves are not equal to the reserves estimated by the LSRM, see
slide 56.

=⇒ Calculate the reserving risk.
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4 Linear-Stochastic-Reserving methods
4.6 Estimation of correlation of reserving Risks

4.6.2 Using LSRMs to estimate a correlation matrix (1/2)

The formulas for the ultimate and for the solvency uncertainty have the form:

M∑

m1,m2=0

I∑

i1,i2=0

αm1
i1

αm2
i2

βm1,m2

i1,i2
,

whereas αm
i are arbitrary DI-measurable real numbers.

Moreover, since the uncertainties are defined as expectation of the square of
some random variable they are non negative for all collections (αm

i )0≤m≤M0≤i≤I
of DI -measurable real numbers, which means that




I∑

i1,i2=0

αm1
i1

αm2
i2

βm1,m2

i1,i2




0≤m1,m2≤M

is a positive semidefinite matrix. We already take the diagonal elements of
this matrix as variances of the reserving risk of one claim property. Therefore,
it is appropriate to use the whole matrix as covariance matrix.
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positive semidefinite: For any vector x = (xm)0≤m≤M we get

x′




I∑

i1,i2=0

αm1
i1

αm2
i2

βm1,m2
i1,i2




0≤m1,m2≤M

x =
M∑

m1,m2=0

xm1

I∑

i1,i2=0

αm1
i1

αm2
i2

βm1,m2
i1,i2

xm2

=
M∑

m1,m2=0

I∑

i1,i2=0

αm1
i1

xm1α
m2
i2

xm2β
m1,m2
i1,i2

≥ 0.



4 Linear-Stochastic-Reserving methods
4.6 Estimation of correlation of reserving Risks

4.6.2 Using LSRMs to estimate a correlation matrix (2/2)

Estimating correlation of reserve risk, see LSRM_Cor_ActiveX.xlsx

Based on the example of article [28] by A. Gisler and M. Wüthrich with

Rm1,m2

i,k :=

√√√√
k∑

j=0

Sm1
i,j

k∑

j=0

Sm2
i,j .

Estimated ultimate uncertainty correlation

m1/m2 0 1 2 3 4 5

0 1.00 -0.15 0.01 0.23 -0.17 0.26
1 -0.15 1.00 0.03 0.13 -0.03 -0.00
2 0.01 0.03 1.00 0.04 0.06 -0.05
3 0.23 0.13 0.04 1.00 -0.05 0.09
4 -0.17 -0.03 0.06 -0.05 1.00 0.03
5 0.26 -0.00 -0.05 0.09 0.03 1.00

Estimated solvency uncertainty correlation

m1/m2 0 1 2 3 4 5

0 1.00 0.04 0.05 0.30 -0.26 0.31
1 0.04 1.00 0.04 0.30 -0.10 0.00
2 0.05 0.04 1.00 0.09 0.08 -0.06
3 0.30 0.30 0.09 1.00 -0.08 0.16
4 -0.26 -0.10 0.08 -0.08 1.00 0.03
5 0.31 0.00 -0.06 0.16 0.03 1.00

c©R. Dahms (ETH Zurich, Spring 2021) Stochastic Reserving: Lecture 8 21 April 2021 147 / 240



Estimating correlation of reserve risk, see LSRM_Cor_ActiveX.xlsx

Based on the example of article [28] by A. Gisler and M. Wüthrich with

Rm1,m2

i,k :=

√√√√
k∑

j=0

Sm1
i,j

k∑

j=0

Sm2
i,j .

Estimated ultimate uncertainty correlation

m1/m2 0 1 2 3 4 5

0 1.00 -0.15 0.01 0.23 -0.17 0.26
1 -0.15 1.00 0.03 0.13 -0.03 -0.00
2 0.01 0.03 1.00 0.04 0.06 -0.05
3 0.23 0.13 0.04 1.00 -0.05 0.09
4 -0.17 -0.03 0.06 -0.05 1.00 0.03
5 0.26 -0.00 -0.05 0.09 0.03 1.00

Estimated solvency uncertainty correlation

m1/m2 0 1 2 3 4 5

0 1.00 0.04 0.05 0.30 -0.26 0.31
1 0.04 1.00 0.04 0.30 -0.10 0.00
2 0.05 0.04 1.00 0.09 0.08 -0.06
3 0.30 0.30 0.09 1.00 -0.08 0.16
4 -0.26 -0.10 0.08 -0.08 1.00 0.03
5 0.31 0.00 -0.06 0.16 0.03 1.00

2
0
2
1
-0

4
-2

6

Stochastic Reserving

Linear-Stochastic-Reserving methods

Estimation of correlation of reserving Risks

• The calculations can be found in the file ‘LSRM_Cor_Dll.xlsx’ (or
‘LSRM_Cor_ActiveX.xlsx’).

• Most of the correlations are negligible, except for the dependence related to

S5
i,k vs. S0

i,k and S3
i,k vs. S0

i,k , S
1
i,k and S5

i,k

and some diversification related to

S0
i,k vs. S4

i,k and maybe S0
i,k vs. S1

i,k and S4
i,k.

• Strictly taken, the model is not valid, because of some negative eigenvalues of the
covariance matrices (σ̂m1 ,m2

k Rm1 ,m2
i,k )0≤m1,m2≤M for k ∈ {6, 8, 9}. But the results

mainly depend on the development periods k = 0 and k = 1, only. Moreover, except for
k = 6 the negative eigenvalues are almost zero, which means that it is more a problem of
the estimation than a model problem.

• The estimated correlations are estimated under the assumption that the claim properties
fulfil Assumptions 4.A and 4.B, which usually is not the case, for instance because of
inflation or other diagonal effects. Therefore, in practice we should always think of
adding some model error in terms of a positive correlation.



4 Linear-Stochastic-Reserving methods 4.7 Literature
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5 Poisson-Model 5.1 Modelling the number of reported claims (1/3)

Number of occurred claims

• Assume that for each policy a claim occurs during the year with some
probability p ∈ (0, 1), that we have at most one claim per policy and
that claims are independent.

• Then the number of claims N which occurred during the year is
Binomial-distributed with parameter p and R, where the later
represents the number of policies, i.e.

P (N = n) =

(
R

n

)
pn(1− p)R−n ≈ µn

n!
e−µ, with µ = Rp

︸ ︷︷ ︸
for small p

• Therefore, we could assume that the number of claims which occurred
during a year is Poisson-distributed.

• Similar arguments can be applied with the number claims that have
been reported during a year.
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5 Poisson-Model 5.1 Modelling the number of reported claims (2/3)

Assumption 5.A (Poisson-Model)

Assume that there are parameters µ0, . . . , µI > 0 and γ0, . . . , γJ > 0 such that

i)Poi Si,k are independent Poisson-distributed random variables with

E
[
Si,k

]
= γkµi.

ii)Poi ∑J
k=0 γk = 1.

Remark 5.1

• The restriction on Si,k to be an integer is not so restrictive at all. Even for
payments we can always argue that they are a multiple of one Rappen or Cent.

• The Poisson-Model cannot deal with negative claim properties Si,k which is
very restrictive, in particular for incurred losses.

• The assumption of independent claim properties Si,k even within the same
accident period is also very restrictive.

• The Poisson-Model can deal with incomplete triangles, for which some upper
left part is missing.

• In the Poisson-Model we always have Var
[
Si,k

]
= E

[
Si,k

]
= γkµi.
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5 Poisson-Model 5.1 Modelling the number of reported claims (3/3)

Parameters of the Poisson-Model

Since

E[Ci,J ]=

J∑

k=0

E
[
Si,k

]
=

J∑

k=0

µiγk = µi

the parameter:

µi represents the expected ultimate outcome of accident period i, and

γk represents the expected fraction of the ultimate outcome that have
manifested (or will manifest) itself during development period k
(reporting or cashflow pattern).
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5 Poisson-Model 5.2 Projection of the future outcome (1/3)

Probability of the observed triangle

P
(
(Si,k)i+k≤I = (xi+k)i+k≤I

)
=
∏

i+k≤I

(µiγk)
xi,k

xi,k!
e−µiγk .

Maximum likelihood (ML) for the Poisson-Model

The maximum likelihood estimators for the parameters are those µ̂i and γ̂k for which the
probability of the observed triangle is maximal.
In order to get shorter formulas we will maximize the logarithm of the probability. Therefore,
we set its partial derivatives with respect to each parameter to zero and try to solve the
resulting system of linear equations:

0 =
∂ log P

(
(Si,k)i+k≤I

)

∂µi
=

(I−i)∧J∑

k=0

Si,k

µi
− γk ⇐⇒ µi

(I−i)∧J∑

k=0

γk =

(I−i)∧J∑

k=0

Si,k = Ci,(I−i)∧J

0 =
∂ log P

(
(Si,k)i+k≤I

)

∂γk
=

I−k∑

i=0

Si,k

γk
− µi ⇐⇒ γk

I−k∑

i=0

µi =

I−k∑

i=0

Si,k. (5.1)

We denote the solution (if it exists) by µ̂i and γ̂k.
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One can proof that if the observed data are not too strange then there exists an unique solution
of (5.1), which represents a maximum.
An example for ‘too strange’ is Si,k = 0 for all observed accident and development periods.



5 Poisson-Model 5.2 Projection of the future outcome (2/3)

Estimator 5.2 (for the future outcome within the Poisson-Model)

ŜPoi
i,k := Ê

[
Si,k

]
:= µ̂iγ̂k

ĈPoi
i,J := Ê

[
Ci,J |DI

]
:= Ci,I−i +

J∑

k=I−i+1

ŜPoi
i,k .

Theorem 5.3 (Poisson-Model vs. Chain-Ladder method)

Assume that there exists an unique positive solution of (5.1). Then

ŜPoi
i,k = ŜCLM

i,k ,

where ŜCLM
i,k denotes the Chain-Ladder-projection corresponding to the vari-

ance minimizing weights.
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Lemma
I−k∑

i=0

Ci,k =

I−k∑

i=0

µ̂i

k∑

j=0

γ̂j and

I−k∑

i=0

Ci,k−1 =

I−k∑

i=0

(Ci,k − Si,k) =

I−k∑

i=0

µ̂i

k−1∑

j=0

γ̂j , for all i + k ≤ I

Proof of the above lemma (by induction): Start with k = J
I−J∑

i=0

Ci,J =

I−J∑

i=0

J∑

j=0

Si,j =

I−J∑

i=0

µ̂i

J∑

j=0

γ̂j

︸ ︷︷ ︸
(5.1)

.

Now assume that the lemma is true for some k > 0 then we get
I−(k−1)∑

i=0

Ci,k−1 =

I−k∑

i=0

Ci,k−1 + CI−(k−1),k−1 =

I−k∑

i=0

Ci,k −
I−k∑

i=0

Si,k +

k−1∑

j=0

SI−(k−1),j

=

I−k∑

i=0

µ̂i

k∑

j=0

γ̂j − γ̂k

I−k∑

i=0

µ̂i

︸ ︷︷ ︸
(5.1)

+ µ̂I−(k−1)

k−1∑

j=0

γ̂k

︸ ︷︷ ︸
(5.1)

=

I−(k−1)∑

i=0

k−1∑

j=0

µ̂i γ̂j .

�

Proof of Theorem 5.3:

Ĉ
Poi
i,J = Ci,I−i + µ̂i

J∑

k=I−i+1

γ̂k

︸ ︷︷ ︸
Estimator 5.2

= Ci,I−i +
Ci,I−i
∑I−i

k=0
γ̂k

︸ ︷︷ ︸
(5.1)

J∑

k=I−i+1

γ̂k = Ci,I−i

(

1 +

∑J
k=I−i+1 γ̂k
∑I−i

k=0
γ̂k

)

= Ci,I−i

∑J
k=0 γ̂k

∑I−i
k=0

γ̂k
= Ci,I−i

∑I−i+1
k=0

γ̂k
∑I−i

k=0
γ̂k

· · ·
∑J

k=0 γ̂k
∑J−1

k=0
γ̂k

= Ci,I−i

∑I−(I−i+1)
h=0

Ci,I−i+1
∑I−(I−i+1)

h=0
Ci,I−i

︸ ︷︷ ︸
above lemma

· · ·
∑I−J

h=0
Ci,J

∑I−J
h=0

Ci,J−1
︸ ︷︷ ︸

above lemma= Ci,I−i(1 + f̂I−i) · · · (1 + f̂J−1) = Ĉ
CLM
i,J

�



5 Poisson-Model 5.2 Projection of the future outcome (3/3)

Corollary 5.4 (Poisson-Model vs. Chain-Ladder method)

Taking CLM as LSRM with the variance minimizing weights we have

ŜCLM
i,k = Ê

[
Si,k

]
= f̂k−1(1 + f̂k−2) · · · (1 + f̂I−i)Ci,I−i.

Combining this with Estimator 5.2 and Theorem 5.3 we get

γ̂k =
ŜPoi
i,k

µ̂i
=

ŜCLM
i,k

µ̂i︸ ︷︷ ︸
Theorem 5.3

=
ŜCLM
i,k

ĈCLM
i,J︸ ︷︷ ︸

Theorem 5.3

=
f̂k−1(1 + f̂k−2) · · · (1 + f̂I−i)Ci,I−i

(1 + f̂J−1) · · · (1 + f̂I−i)Ci,I−i

=
f̂k−1

(1 + f̂J−1) · · · (1 + f̂k−1)

and

f̂k =
γ̂k+1∑k
j=0 γ̂j

=
γ̂k+1

1−∑J
j=k+1 γ̂j

.
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ŜCLM
i,k
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Proof of the last statement: From the proof of Theorem 5.3 we know that

1 + f̂k =

∑k+1
j=0 γ̂j

∑k
j=0 γ̂j

.

From this we compute

f̂k =

∑k+1
j=0 γ̂j

∑k
j=0 γ̂j

− 1 =
γ̂k+1∑k
j=0 γ̂j

=
γ̂k+1

1−
∑J

j=k+1 γ̂j︸ ︷︷ ︸
∑

J
j=0 γ̂j=1

.

�



5 Poisson-Model 5.3 Ultimate uncertainty of the Poisson-Model (1/3)

Ultimate uncertainty

mse

[
I∑

i=0

ĈPoi
i,J

]
= E



( ∑

i+k>I

(
Si,k − ŜPoi

i,k

))2



= E



( ∑

i+k>I

(
Si,k − E

[
Si,k

])
−
∑

i+k>I

(
ŜPoi
i,k − E

[
Si,k

])
)2



≈ E



( ∑

i+k>I

(
Si,k − E

[
Si,k

])
−
∑

i+k>I

(
ŜPoi
i,k − E

[
ŜPoi
i,k

]))2



= E



( ∑

i+k>I

(
Si,k − E

[
Si,k

])
)2

+ E



( ∑

i+k>I

(
ŜPoi
i,k − E

[
ŜPoi
i,k

]))2



− 2E

[( ∑

i+k>I

(
Si,k − E

[
Si,k

])
)( ∑

i+k>I

(
ŜPoi
i,k − E

[
ŜPoi
i,k

]))]

= Var

[ ∑

i+k>I

Si,k

]

︸ ︷︷ ︸
random error

+Var

[ ∑

i+k>I

ŜPoi
i,k

]

︸ ︷︷ ︸
parameter error

− 0︸︷︷︸
independence of past and future
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(
Si,k − E

[
Si,k

])
)2

+ E



( ∑

i+k>I

(
ŜPoi
i,k − E

[
ŜPoi
i,k

]))2



− 2E

[( ∑

i+k>I

(
Si,k − E

[
Si,k

])
)( ∑

i+k>I

(
ŜPoi
i,k − E

[
ŜPoi
i,k

]))]

= Var

[ ∑

i+k>I

Si,k

]

︸ ︷︷ ︸
random error

+Var

[ ∑

i+k>I

ŜPoi
i,k

]

︸ ︷︷ ︸
parameter error

− 0︸︷︷︸
independence of past and future
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5 Poisson-Model 5.3 Ultimate uncertainty of the Poisson-Model (2/3)

Random error

Since all Si,k are independent we get

Var

[ ∑

i+k>I

Si,k

]
=
∑

i+k>I

Var
[
Si,k

]
=
∑

i+k>I

γkµi ≈
∑

i+k>I

γ̂kµ̂i.

Parameter error

In order to analyse the parameter error we use the following Tylor expansion:

ln(z) ≈ ln(z0) +
1

z0
(z − z0) for z0 = 1 and z =

γ̂kµ̂i

γkµi
.

Therefore, we get
γ̂kµ̂i ≈ γkµi (ln (γ̂kµ̂i)− ln (γkµi) + 1) .

Finally, taking the covariance it follows

Cov[γ̂k1 µ̂i1 , γ̂k2 µ̂i2 ]≈ γk1µi1γk2µi2Cov[ln (γ̂k1 µ̂i1) , ln (γ̂k2 µ̂i2)]

≈ γ̂k1 µ̂i1 γ̂k2 µ̂i2Cov[ln (γ̂k1 µ̂i1) , ln (γ̂k2 µ̂i2)].

The last covariance term can be estimated by the inverse of the Fisher information matrix I

Cov[γ̂k1µ̂i1 , γ̂k2 µ̂i2 ]≈ γ̂k1µ̂i1 γ̂k2µ̂i2

(
I−1
)
(i1,k1),(i2,k2)

.
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5 Poisson-Model 5.3 Ultimate uncertainty of the Poisson-Model (3/3)

Estimator 5.5 (of the ultimate uncertainty)

m̂se

[
I∑

i=0

ĈPoi
i,J

]
≈
∑

i+k>I

γ̂kµ̂i

︸ ︷︷ ︸
random error

+
∑

i1+k1,i2+k2>I

γ̂k1µ̂i1 γ̂k2µ̂i2

(
I−1
)
(i1,k1),(i2,k2)

︸ ︷︷ ︸
parameter error

.

Remark 5.6

• The ultimate uncertainty of a single accident period i can be estimated by

m̂se
[
ĈPoi
i,J

]
≈

J∑

k=I−i+1

γ̂kµ̂i

︸ ︷︷ ︸
random error

+

J∑

k1,k2=I−i+1

γ̂k1 µ̂iγ̂k2 µ̂i

(
I−1
)
(i,k1),(i,k2)

︸ ︷︷ ︸
parameter error

.

• Using the Fisher information matrix for the estimation of the parameter error is
a standard approach in the theory of generalised linear models (GLMs). An
introduction to generalised linear models can be found in [23].

• The inverse of the Fisher information matrix is a standard output of most
GLM-software.
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ĈPoi
i,J

]
≈

J∑

k=I−i+1

γ̂kµ̂i

︸ ︷︷ ︸
random error

+

J∑

k1,k2=I−i+1

γ̂k1 µ̂iγ̂k2 µ̂i

(
I−1
)
(i,k1),(i,k2)

︸ ︷︷ ︸
parameter error

.

• Using the Fisher information matrix for the estimation of the parameter error is
a standard approach in the theory of generalised linear models (GLMs). An
introduction to generalised linear models can be found in [23].

• The inverse of the Fisher information matrix is a standard output of most
GLM-software.

2
0
2
1
-0

4
-2

6

Stochastic Reserving

Poisson-Model
Ultimate uncertainty of the Poisson-Model



5 Poisson-Model 5.4 Generalised linear models and reserving (1/2)

The Poisson-Model as generalised linear model (GLM)

In order to deal with GLMs it is not necessary to know the underlying dis-
tribution exactly. It is enough to assume that it belongs to the ‘exponential
dispersion family’ and that all Si,k are independent with

E
[
Si,k

]
= Var

[
Si,k

]
= γkµi.

Overdispersed Poisson-Model

The restriction on the variance to be equal to the expectation can be softened
by taking

E
[
Si,k

]
= γkµi and Var

[
Si,k

]
= ϕkγkµi,

where ϕk > 0 is called the dispersion parameter. The estimates for the future
development are the same as for the Poisson-Model, but the estimates for
the ultimate uncertainty will change.

c©R. Dahms (ETH Zurich, Spring 2021) Stochastic Reserving: Lecture 9 28 May 2021 158 / 240



The Poisson-Model as generalised linear model (GLM)

In order to deal with GLMs it is not necessary to know the underlying dis-
tribution exactly. It is enough to assume that it belongs to the ‘exponential
dispersion family’ and that all Si,k are independent with

E
[
Si,k

]
= Var

[
Si,k

]
= γkµi.

Overdispersed Poisson-Model

The restriction on the variance to be equal to the expectation can be softened
by taking

E
[
Si,k

]
= γkµi and Var

[
Si,k

]
= ϕkγkµi,

where ϕk > 0 is called the dispersion parameter. The estimates for the future
development are the same as for the Poisson-Model, but the estimates for
the ultimate uncertainty will change.

2
0
2
1
-0

4
-2

6

Stochastic Reserving

Poisson-Model
Generalised linear models and reserving



5 Poisson-Model 5.4 Generalised linear models and reserving (2/2)

GLMs in general

In general we could assume that

E
[
Si,k

]
= xi,k and Var

[
Si,k

]
=

ϕi,k

ωi,k
V (xi,k),

where

• ϕi,k > 0 are the dispersion parameters (unknown),

• ωi,k > 0 are known weights in order to compensate for different
volumes and

• V (·) is an appropriate variance function.
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5 Poisson-Model 5.5 Literature
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6 Bootstrap for CLM 6.1 Motivation (1/3)

Approximation by the empirical distribution (resampling)

• Let g(Φ) be a (bounded) real function depending on the random
vector Φ = (Φm)0≤m≤M .

• We are interested in the distribution P of g.

• Resampling: Assume we know the distribution of Φ then we could
sample an independent sequence (ϕn)0≤n≤N = (ϕn

m)0≤n≤N0≤m≤M and
approximate P by the empirical distribution

Pemp(g ≤ x) :=
number of ϕn with g(ϕn) ≤ x

N + 1
.

• Unfortunately, instead of the distribution of Φ we often only know a
single realisation (ϕm)0≤m≤M .
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Bootstrap for CLM

Motivation

• If the function g is ‘nice enough’ it is well known that the empirical distribution
converges to P in some sense.
If ϕm are realisations of i.i.d. random variables one could take (ϕπm )0≤m≤M , with
some π ∈ {0, 1, . . . ,M}M+1, instead of independent realisations of Φ, which leads us to
non-parametric bootstrap.



6 Bootstrap for CLM 6.1 Motivation (2/3)

Basic idea behind bootstrapping

• parametric bootstrap:

* make an assumption about the distribution family for Φ
* use the observation (ϕm)0≤m≤M to estimate the corresponding parameters
* resample

• non-parametric bootstrap:
Use the empirical distribution PM generated by resampling the
observation (ϕm)0≤m≤M , i.e.

PM (g ≤ x)

:=
number of vectors π ∈ {0, 1, . . . ,M}M+1 with g ((ϕπm)0≤m≤M ) ≤ x

(M + 1)M+1
.
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Bootstrap for CLM

Motivation

Parametric bootstrap:

• Which distribution family should we take?
• The estimation of the parameters of the underlying distribution of Φ based on a single

observation is very uncertain.

Non-parametric bootstrap:

• At least we have to assume that the components of Φ are independent and identical
distributed.

• In most cases the number (M + 1)M+1 is too large. So instead of calculating all
combinations, we use resampling replacement to approximate the emirical distribution.

• In some cases it is possible to prove that PM converges in some sense to P as M goes to
infinity. For instance, if Φ has independent identical distributed bounded components and

g((Φm)0≤m≤M ) :=
1√

M + 1

M∑

m=0

Φm.



6 Bootstrap for CLM 6.1 Motivation (3/3)

The flying words ‘to bootstrap’ comes from

‘to pull oneself up by one’s bootstraps’

In our case we want to get the whole distribution by the observation of one
realisation.

How to combine the Chain-Ladder method and bootstrapping

We have to find random variables, which

• can be assumed to be i.i.d. and

• define the reserves.
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Motivation

It goes back to the fairy tale by Baron Munchausen who claimed to saved himself from being
drowned in a swamp by pulling on his own hair.



6 Bootstrap for CLM 6.2 Chain-Ladder method and bootstrapping, variant 1

Recapitulation

Let Ci,k :=
∑k

j=0 Si,j. If we have

i’)CLM E
[
Si,k+1

∣∣∣Bi,k

]
= fkCi,k,

ii’)CLM Var
[
Si,k+1

∣∣∣Bi,k

]
= σ2

kCi,k and

iii’)CLM accident periods are independent.

Then

Ŝi,k := f̂k−1(1 + f̂k−2) · . . . · (1 + f̂I−i)Ci,I−i with f̂k :=

I−1−k∑

i=0

Ci,k∑I−1−k
h=0 Ch,k

Si,k+1

Ci,k

are DI−i-conditional unbiased estimators of Si,k, for I − i < k ≤ J .

Therefore, we get
Si,k+1 = fkCi,k +

√
σ2
kCi,k

Si,k+1 − fkCi,k√
σ2
kCi,k

︸ ︷︷ ︸
=:Φi,k

,

where Φi,k have mean zero and variance one.

We can look at Si,k as function of Φ :=
(
Φi,k

)
i+k<I, k<J

and some starting values, for instance

(Ci,0)0≤i≤I .
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Ŝi,k := f̂k−1(1 + f̂k−2) · . . . · (1 + f̂I−i)Ci,I−i with f̂k :=

I−1−k∑

i=0

Ci,k∑I−1−k
h=0 Ch,k

Si,k+1

Ci,k

are DI−i-conditional unbiased estimators of Si,k, for I − i < k ≤ J .

Therefore, we get
Si,k+1 = fkCi,k +

√
σ2
kCi,k

Si,k+1 − fkCi,k√
σ2
kCi,k

︸ ︷︷ ︸
=:Φi,k

,

where Φi,k have mean zero and variance one.

We can look at Si,k as function of Φ :=
(
Φi,k

)
i+k<I, k<J

and some starting values, for instance

(Ci,0)0≤i≤I .

2
0
2
1
-0

4
-2

6

Stochastic Reserving

Bootstrap for CLM

Chain-Ladder method and bootstrapping, variant 1

• In the last formula we still have some unknown parameters, i.e. fk and σ2
k.

• Φi,k are the Pearson residuals.

• Some of the Pearson residuals have to be ignored, because they cannot have the same

distribution like all other residuals. For instance:

– ΦI,J−1 in the case where I = J , because it is equal to zero (deterministically).
– all Φi,k for all development periods k where we know that all claims will be

closed. For those k the residuals are deterministic and equal to zero.



6 Bootstrap for CLM 6.3 Bootstrapping Chain-Ladder step by step, variant 1 (1/3)

Step 1: Chain-Ladder method

claim property: Si,k

estimated development factors: f̂k
estimated variance parameters: σ̂2

k

Si,k 0 1 2 3 ultimate reserve
0 100 100 50 0 250 0
1 300 190 88 0 578 0
2 100 85 37 0 222 37
3 200 150 70 0 420 220

f̂k 0.75 0.2 0 1470 257

σ̂2
k 6.67 0.70 0.09

Step 2: Residuals

Pearson residuals inclusive variance adjustment:

ϕi,k :=
Si,k+1 − f̂kCi,k√

σ̂2
kCi,k

√
I − k

I − k − 1

correction by the empirical mean:

ϕ∗i,k := ϕi,k −
1

I(I−1)
2 − 1

∑

i+k<I, k<I−1
ϕi,k

= ϕi,k − 0.24

ϕi,k 0 1 2 3
0 1.29 1.19
1 -1.04 -0.76
2 0.51
3

ϕ∗i,k 0 1 2 3
0 1.05 0.95
1 -1.28 -1.00
2 0.28
3
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Bootstrapping Chain-Ladder step by step, variant 1

• No residuals for development periods k, where σ̂2
k has to be approximated.

• Although Φi,k has zero mean and variance equal to one, its estimate ϕi,k doesn’t. The reason for this is

that we do not know the parameters fk and σk and use some estimators instead. Lets assume we know

σ2
k and take the variance minimizing weights wi,k :

Var




Si,k+1 − f̂kCi,k

√
σ2
k
Ci,k

∣∣∣∣∣∣∣
Dk



=
1

σ2
k
Ci,k

(
Var
[
Si,k+1

∣∣∣Dk

]
− 2Ci,kCov

[
Si,k+1, f̂k

∣∣∣Dk

]
+ C

2
i,kVar

[
f̂k

∣∣∣Dk

])

=
1

σ2
k
Ci,k



σ
2
kCi,k − 2Ci,kCov

[

Si,k+1, wi,k

Si,k+1

Ci,k

∣∣∣∣∣Dk

]

+ C
2
i,k

I−k−1∑

h=0

w2
h,k

C2
h,k

Var
[
Sh,k+1

∣∣∣Dk

]




=

(

1 − 2
Ci,k

∑I−k−1
h=0

Ch,k
︸ ︷︷ ︸

w
i,k

=
Ci,k

∑I−k−1
h=0

Ch,k

+
Ci,k

∑I−k−1
h=0

Ch,k
︸ ︷︷ ︸

w
i,k

=
Ci,k

∑I−k−1
h=0

Ch,k

)

=

(

1 −
Ci,k

∑I−k−1
h=0

Ch,k

)

< 1

Therefore, we could take (

1 −
Ci,k

∑I−k−1
h=0

Ch,k

)−1

as variance adjustment factor. But since we don’t know the variance parameter σ2
k we take

√
I−k

I−k−1

instead. This insures that
1

I − k

I−k−1∑

i=0

Var
[
ϕi,k

∣∣∣Dk

]
= 1 provided we know σ

2
k.



6 Bootstrap for CLM 6.3 Bootstrapping Chain-Ladder step by step, variant 1 (2/3)

Step 3: Resampled residuals (non-parametric bootstrap)

set of residuals:

{−1.28, −1.00, 0.28, 0.95, 1.05}

ϕ∗i,k 0 1 2 3
0 0.28 -1.00 1.05
1 -1.00 0.95 -1.00
2 1.05 0.28 -1.28
3 -1.28 0.28 0.95

Step 4a: Resampled triangle and Chain-Ladder method without process variance

S∗
i,0 :=Si,0

S∗
i,k+1 := f̂kC

∗
i,k +

√
σ̂2
kC

∗
i,kϕ

∗
i,k, i+ k ≤ I

S∗
i,k+1 := f̂∗

kC
∗
i,k, i+ k > I

S∗i,k 0 1 2 3 ultimate reserve
0 100 82 25 4 211 0
1 300 184 114 13 611 13
2 100 100 42 5 247 47
3 200 146 72 9 428 228

f̂∗k 0.73 0.21 0.02 1497 288

Step 4b: Resampled triangle and Chain-Ladder method with process variance

S∗
i,0 :=Si,0

S∗
i,k+1 := f̂kC

∗
i,k +

√
σ̂2
kC

∗
i,kϕ

∗
i,k, i+ k ≤ I

S∗
i,k+1 := f̂∗

kC
∗
i,k +

√
σ̂2
kC

∗
i,kϕ

∗
i,k, i+ k > I

S∗i,k 0 1 2 3 ultimate reserve
0 100 82 25 4 211 0
1 300 184 114 6 604 6
2 100 100 45 -1 244 44
3 200 103 77 15 394 194

f̂∗k 0.73 0.21 0.03 1453 244
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Step 3: Resampled residuals (non-parametric bootstrap)

set of residuals:

{−1.28, −1.00, 0.28, 0.95, 1.05}

ϕ∗i,k 0 1 2 3
0 0.28 -1.00 1.05
1 -1.00 0.95 -1.00
2 1.05 0.28 -1.28
3 -1.28 0.28 0.95

Step 4a: Resampled triangle and Chain-Ladder method without process variance

S∗
i,0 :=Si,0

S∗
i,k+1 := f̂kC

∗
i,k +

√
σ̂2
kC

∗
i,kϕ

∗
i,k, i+ k ≤ I

S∗
i,k+1 := f̂∗

kC
∗
i,k, i+ k > I

S∗i,k 0 1 2 3 ultimate reserve
0 100 82 25 4 211 0
1 300 184 114 13 611 13
2 100 100 42 5 247 47
3 200 146 72 9 428 228

f̂∗k 0.73 0.21 0.02 1497 288

Step 4b: Resampled triangle and Chain-Ladder method with process variance

S∗
i,0 :=Si,0

S∗
i,k+1 := f̂kC

∗
i,k +

√
σ̂2
kC

∗
i,kϕ

∗
i,k, i+ k ≤ I

S∗
i,k+1 := f̂∗

kC
∗
i,k +

√
σ̂2
kC

∗
i,kϕ

∗
i,k, i+ k > I

S∗i,k 0 1 2 3 ultimate reserve
0 100 82 25 4 211 0
1 300 184 114 6 604 6
2 100 100 45 -1 244 44
3 200 103 77 15 394 194

f̂∗k 0.73 0.21 0.03 1453 244
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Bootstrap for CLM

Bootstrapping Chain-Ladder step by step, variant 1

In the case of parametric bootstrap we use the residuals in order to fit a distribution and use
this distribution to get the resampled residuals.



6 Bootstrap for CLM 6.3 Bootstrapping Chain-Ladder step by step, variant 1 (3/3)

Step 5: Repeat steps 3 and 4 and collect the resulting reserves

Reserves without process variance (sorted):

{145, 146, 148, 156, 156, 157, 159, 165, 166, 167,
168, 168, . . . , 345, 346,

347, 347, 347, 349, 351, 352, 354, 355, 357, 357}

empirical distribution function

100 140 180 220 260 300 340 380 420
0

0.2

0.4

0.6

0.8

1.0

σ2 = 1724

µ = 256

empirical density

100 140 180 220 260 300 340 380 420
0

0.02

0.04

0.06

0.08

0.10

σ2 = 1724

µ = 256

Reserves with process variance (sorted):

{ 90, 106, 106, 108, 116, 119, 122, 123, 124, 124,
129, 131, . . . , 375, 375,

375, 380, 380, 384, 388, 394, 395, 396, 397, 403}

empirical distribution function

100 140 180 220 260 300 340 380 420
0

0.2

0.4

0.6

0.8

1.0

σ2 = 3197

µ = 257

empirical density

100 140 180 220 260 300 340 380 420
0

0.02

0.04

0.06

0.08

0.10

σ2 = 3197

µ = 257
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Stochastic Reserving

Bootstrap for CLM

Bootstrapping Chain-Ladder step by step, variant 1

• without process variance: σ2 represents the squared parameter estimation error
• with process variance: σ2 represents the sum of the squared parameter estimation error

and the process variance
• in this example the mean of the empirical distribution is almost equal to the Best

Estimate of the Chain-Ladder method

• Other variants of bootstrap methods are

– other starting values, for instance the last known diagonal,
– S∗i,k+1 := f̂∗kCi,k +

√
σ̂2
kCi,kϕ

∗
i,k



6 Bootstrap for CLM 6.4 Chain-Ladder method and bootstrapping, variant 2

Recapitulation: (overdispersed) Poisson-Model

If we have

i)Poi Si,k are independent random variables,

ii)Poi the distribution of Si,k belongs to the exponential dispersion family and

iii)Poi Var
[
Si,k

]
= ϑkE

[
Si,k

]
= ϑkγkµi.

Then Ŝi,k := γ̂kµ̂i, where γ̂k and µ̂i solve (5.1) and
∑J

k=0 γ̂k = 1, are unbiased estimators of
Si,k, for I − i < k ≤ J .

Therefore, we get

Si,k = γkµi +
√
γkµi

Si,k − γkµi√
γkµi︸ ︷︷ ︸

=:Φi,k

,

where Φi,k have mean zero and variance ϑk.

We can look at Si,k as function of Φ :=
(
Φi,k

)
i+k≤I, i<I, k≤J .

c©R. Dahms (ETH Zurich, Spring 2021) Stochastic Reserving: Lecture 10 5 May 2021 168 / 240



Recapitulation: (overdispersed) Poisson-Model

If we have

i)Poi Si,k are independent random variables,

ii)Poi the distribution of Si,k belongs to the exponential dispersion family and

iii)Poi Var
[
Si,k

]
= ϑkE

[
Si,k

]
= ϑkγkµi.

Then Ŝi,k := γ̂kµ̂i, where γ̂k and µ̂i solve (5.1) and
∑J

k=0 γ̂k = 1, are unbiased estimators of
Si,k, for I − i < k ≤ J .

Therefore, we get

Si,k = γkµi +
√
γkµi

Si,k − γkµi√
γkµi︸ ︷︷ ︸

=:Φi,k

,

where Φi,k have mean zero and variance ϑk.

We can look at Si,k as function of Φ :=
(
Φi,k

)
i+k≤I, i<I, k≤J .

2
0
2
1
-0

4
-2

6

Stochastic Reserving

Bootstrap for CLM

Chain-Ladder method and bootstrapping, variant 2

• In the last formula we still have some unknown parameters, i.e. γk , µi and ϑk.



6 Bootstrap for CLM 6.5 Bootstrapping Chain-Ladder step by step, variant 2 (1/3)

Step 1: Chain-Ladder method (Poisson-Model)

claim property: Si,k

estimated payment pattern: γ̂k
estimated ultimate: µ̂i

Si,k 0 1 2 3 ultimate (µ̂i) reserve
0 100 100 50 0 250 0
1 300 190 88 0 578 0
2 100 85 37 0 222 37
3 200 150 70 0 420 220

γ̂k 0.48 0.36 0.17 0.00 1470 257

Step 2: Residuals

Residuals inclusive variance adjustment:

ϕi,k :=
Si,k − γ̂kµ̂i√

γ̂kµ̂i

√√√√
I − k

∑I−k
h=0

(Sh,k−γ̂kµ̂h)
2

γ̂kµ̂h︸ ︷︷ ︸
=:
√

ϑ̂k

correction by the empirical mean:

ϕ∗i,k := ϕi,k −
1

(I+2)(I+1)
2 − 2

∑

i+k≤I, i<I, k<I

ϕi,k

= ϕi,k − 0.04

ϕi,k 0 1 2 3
0 -1.48 1.13 1.18
1 1.26 -1.14 -0.78
2 -0.47 0.64
3

ϕ∗i,k 0 1 2 3
0 -1.52 1.09 1.14
1 1.22 -1.19 -0.82
2 -0.51 0.60
3
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Bootstrap for CLM

Bootstrapping Chain-Ladder step by step, variant 2

• No residual for (i, k) = (I, 0), because it is equal to zero (deterministically).
• Although Φi,k has zero mean and variance equal to ϑk, its estimate ϕi,k doesn’t. The reason for this is

that we do not know the parameters fk and σk and use some estimators instead. The variance adjustment

√
ϑ̂k =

√√√√√√

I − k

∑I−k
h=0

(
S
h,k
−γ̂kµ̂h

)2

γ̂kµ̂h

ensures that the empirical variance equals one, i.e. that

1

I − k

I−k∑

i=0

(ϕ
∗
i,k − 0)

2
= 1.



6 Bootstrap for CLM 6.5 Bootstrapping Chain-Ladder step by step, variant 2 (2/3)

Step 3: Resampled residuals (non-parametric bootstrap)

set of residuals:

{−1.52,−1.19,−0.82,−0.51, 0.60, 1.09, 1.14, 1.22}

ϕ∗i,k 0 1 2 3
0 -0.51 -1.19 -1.52 1.09
1 1.22 1.09 -1.19 -0.82
2 -1.52 -0.51 1.22 -1.19
3 1.22 -0.51 1.09 1.14

Step 4a: Resampled triangle and Chain-Ladder method without process variance

S∗
i,k := γ̂kµ̂i +

√
ϑ̂kγ̂kµ̂iϕ

∗
i,k, i+ k ≤ I,

S∗
i,k := γ̂∗

kµ̂
∗
i , i+ k > I

S∗i,k 0 1 2 3 ult. (µ̂∗i ) reserve
0 107 69 22 0 198 0
1 233 235 73 0 541 0
2 72 71 21 0 164 21
3 237 216 67 0 520 283

γ̂∗k 0.44 0.36 0.11 0.00 1423 304

Step 4b: Resampled triangle and Chain-Ladder method with process variance

S∗
i,k := γ̂kµ̂i +

√
ϑ̂kγ̂kµ̂iϕ

∗
i,k, i+ k ≤ I,

S∗
i,k := γ̂∗

kµ̂
∗
i +

√
ϑ̂kγ̂kµ̂iϕ

∗
i,k, i+ k > I

S∗i,k 0 1 2 3 ultimate reserve
0 107 69 22 0 198 0
1 233 235 73 0 541 0
2 72 71 50 0 193 50
3 237 200 87 0 525 288

γ̂∗k 0.44 0.36 0.11 0.00 1456 337
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Bootstrapping Chain-Ladder step by step, variant 2

In the case of parametric bootstrap we use the residuals in order to fit a distribution and use
this distribution to get the resampled residuals.



6 Bootstrap for CLM 6.5 Bootstrapping Chain-Ladder step by step, variant 2 (3/3)

Step 5: Repeat steps 3 and 4 and collect the resulting reserves

Reserves without process variance (sorted):

{139, 153, 154, 155, 157, 157, 161, 162, 164, 165
166, 166, . . . , 378, 380,

381, 384, 385, 386, 387, 388, 389, 400, 402, 447}

empirical distribution function

80 120 160 200 240 280 320 360 400 440 480
0

0.2

0.4

0.6

0.8

1.0

σ2 = 2488

µ = 259

empirical density

80 120 160 200 240 280 320 360 400 440 480
0

0.02

0.04

0.06

0.08

0.10

σ2 = 2488

µ = 259

Reserves with process variance (sorted):

{ 86, 92, 95, 97, 99, 101, 102, 105, 109, 111,

117, 117, . . . , 420, 427,

428, 430, 432, 449, 451, 459, 460, 466, 472, 481}

empirical distribution function

80 120 160 200 240 280 320 360 400 440 480
0

0.2

0.4

0.6

0.8

1.0

σ2 = 4463

µ = 257

empirical density

80 120 160 200 240 280 320 360 400 440 480
0

0.02

0.04

0.06

0.08

0.10

σ2 = 4463

µ = 257
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Bootstrap for CLM

Bootstrapping Chain-Ladder step by step, variant 2

• without process variance: σ2 represents the squared parameter estimation error
• with process variance: σ2 represents the sum of the squared parameter estimation error

and the process variance
• in this example the mean of the empirical distribution is almost equal to the Best

Estimate of the Chain-Ladder method
• Another version of bootstrapping is to take

S∗i,k := γ̂∗k µ̂
∗
i +

√
ϑ̂kγ̂
∗
k µ̂
∗
iϕ
∗
i,k, i+ k > I.



6 Bootstrap for CLM 6.6 Possible problems with bootstrapping (1/2)

Possible problems with bootstrapping

• Following the bootstrap idea strictly would imply that instead applying
the standard Chain-Ladder method automatically we had to hire some
experienced reserving actuaries and let them estimate the reserves for
each resampled triangle.

• If the mean of the resampled empirical distribution is not equal to the
Best-Estimate we have to rescale

* each resampled outcome individually or
* the resampled empirical distribution

• Exclude non-random areas otherwise the resulting variance will be too
small. For example, if we know that all claims will be settled after 10
years we should exclude all residuals (all deterministic and equal to zero)
after development year 10.

• We may exclude resampled triangles which are not possible. For
instance, if we have payments without subrogation then we know that
all payments will be non-negative. Therefore, we may exclude resampled
triangles with negative entries.
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Bootstrap for CLM

Possible problems with bootstrapping

In the case of the last bullet point it could even happen that the cumulative payments get
negative.



6 Bootstrap for CLM 6.6 Possible problems with bootstrapping (2/2)

Bootstrapped probabilities (inclusive process variance) of both variants

Variant 1 (ResQ output) Variant 2 (ResQ output)

The bootstrapped distribution using variant 1 looks a bit too symmetric. Therefore,
I would prefer variant 2 in this case.
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I would prefer variant 2 in this case.
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6 Bootstrap for CLM 6.7 Parametric vs. non-parametric bootstrap

Parametric bootstrap

• We can resample triangles with extreme behaviour even if we only
observe very small residuals.

bb

• We have to make an assumption about the distribution of the
reserves.

bb

Non-parametric bootstrap

• If we only observe very small residuals the bootstrapped empirical
distribution may be too ‘nice’. We may underestimate
uncertainties.

bb

• We do not have to make an assumption about the distribution of the
residuals.

bb
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Bootstrap for CLM

Parametric vs. non-parametric bootstrap

Up to now there is no proof that either of the presented bootstrapping variants converge in some
sense to the real distribution of the reserves. On the contrary there are empirical studies, where

• a Poisson distribution was chosen to generate a triangle
• the resulting bootstrap distribution and the real distribution of the reserves has been

compared

The results indicate, that the uncertainty may be underestimated by bootstrapping.



6 Bootstrap for CLM 6.8 Literature
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7 Mid year reserving 7.1 Problem of mid-year reserving (1/4)

Chain-Ladder method at year end

12 24 36
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260 650 910ac
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s
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development month (periods)

f0=2.5 f1=1.4

(0) (1) (2)

Chain-Ladder assumptions (Mack [22]):

• E[Ci,k+1|Bi,k]= fkCi,k

• Var[Ci,k+1|Bi,k]= σ2
kCi,k

• independent accident years (periods)

Chain-Ladder method at mid-year
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• additional semester of experience
• new cells are incomplete

⇒ years are not comparable
⇒ Chain-Ladder will not work.
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7 Mid year reserving 7.1 Problem of mid-year reserving (2/4)

Problems

• forecast or closing

* If the method produces estimates for a closing the second semester of the
latest accident year is missing for a forecast estimate.

* If the method produces estimates for a forecast the estimated ultimate for
the latest accident year contains the estimate for the second semester,
which has to be eliminated for a mid-year closing.

• generalisation to other dates during the year

• consistency at year end

• usability:

* discussion of the claims development result
* comparability of observed development factors
* comparability of estimated development factors
* estimation error (ultimate and solvency uncertainties)
* additional workload
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If we have estimates for a forecast of the next year end closing then the estimated ultimate for
the latest accident year contains the corresponding second semester. Usually, this has to be
eliminated from the estimates if we want to use it for a mid-year closing (under USGAAP, PAA
under IFRS 17 and many other accounting standards). Such an elimination is not always easy.
Often one looks in the history to get an ‘first to second semester ratio’ which is then applyed at
the forecast estimate of the latest accident year.
But one has to be careful. For instance, assume we expect one large claim per accident year.
What do we do at end of June if

• we already observed one large claim for the latest accident year?
– We should not transfer any part of this large claim into the second semester!
– Should we account for the posibility of another large claim via IBNe/yR?

• we have not observed any large claim for the latest accident year?

– How much of the IBNe/yR for large claims should we take into account for the first semester?



7 Mid year reserving 7.1 Problem of mid-year reserving (3/4)

Assume we have complete data for each semester
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For the numerical example we took for each accident semester the following non-random
development pattern

development month 6 12 18 24 30 36 42
cumulative 25 75 100 150 175 175 175
incremental 25 50 25 50 25 0 0

and accident semester volumes

accident semester 1H 0 2H 0 1H 1 2H 1 1H 2 2H 2 1H 3
volume 1 1 2 2 2.6 2.6 3

We take this easy and non-random example in order to illustrate issues and possible solutions. A
more realistic example with random data would make it much harder to understand the effects.
Moreover, we cannot expect that a method will work fine in practice, if it fails (to some degree)
for such an easy example.



7 Mid year reserving 7.1 Problem of mid-year reserving (4/4)

Problem 7.1 (Mid-year reserving)

What can we do at the end of the first semester in order to estimate reserves
that correspond to the reserves at year end, which are estimated by Chain-
Ladder on the basis of the 12x12 triangle (12 accident months within on
accident period and the same for development periods)?
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7 Mid year reserving
7.2 Methods for mid-year reserving

7.2.1 Splitting or shifting of development periods (1/2)

Step by step
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Results

• Ultimate: PY = 1960, CY = 1050, Total = 3010 X for forecasts

• Reserves: PY = 505, CY = 975, Total = 1480

• The development factors in the third triangle are the products of two
corresponding development factors of the second, i.e.

7 = 4 · 7
4
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7
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7
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=

14

13
· 1.
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From an ultimate point of view, it does not matter if we look at development periods

• 6, 12, 18, 24 . . . , or

• 6, 18, 30 . . .



7 Mid year reserving
7.2 Methods for mid-year reserving

7.2.1 Splitting or shifting of development periods (2/2)

Properties

• results in a forecast

• easy to generalise to other dates during the year
bb

• it is consistent with the yearly Chain-Ladder at year end, because
shifting and splitting results in the same (estimated) ultimates

bb

• usability:

* claims development result can be discussed
bb

* observed and estimated development factor can only be compared if we use
split development periods, but this goes along with much larger triangles

* although, in theory the estimated prediction errors are the same for split
and shifted data in practice often less values for split data are

observed
bb

* split data triangles can get very huge, for instance for a forecast at the end

of November
bb
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Denote by Ci,k the cumulative values for accident year i at the end of development semester k and by C∗i,k the

cumulative values for accident year i at the end of development year k. Moreover, let

Bi,k := σ
(
Ci,j , 0 ≤ j ≤ k

)
and B∗i,k := σ

(
C
∗
i,j , 0 ≤ j ≤ k

)

the corresponding information of the past. Then we have

C
∗
i,k = Ci,2k+1 and B∗i,k ⊆ Bi,2k+1.

Assume that the semester data Ci,k satisfies the Chain-Ladder assumptions, i.e.

• E
[
Ci,k+1

∣∣Bi,k
]
= fkCi,k

• Var
[
Ci,k+1

∣∣Bi,k
]
= σ2

kCi,k
• accident years are independent.

Then C∗i,k satisfies the Chain-Ladder assumptions, too:

• E
[
C
∗
i,k+1

∣∣∣B∗i,k
]
= E

[
E
[
Ci,2(k+1)+1

∣∣∣Bi,2k+1

]∣∣∣B∗i,k
]
= E

[
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]
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∗
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C
∗
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[
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E
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]
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σ
2
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C
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• accident years are independent.

But in practice one often observes σ∗2k > σ2
2k+2f2k+1 + f2

2k+2σ
2
2k+1



7 Mid year reserving
7.2 Methods for mid-year reserving

7.2.2 Extrapolation of the last diagonal (1/2)

Step by step
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Results

• Ultimate: PY = 1960, CY = 1050, Total = 3010 X for forecasts

• Reserves: PY = 505, CY = 975, Total = 1480

• The estimated development factors in the third triangle are almost the
best predictions of the corresponding estimates of the following year
end closure, based on the information available at end of June.
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7 Mid year reserving
7.2 Methods for mid-year reserving

7.2.2 Extrapolation of the last diagonal (2/2)

Properties

• results in a forecast

• easy to generalise to other dates during the year
bb

• it is consistent (end in some way almost optimal) with the yearly Chain

Ladder at year end
bb

• usability:

* claims development result can be discussed
bb

* observed and estimated development factor of the third triangle are the

same as at year end
bb

* since ultimates are the same as for split or shifted development periods,

the same estimates for prediction errors can be used
bb

* not so easy to implement with standard reserving software
bb
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Using the same notation like in the case of split development periods we get

f̂k =

∑I−k
i=0 Ĉ∗i,k+1
∑I−k

i=0 C∗
i,k

=

∑I−k−1
i=0 C∗i,k+1 + f̂

hy
2k+2

CI−k,2k+2
∑I−k

i=0 C∗
i,k

=

∑I−k−1
i=0 C∗i,k
∑I−k

i=0 C∗
i,k

f̂
ye
k

+



1−
∑I−k−1

i=0 C∗i,k
∑I−k

i=0 C∗
i,k



 CI−k,2k+2

CI−k,2k+1

f̂
hy
2k+2

.

That means the estimated development factors f̂k are a weighted mean of the estimated development factors

f̂
ye
k

from last year end closing and the newly observed development
CI−k,2k+2
CI−k,2k+1

multiplied by the estimated

development of the second half year f̂
hy
2k+2

.

Moreover, one can show that the weights

∑I−k−1
i=0

C∗
i,k

∑I−k
i=0

C∗
i,k

are almost the best weights αk in order to forecast the

estimated development factors f̂
ye+1
k

of the next year end closing, i. e. αk that minimize (see [27] for details)

E

[(

(1 − αk)f̂
ye
k

+ αk

CI−k,2k+2

CI−k,2k+1

f̂
hy
2k+2

− f̂
ye+1
k

)2∣∣∣∣∣Ci,j known at end of June

]

.



7 Mid year reserving
7.2 Methods for mid-year reserving

7.2.3 Shifting accident periods (1/2)

Step by step
12 24 36 48

0

1

2

3

100 250 350 350

200 500 650

260 455

75

25 75 100 150 175 175 175

25 75 100 150 175 175

50 150 200 300 350

50 150 200 300

65 195 260

65 195

75

=⇒
0

1

2

12 24 36

25 75 100 150 175 175 175

125 350 525

215 560

270

25 75 100 150 175 175

50 150 200 300 350

50 150 200 300

65 195 260

65 195

75

fk 2.68 1.5

840
805

723
690

1084
980

Results

• Ultimate: “PY” = 1505, “CY” = 980, Total = 2514 (2485)

• Reserves: “PY” = 245, “CY” = 710, Total = 994 (955)

• correct values in red

• should give estimates for closings, but only if ‘volumes are stable’
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7 Mid year reserving
7.2 Methods for mid-year reserving

7.2.3 Shifting accident periods (2/2)

Properties

• results in closing figures, but only if ‘volumes are stable’
bb

• easy to generalise to other dates during the year
bb

• it is not consistent with the yearly Chain Ladder at year end
bb

• usability:

* a discussion of the claims development result is almost impossible
bb bb

* observed and estimated development factors at mid year and at year end

are not alike
bb

* estimation errors can be estimated by the standard formulas
bb

* may be useful in a merger and acquisition process at mid year, if no other
information except for triangles are available
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The method is inconsistent with the yearly Chain-Ladder for the same reasons as the method of split accident years,
see next method (subsection 11.2.4).



7 Mid year reserving
7.2 Methods for mid-year reserving

7.2.4 Splitting of accident periods (1/2)

Step by step
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Results

• Ultimate: PY = 1960, CY = 525, Total = 2485 (X for closings)

• Reserves: PY = 505, CY = 450, Total = 955

• should give estimates for closings, but only if ‘volumes are stable’
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7 Mid year reserving
7.2 Methods for mid-year reserving

7.2.4 Splitting of accident periods (2/2)

Properties

• results in closing figures, but only if ‘volumes are stable’

• easy to generalise to other dates during the year
bb

• it is, except for strange situation, not consistent with the yearly Chain
Ladder at year end

bb

• Usability:

* claims development result can be discussed
bb

* observed and estimated development factor can only be compared if we
always use the same split, but this goes along with much larger triangles

* uncertainties can be estimated by standard formulas
* split data triangles can get very huge, for instance for a estimation at the

end of November
bb
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Denote by Ci,k the cumulative values for accident semester i at the end of development semester k and by C∗i,k
the cumulative values for accident year i at the end of development year k. Moreover, let

Bi,k := σ
(
Ci,j , 0 ≤ j ≤ k

)
and B∗i,k := σ

(
C
∗
i,j , 0 ≤ j ≤ k

)

the corresponding information of the past. Then we have

C
∗
i,k = C2i,2k+1 + C2i+1,2k and B∗i,k ⊆ σ

(
B2i,2k+1 ∪ B2i+1,2k

)
.

Assume that Ci,k and C∗i,k satisfy the Chain-Ladder assumptions, i.e.

• E
[
Ci,k+1

∣∣Bi,k
]
= fkCi,k

• Var
[
Ci,k+1

∣∣Bi,k
]
= σ2

kCi,k

• accident semester are independent.

• E
[
C∗i,k+1

∣∣∣B∗i,k
]
= gkC

∗
i,k

• Var
[
C∗i,k+1

∣∣∣B∗i,k
]
= τ2

kC∗i,k
• accident years are independent.

Then we get:

gk(C2i,2k+1 + C2i+1,2k) = gkC
∗
i,k = E

[
C2i,2(k+1)+1 + C2i+1,2(k+1)

∣∣∣B∗i,k
]

= E
[
E
[
C2i,2(k+1)+1 + C2i+1,2(k+1)

∣∣∣B2i,2k+1,B2i+1,2k

]∣∣∣B∗i,k
]

= E
[
f2k+2f2k+1C2i,2k+1 + f2k+1f2kC2i+1,2k

∣∣∣B∗i,k
]
. (7.1)

Therefore, it follows

0 = (gk − f2k+2f2k+1)E
[
C2i,2k+1

∣∣D
]
+ (gk − f2k+1f2k)E

[
C2i+1,2k

∣∣D
]
, (7.2)

for each σ-algebra D ⊆ B∗i,k.



Properties

• results in closing figures, but only if ‘volumes are stable’

• easy to generalise to other dates during the year
bb

• it is, except for strange situation, not consistent with the yearly Chain
Ladder at year end

bb

• Usability:

* claims development result can be discussed
bb

* observed and estimated development factor can only be compared if we
always use the same split, but this goes along with much larger triangles

* uncertainties can be estimated by standard formulas
* split data triangles can get very huge, for instance for a estimation at the

end of November
bb
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Moreover, multiplying (7.1) by (C2i,2k+1 + C2i+1,2k), resorting the terms and using (7.2) we get and

0 = (gk − f2k+2f2k+1)Var
[
C2i,2k+1

∣∣D
]
+ (gk − f2k+1f2k)Var

[
C2i+1,2k

∣∣D
]
,

which is only possible if

• Var
[
Ci,k

]
= 0, which means that there is no randomness,

• f2k+2 = f2k , which in practice implies f2k+2 = f2k+1 = f2k = 1, or
•

Var
[
C2i,2k+1

∣∣D
]

f
2k

Var
[
C2i+1,2k

∣∣D
] = −

gk − f2k+1f2k

f
2k

(gk − f
2k+2

f
2k+1

)
=

E
[
C2i,2k+1

∣∣D
]

f
2k

E
[
C2i+1,2k

∣∣D
] =

E
[
C2i,0

]

E
[
C2i+1,0

],

where the last equation is true, because the second term is independent of the σ-algebra D and we can
take the trivial σ-algebra. This means, first and second semesters are alike (not only in expectation, but
also in expectation conditioned to all information of the past) up to a fixed factor.

All theses cases are very strange circumstances. �
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7 Mid year reserving
7.2 Methods for mid-year reserving

7.2.5 Separating semesters (1/2)

Step by step
12 24 36 48

0

1

2

3

100 250 350 350

200 500 650

260 455

75

25 75 100 150 175 175 175

25 75 100 150 175 175

50 150 200 300 350

50 150 200 300

65 195 260

65 195

75

=⇒

6 18 30 42

1H 0

1H 1

1H 2

1H 3

25 75 100 150 175 175 175

50 150 200 300 350

65 195 260

75

12 24 36

2H 0

2H 1

2H 2

25 75 100 150 175 175

50 150 200 300

65 195

=⇒

1H 0

1H 1

1H 2

1H 3

6 18 30 42

25 100 175 175

50 200 350

65 260

75

2H 0

2H 1

2H 2

12 24 36

75 150 175

150 300

195

fk 4 7/4 1

fk 2 7/6

350

350

455 455

390 455

300 525 525

Results

• Ultimate: PY = 1960, CY = 525, Total = 2485 X for closings

• Reserves: PY = 505, CY = 450, Total = 955
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7 Mid year reserving
7.2 Methods for mid-year reserving

7.2.5 Separating semesters (2/2)

Properties

• results in closing figures

• easy to generalise to other dates during the year
bb

• even at year end you will get different reserves looking at accident year
or accident semesters

bb

• usability:

* claims development result can be discussed
bb

* observed and estimated development factors at mid year and at year end
are only comparable if we always use separated data

* standard formulas for estimating uncertainties will not work, because they
cannot reflect dependencies (which in addition have to be specified)

between the triangles
bb

* we may end up with a lot of triangles, for instance at the end of

November
bb
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7 Mid year reserving
7.2 Methods for mid-year reserving

7.2.6 Separating the youngest semester (1/2)

Step by step
12 24 36 48

0

1

2

3

100 250 350 350

200 500 650

260 455

75

25 75 100 150 175 175 175

25 75 100 150 175 175

50 150 200 300 350

50 150 200 300

65 195 260

65 195

75

=⇒

6 18 30 42

0

1

2

175 325 350

350 650

455

25

50

65

25 75 100 150 175 175 175

25 75 100 150 175 175

50 150 200 300 350

50 150 200 300

65 195 260

65 195

fk 13/7 14/13

700

845 910

+

1H 0

1H 1

1H 2

1H 3

6 18 30 42

25 100 175 175

50 200 350

65 260

75

fk 4 7/4 1

350

455 455

300 525 525

Results

• Ultimate: PY = 1960, CY = 525, Total = 2485 X for closings

• Reserves: PY = 505, CY = 450, Total = 955
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7 Mid year reserving
7.2 Methods for mid-year reserving

7.2.6 Separating the youngest semester (2/2)

Properties

• resulting in closing figures

• easy to generalise for other dates during the year
bb

• at year end both triangles are the same and equal to the yearly
triangle

bb

• usability:

* claims development results can be discussed
bb

* observed and estimated development factors for prior years at mid year and

at year end are comparable
bb

* standard formulas for estimating uncertainties will not work, because they
cannot reflect dependencies (which in addition have to be specified)

between the triangles
bb

* not so easy to implement with standard reserving software
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7 Mid year reserving 7.3 Conclusion
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splitting development years forecast (X) ? X X ✗ (X) can get huge
shifting development periods forecast X X X X ✗ X X

extrapolating last diagonal forecast (X) X X X X (X) (X)
shifting accident periods closing X ✗ X ✗ ✗ X X

splitting accident years closing (X) ✗ ✗ X ✗ (X) can get huge
separation semesters closing (X) ? ✗ X ✗ ✗ can get huge
separating youngest semesters closing (X) ? X X X ✗ X
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Conclusion

• (X) stands for ‘yes, but’ and refers to possible huge triangles, cannot be implemented
(easily) in standard reserving software or other reasons

• My favourite for mid-year closings is the separation of the youngest semester, because

– estimated ultimates (and the CDR), estimated development factors as well as
observed development factors are comparable with year end figures based on
yearly triangles

– with some tricks it can be implemented in most standard reserving software
– uncertainties should anyway be estimated separately

• My favourite for forecasts is the shifting of development periods, because

– it can be implemented in most standard reserving software, which is not the
case for the (correct) extrapolation of the last diagonal, which I would prefer if
I had to implement a software



7 Mid year reserving 7.4 Literature
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8 CLM: Bayesian & credibility approach 8.1 A Bayesian approach to the Chain-Ladder method (1/6)

Recapitulation of the Chain-Ladder method

Let Ci,k :=
∑k

j=0 Si,j. If we have

i)CLM E[Ci,k+1|Bi,k]= fkCi,k,

ii)CLM Var[Ci,k+1|Bi,k]= σ2
kCi,k and

iii)CLM accident periods are independent.

Then Ĉi,k+1 := f̂k · . . . · f̂I−iCi,I−i with

f̂k :=
I−1−k∑

i=0

Ci,k∑I−1−k
h=0 Ch,k

Ci,k+1

Ci,k

are DI−i-conditional unbiased estimators of Ci,k, for I − i ≤ k < J .

But

this is only true if we assume that the development factors fk are fixed. We now want
to look at the Chain-Ladder method where they are assumed to be realisations of random
variables ϕk with E[ϕk]= fk. We denote by

ϕ := (ϕ0, . . . , ϕJ−1)

the corresponding collections of all random development factors.
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A Bayesian approach to the Chain-Ladder method

Note, everything will stay correct if we replace Bi,k with Di+k
k and skip the independence

assumption.



8 CLM: Bayesian & credibility approach 8.1 A Bayesian approach to the Chain-Ladder method (2/6)

Assumption 8.A (Bayesian Chain-Ladder method)

We assume that

i)Bay E[Ci,k+1|ϕ,Bi,k]= ϕkCi,k,

ii)Bay Var[Ci,k+1|ϕ,Bi,k]= σ2
k(ϕ)Ci,k,

iii)Bay conditional given ϕ the accident periods are independent and
iv)Bay For any selection uk ∈ {1, ϕk, ϕ

2
k, σ

2
k(ϕ)} we have

E[u0 · . . . · uJ−1|D]= E[u0|D]· . . . · E[uJ−1|D],

where D is any claim information Dn, Dk, Dn
k or Dn ∩ Dk.

Remark 8.1

• We assume that the variance parameters σ2
k may depend on the random

development factors ϕ.
• Conditionally given ϕ we have a standard Chain-Ladder method with

development factors ϕk and variance parameters σ2
k(ϕ).
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8 CLM: Bayesian & credibility approach 8.1 A Bayesian approach to the Chain-Ladder method (3/6)

Definition 8.2 (Bayes estimators)

Let Z be a random variable and D some σ-algebra (for instance the information
contained in some observations). The Bayes estimator ZBay of Z given D is defined
by

ZBay := E[Z|D].

Corollary 8.3

If Z2 is integrable then the Bayes estimator is the D-measurable estimator that
minimizes the conditionally, given D, mean squared error of prediction, i.e.

ZBay = argmin
Ẑ

E
[
(Z − Ẑ)2

∣∣∣D
]
.

Estimator 8.4 (of the future outcome)

Under Assumption 8.A we get

CBay
i,k+1 := E

[
Ci,k+1|DI

]
= E

[
ϕk|DI

]
·. . .·E

[
ϕI−i

∣∣DI
]
Ci,I−i =: ϕBay

k ·. . .·ϕBay
I−i Ci,I−i
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A Bayesian approach to the Chain-Ladder method

• The corollary is true, because the conditional expectation is the orthogonal projection
onto the subspace of all D measurable functions (within the space of all square
integrable functions).

• Proof of Estimator 8.4:

CBay
i,k+1 = E

[
Ci,k+1

∣∣DI
]
= E

[
E
[
Ci,k+1

∣∣ϕ,DI
]∣∣∣DI

]

= E
[
ϕk · . . . · ϕI−iCi,I−i

∣∣DI
]

︸ ︷︷ ︸
standard CLM for fixed development factors

= E
[
ϕk|DI

]
· . . . · E

[
ϕI−i

∣∣DI
]
Ci,I−i

︸ ︷︷ ︸
iv)Bay

.



8 CLM: Bayesian & credibility approach 8.1 A Bayesian approach to the Chain-Ladder method (4/6)

Ultimate uncertainty in the Bayesian case

For the mean squared error of prediction of the ultimate outcome we get

mseDI

[
I∑

i=0

CBay
i,J

]
= E


E



(

I∑

i=0

(
Ci,J − CBay

i,J

))2
∣∣∣∣∣∣
ϕ,DI



∣∣∣∣∣∣
DI




= E


E



(

I∑

i=0

(
Ci,J − E

[
Ci,J |ϕ,DI

])
−

I∑

i=0

(
CBay
i,J − E

[
Ci,J |ϕ,DI

])
)2
∣∣∣∣∣∣
ϕ,DI



∣∣∣∣∣∣
DI




= E




I∑

i=0

Var
[
Ci,J |ϕ,DI

]
+

(
I∑

i=0

(
E
[
Ci,J |ϕ,DI

]
− CBay

i,J

))2
∣∣∣∣∣∣
DI




=
I∑

i=0

E
[
Var
[
Ci,J |ϕ,DI

]∣∣DI
]

︸ ︷︷ ︸
random error

+E



(

I∑

i=0

(
E
[
Ci,J |ϕ,DI

]
− CBay

i,J

))2
∣∣∣∣∣∣
DI




︸ ︷︷ ︸
parameter error

.
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8 CLM: Bayesian & credibility approach 8.1 A Bayesian approach to the Chain-Ladder method (5/6)

Derivation of the random error

E
[
Var
[
Ci,J |ϕ,DI

]∣∣DI
]
=

J−1∑

k=I−i
E




J−1∏

j=k+1

ϕ2
j σ

2
k(ϕ)

k−1∏

j=I−i
ϕj

∣∣∣∣∣∣
DI


Ci,I−i

︸ ︷︷ ︸
standard CLM, Estimator 2.9

=
J−1∑

k=I−i

J−1∏

j=k+1

E
[
ϕ2
j

∣∣DI
]
E
[
σ2
k(ϕ)

∣∣DI
] k−1∏

j=I−i
E
[
ϕj

∣∣DI
]
Ci,I−i

︸ ︷︷ ︸
iv)Bay

.

Derivation of the parameter error

E



(

I∑

i=0

(
E
[
Ci,J |ϕ,DI

]
−CBay

i,J

))2
∣∣∣∣∣∣
DI


=

I∑

i1,i2=0

Ci1,I−i1Ci2,I−i2Cov




J−1∏

k=I−i1
ϕk,

J−1∏

k=I−i2
ϕk

∣∣∣∣∣∣
DI




=

I∑

i1,i2=0

Ci1,I−i1Ci2,I−i2

I−(i1∧i2)−1∏

k=I−(i1∨i2)
E
[
ϕk|DI

]



J−1∏

k=I−(i1∧i2)
E
[
ϕ2
k

∣∣DI
]
−

J−1∏

k=I−(i1∧i2)
E
[
ϕk|DI

]
2


.
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E
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]
E
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σ2
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E
[
ϕj
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Derivation of the parameter error

E



(
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i=0

(
E
[
Ci,J |ϕ,DI

]
− CBay

i,J

))2
∣∣∣∣∣∣
DI


=

I∑

i1,i2=0

Ci1,I−i1Ci2,I−i2Cov




J−1∏

k=I−i1
ϕk,

J−1∏

k=I−i2
ϕk

∣∣∣∣∣∣
DI




=

I∑

i1,i2=0

Ci1,I−i1Ci2,I−i2

I−(i1∧i2)−1∏

k=I−(i1∨i2)
E
[
ϕk|DI

]



J−1∏

k=I−(i1∧i2)
E
[
ϕ2
k

∣∣DI
]
−

J−1∏

k=I−(i1∧i2)
E
[
ϕk|DI

]
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
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parameter error:

E








I∑

i=0

(
E
[
Ci,J

∣∣ϕ,DI
]
− C

Bay
i,J

)



2
∣∣∣∣∣∣
DI



= Var




I∑

i=0

E
[
Ci,J

∣∣ϕ,DI
]
∣∣∣∣∣∣
DI





︸ ︷︷ ︸
E
[
E
[
Ci,J

∣∣∣ϕ,DI
]∣∣∣DI

]
=C

Bay
i,J

=
I∑

i1,i2=0

Cov



Ci1,I−i1

J−1∏

k=I−i1

ϕk, Ci2,I−i2

J−1∏

k=I−i2

ϕk

∣∣∣∣∣∣
DI





=

I∑

i1,i2=0

Ci1,I−i1
Ci2,I−i2

Cov




J−1∏

k=I−i1

ϕk,

J−1∏

k=I−i2

ϕk

∣∣∣∣∣∣
DI





=
I∑

i1,i2=0

Ci1,I−i1
Ci2,I−i2



E




J−1∏

k=I−i1

ϕk

J−1∏

k=I−i2

ϕk

∣∣∣∣∣∣
DI



− E




J−1∏

k=I−i1

ϕk

∣∣∣∣∣∣
DI



E




J−1∏

k=I−i2

ϕk

∣∣∣∣∣∣
DI









=
I∑

i1,i2=0

Ci1,I−i1
Ci2,I−i2

I−(i1∧i2)−1∏

k=I−(i1∨i2)

E
[
ϕk

∣∣DI
]



J−1∏

k=I−(i1∧i2)

E
[
ϕ
2
k

∣∣∣DI
]
−

J−1∏

k=I−(i1∧i2)

E
[
ϕk

∣∣DI
]
2





︸ ︷︷ ︸
iv)Bay

.

Note: Although accident periods are independent given DI and ϕ they are usually not independent given DI .



8 CLM: Bayesian & credibility approach 8.1 A Bayesian approach to the Chain-Ladder method (6/6)

Problem 8.5

We still have to estimate

E
[
ϕk|DI

]
, E

[
ϕ2
k

∣∣DI
]

and E
[
σ2
k(ϕ)

∣∣DI
]
.

Distribution based models

On solution is to make an assumption on the joint distribution of (Ci,k)i+k≤I
and ϕ and than calculate the a posteriori distribution of ϕ given DI , which
then can be used to calculate the missing objects.

Credibility approximation

Another way is to look only at estimators F̂Cred
k , which depends in an affine

way on the observations Fi,k =
Ci,k+1

Ci,k
.
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A Bayesian approach to the Chain-Ladder method

• Note, we know E
[
ϕk

]
= fk, but usually E

[
ϕk

∣∣DI
]
6= fk.

• Even if we have a good model for the joint distribution of (Ci,k)i+k≤I and ϕ, the
calculation of posteriori distributions is very hard, since we have only very few data.

• Looking at the credibility estimator instead of the Bayesian estimator means to look at
the a orthogonal projection onto the affine subspace of DI generated by the link ratios
Fi,k instead of the projection onto DI itself.



8 CLM: Bayesian & credibility approach 8.2 A credibility approach to the Chain-Ladder method (1/3)

Definition 8.6 (Credibility estimators of the development factors)

F̂Cred
k := argmin

ϕ̂=ak+
∑I−k−1

i=0 ai,k
Ci,k+1
Ci,k

E

[(
ϕk − ϕ̂

)2∣∣∣∣DI

]
.

Theorem 8.7 (Credibility estimator for the development factors)

Let Assumption 8.A be fulfilled. Then

• the credibility estimators of the development factors are given by

FCred
k = αkf̂

CLM
k + (1− αk)fk, with αk :=

∑I−k−1
i=0 Ci,k

∑I−k−1
i=0 Ci,k +

σ2
k

τ2k

,

where fk := E[ϕk], σ
2
k := E

[
σ2
k(ϕ)

]
, τ2k := Var[ϕk] and

f̂CLM
k :=

I−k−1∑

i=0

Ci,k∑I−k−1
h=0 Ch,k

Ci,k+1

Ci,k
.

• the corresponding mean squared error of prediction is given by

mseDk

[
FCred
k

]
:= E

[(
ϕk − FCred

k

)2∣∣∣∣Dk

]
= αk

σ2
k∑I−k−1

i=0 Ci,k

= (1− αk)τ
2
k .
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• Conditionally given Dk, the random variables Fi,k =
Ci,k+1

Ci,k
, i = 0, . . . , I − k − 1, fulfil

the assumptions of the Bühlmann and Straub model (see [29, Section 4.2]). The first
part of the theorem is the well known credibility estimator of Bühlmann and Straub and
the second part is the corresponding mean square error of prediction (see [29,
Chapter 4]).

• The case τ2k →∞, i.e. αk = 1, is called the non-informative priors. It corresponds to
the standard Chain-Ladder method introduced in Section 2.

• Since FCred
k still depends on the unknown expectation fk = E

[
ϕk

]
we don’t mark it

with a hat like other estimatior.



8 CLM: Bayesian & credibility approach 8.2 A credibility approach to the Chain-Ladder method (2/3)

Estimator 8.8 (Credibility estimator of the future development)

ĈCred
i,k := F̂Cred

k−1 · . . . · F̂Cred
I−i Ci,I−i, for i+ k > I.

Estimation of the structural parameters fk, σ
2
k, and τ 2k , see [29, Section 4.8]

Either ask experts or if we have several similar portfolios Cm
i,k, 0 ≤ m ≤ M , we can take

F̂m,Cred
k := α̂m

k f̂m,CLM
k + (1− α̂m

k )f̂k and Ĉm,Cred
i,k := F̂m,Cred

k−1 · . . . · F̂m,Cred
I−i Cm

i,I−i with

f̂k :=





∑M
m=0 α̂

m
k f̂m,CLM

k∑M
m=0 α̂

m
k

, if
∑M

m=0 α̂
m
k <> 0,

f̂ tot,CLM
k , otherwise,

f̂ tot,CLM
k :=

ω••,k+1

ω••,k
,

α̂m
k :=

ωm
•,k

ωm
•,k +

σ̂2
k

τ̂2k

(
:= 0, if τ̂2k = 0

)
, ck :=

M

M + 1

(
M∑

m=0

ωm
•,k

ω••,k

(
1−

ωm
•,k

ω••,k

))−1
,

τ̂2k := max

{
0; ck

(
M + 1

M

M∑

m=0

ωm
•,k

ω••,k

(
f̂m,CLM
k − f̂ tot,CLM

k

)2
− (M + 1)σ̂2

k

ω••,k

)}
,

σ̂2
k :=

1

M + 1

M∑

m=0

1

I − k − 1

I−k−1∑

i=0

Cm
i,k

(
Cm
i,k+1

Cm
i,k

− f̂m,CLM
k

)2

,

ωm
•,k :=

I−k−1∑

i=0

Cm
i,k and ω••,k :=

M∑

m=0

ωm
•,k.
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• In the case of non-informative priors, i.e. τ2k →∞, the estimators of the future
development are the same as for the standard Chain-Ladder method introduced in
Section 2.

• f̂ tot,CLM
k =

ω••,k+1

ω•
•,k

are the standard estimates of the development factors of the

combined portfolio
∑M

m=0 C
m
i,k .

• The factors ck are normalizing factors that makes the estimators τ̂k unbiased
(conditioned τ̂k > 0).



8 CLM: Bayesian & credibility approach 8.2 A credibility approach to the Chain-Ladder method (3/3)

Estimator 8.9 (of the ultimate uncertainty)
Let Assumption 8.A be fulfilled. Then the ultimate uncertainty is given by

mseDI

[
I∑

i=0

ĈCred
i,J

]
=

I∑

i=0

J−1∑

k=I−i

J−1∏

j=k+1

E
[
ϕ2
j

∣∣DI
]
E
[
σ2
k(ϕ)

∣∣DI
] k−1∏

j=I−i
E
[
ϕj

∣∣DI
]
Ci,I−i

︸ ︷︷ ︸
random error

+
I∑

i1,i2=0

Ci1,I−i1Ci2,I−i2E






J−1∏

k=I−i1
F̂Cred
k −

J−1∏

k=I−i1
ϕk






J−1∏

k=I−i2
F̂Cred
k −

J−1∏

k=I−i2
ϕk



∣∣∣∣∣∣
DI




︸ ︷︷ ︸
parameter error

≈
I∑

i=0

(
ĈCred
i,J

)2 J−1∑

k=I−i

σ̂2
k(

F̂Cred
k

)2
ĈCred
i,k

J−1∏

j=k+1


1 +

α̂j∑I−j−1
h=0 Ch,j

σ̂2
j(

F̂Cred
j

)2




+
I∑

i1,i2=0

ĈCred
i1,J ĈCred

i2,J




J−1∏

k=I−(i1∧i2)


1 +

α̂k∑I−k−1
h=0 Ch,k

σ̂2
j(

F̂Cred
j

)2


− 1


.

Remark 8.10 (conection to the standard CLM)
In the case of non-informative priors, i.e. τ2k → ∞, the random error is slightly bigger than in the
standard CLM case, whereas the parameter error is the same.
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ĈCred
i1,J ĈCred
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Remark 8.10 (conection to the standard CLM)
In the case of non-informative priors, i.e. τ2k → ∞, the random error is slightly bigger than in the
standard CLM case, whereas the parameter error is the same.
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A credibility approach to the Chain-Ladder method

First, like in the Bayesian case, we decompose the mse
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8 CLM: Bayesian & credibility approach 8.3 Example (1/4)

Pricing of similar subportfolios

• In [28] a example of a portfolio was discussed that consists of six subportfolios, ‘BU
A’. . .‘BU F’. Results and figures are copied from this article.

• For reserving we would usually combine all six of them to get the law of large numbers
more volume to get working.

• But in pricing we need individual premiums for each subportfolio.
• On way to do so is to use the introduced credibility reserving.

BU reserves
√

mse
CLM Cred CLM Cred

A 486 504 657 498
B 235 244 288 402
C 701 517 411 520
D 1029 899 844 729
E 495 621 397 596
F 40 25 140 149

sum 2987 2810

overall CLM 2746 1418

LSRM 2987 1353

For LSRM we coupled the individual Chain-Ladder projections by Rm1,m2

i,k :=
√

Cm1
i,k C

m2
i,k .
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Example

• The total reserves differ only by 6%, but per subportfolio the differences are much larger
(up to 46%).

• The CLM reserves for the combined portfolio are even smaller.
• The mse of the combined portfolios is about 25 % larger than the sum of the individual

ones. This may be a hint that the estimated reserves of the subportfolios are correlated.
• The LSRM leads to almost the same results as the overall CLM.
• In the file ‘Example_Cor_Dll.xlsx’ (or ‘Example_Cor_ActiveX.xlsx’), see Example on

slide 147, the CLM and the LSRM estimates are (re)calculated. The presented figures
for CLM, which are taken from the original article [28], differ slightly from the
recalculated once, because of rounding effects.



8 CLM: Bayesian & credibility approach 8.3 Example (2/4)

Correlation of the estimated reserves
Estimated ultimate uncertainty correlation

BU A B C D E F

A 1.00 -0.15 0.01 0.23 -0.17 0.26
B -0.15 1.00 0.03 0.13 -0.03 -0.00
C 0.01 0.03 1.00 0.04 0.06 -0.05
D 0.23 0.13 0.04 1.00 -0.05 0.09
E -0.17 -0.03 0.06 -0.05 1.00 0.03
F 0.26 -0.00 -0.05 0.09 0.03 1.00

We see that at least the estimated reserves for subportfolio BU A are correl-
ated to the others.
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8 CLM: Bayesian & credibility approach 8.3 Example (3/4)

Comparison of the estimated development pattern (1/2)

The individual CLM development pattern are smoothed by the credibility approach:
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8 CLM: Bayesian & credibility approach 8.3 Example (4/4)

Comparison of the estimated development pattern (2/2)

The credibility approach shifts the individual CLM development pattern into the direction of the
overall CLM pattern:
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Comparison of the estimated development pattern (2/2)

The credibility approach shifts the individual CLM development pattern into the direction of the
overall CLM pattern:
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9 Separation of small and large claims 9.1 What is the problem with large claims (1/2)

Increments of incurred losses with individual Chain-Ladder development factors

included losses of all claims
i\k 0 1 2 3 4

0 296 7.5%−→ 22 -3.0%−→ -10 -4.4%−→ -14 -6.1%−→ -18
1 285 1.6%−→ 5 -5.9%−→ -17 -7.2%−→ -20
2 259 4.4%−→ 11 -8.0%−→ -22
3 277 5.9%−→ 16
4 268

(ever) large claims excluded
i\k 0 1 2 3 4

0 269 4.4%−→ 12 -3.8%−→ -11 -5.7%−→ -15 -7.9%−→ -20
1 274 1.2%−→ 3 -6.4%−→ -18 -7.5%−→ -19
2 250 4.5%−→ 11 -8.0%−→ -21
3 254 3.3%−→ 8
4 263

• We see a huge variability within the individual development factors at the first
development period.

* What are the reasons for this behaviour?
* Are the first two exceptional extremes?
* How often may they occur? Once in four years or once in 40 years?

• One possible reason is the behaviour of large claims.
• After eliminating all large claims it seems, that only the second observed development

factor of the first development period is still out of line.
• Accident period 4 still contains a claim which will become large in three years. But such

claims are excluded for accident periods 0 and 1! Therefore accident periods are not
comparable!

• The example is taken from [30], but only the first five calendar periods.
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9 Separation of small and large claims 9.1 What is the problem with large claims (2/2)

Aims of separating small and large claims

1. Get a smooth triangle of small claims.

2. Do not transfer too much reserves to the triangle of large claims.

Both aims contradict each other. Therefore, we have to find a good balance.
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What is the problem with large claims

Aim 1. could be easily fulfilled by defining all claims as large. And on the other hand aim 2.
could be easily fulfilled by defining all claims as small.



9 Separation of small and large claims 9.2 How to separate small from large claims (1/3)

General problems for separating large and small claims

• Should we compare payments or incurred losses with the threshold? In
most cases we should take incurred losses, because payments usually
exceed the threshold much later.

• The relations used, i.e. “≤ and >” or “< and ≥”.
• Completeness, i.e. no leftovers and no double counting.
• Consistency over time, i.e. are the separate developments of small and

large claims comparable over all accident periods?
• Systematic over- or underestimation. This often goes along with the

consistency over time.
• The choice of the threshold, in particular in cases where the separation

method is not continuous with respect to the threshold.
• Does the separation lead to better estimates of the reserves? Usually, we

would like to take large claims out in order to get a smooth but not trivial
triangle of small claims, which then can be analysed by standard methods.
Not trivial means that still a reasonable amount of reserves belong to small
claims.
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How to separate small from large claims

Terms like large and small claims are not consistently used in practice as well as in the literature.
For instance, you could find

large claim: • large loss
• catastrophic claim (or loss)
• exceptional claim (or loss)
• . . .

small claims: • small losses
• normal claims (or losses)
• attritional claims (or losses)
• . . .



9 Separation of small and large claims 9.2 How to separate small from large claims (2/3)

Discussion of various separation methods

In this lecture we want to discuss various methods to separate small and large
claims. Moreover, we want to highlight their advantages and drawbacks. In
order to do so we will keep life simple and focus on the following deterministic
portfolio (see Excel file “Large_and_Small.xlsx”):

• We fix a threshold of 400.
• The portfolio consists of three types of claims:

* 100 claims that never exceed the threshold (small claims).
* One claim that after some time exceeds the threshold, but will be finally

settled below it (large claim 1).
* One claim that exceeds the threshold (large claim 2).

We will illustrate each separation method at the example of large claim 1 and
discuss the advantages and drawbacks of the separation at the example of
Chain-Ladder projections of separate incurred triangles containing small and
large claims. Therefore, we denote by Xk the incurred loss of large claim 1 at
(development) time k.
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How to separate small from large claims

Using CLM is adequate, because we deal with a non random portfolio which is constant over
time.



9 Separation of small and large claims 9.2 How to separate small from large claims (3/3)

Deterministic development of the example portfolio

The development of payments and incurred losses are as follows:

incurred losses 0 1 2 3 4

small claim 10 15 18 18 18
large claim 1 300 700 800 350 350
large claim 2 500 800 900 950 950

paid to date 0 1 2 3 4

small claim 5 13 18 18 18
large claim 1 10 100 500 350 350
large claim 2 0 100 250 950 950

Therefore, we expect the following outcome:

AP paid incurred ultimate reserves IBN(e/y)R

0 3100 3100 3100 0 0
1 3100 3100 3100 0 0
2 2550 3500 3100 550 -400
3 1500 3000 3100 1600 100
4 510 1800 3100 2590 1300

total 10760 14500 15500 4740 1000
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How to separate small from large claims

cumulative incurred losses of 100 small claims
0 1 2 3 4

0 1000 1500 1800 1800 1800
1 1000 1500 1800 1800
2 1000 1500 1800
3 1000 1500
4 1000

cumulative incurred losses of large claim 1
0 1 2 3 4

0 300 700 800 350 350
1 300 700 800 350
2 300 700 800
3 300 700
4 300

cumulative incurred losses of large claim 2
0 1 2 3 4

0 500 800 900 950 950
1 500 800 900 950
2 500 800 900
3 500 800
4 500

cumulative incurred losses of all claims
0 1 2 3 4

0 1800 3000 3500 3100 3100
1 1800 3000 3500 3100
2 1800 3000 3500
3 1800 3000
4 1800

cumulative payments for 100 small claims
0 1 2 3 4

0 500 1300 1800 1800 1800
1 500 1300 1800 1800
2 500 1300 1800
3 500 1300
4 500

cumulative payments for large claim 1
0 1 2 3 4

0 10 100 500 350 350
1 10 100 500 350
2 10 100 500
3 10 100
4 10

cumulative payments for large claim 2
0 1 2 3 4

0 0 100 250 950 950
1 0 100 250 950
2 0 100 250
3 0 100
4 0

cumulative payments for all claims
0 1 2 3 4

0 510 1500 2550 3100 3100
1 510 1500 2550 3100
2 510 1500 2550
3 510 1500
4 510



9 Separation of small and large claims
9.2 How to separate small from large claims

9.2.1 Small and large by latest information (1/3)

Small and large by latest information: Classification

claim is large at time k ⇐⇒ XI > threshold

Behaviour of large claim 1:

threshold

0

200

400

600

800

0 1 2 3 4

incurred

threshold

0

200

400

600

800

0 1 2 3 4

paid small
large

• We see that there are no leftovers and no double counting (at any point in time each part is

either red or green).
bb

• The classification depends on the estimation date (the colour of each block may change if we
look at it one period later). Therefore, accident periods are not comparable, i.e. we don’t

have consistency over time.
bb bb

• The separation is not continuous with respect to the threshold.
bb
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How to separate small from large claims

First idea is to look at the latest information we have about each claim.



9 Separation of small and large claims
9.2 How to separate small from large claims

9.2.1 Small and large by latest information (2/3)

Small and large by latest information: Projection
threshold

0

200

400

600

800

0 1 2 3 4

incurred

threshold

0

200

400

600

800

0 1 2 3 4

paid small
large

small 0 1 2 3 4

0 1300 900 400 -450 0
1 1300 900 400 -450 0
2 1000 500 300 -312 0
3 1000 500 280 -308 0
4 1300 791 390 -429 0

f̂k 0.61 0.19 -0.17 0.00

large 0 1 2 3 4

0 500 300 100 50 0
1 500 300 100 50 0
2 800 700 200 94 0
3 800 700 194 94 0
4 500 385 114 55 0

f̂k 0.77 0.13 0.06 0.00

• We see again that accident periods are not comparable, i.e. we don’t have
consistency over time.

• We have huge amounts in late development periods within the small triangle,
which usually makes projections less stable. The reason for those amounts is
the reclassification of a large claim as small in development period 3.

bb bb
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Small and large by latest information: Projection
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• We see again that accident periods are not comparable, i.e. we don’t have
consistency over time.

• We have huge amounts in late development periods within the small triangle,
which usually makes projections less stable. The reason for those amounts is
the reclassification of a large claim as small in development period 3.
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9 Separation of small and large claims
9.2 How to separate small from large claims

9.2.1 Small and large by latest information (3/3)

Small and large by latest information: Results
threshold

0

200

400

600

800

0 1 2 3 4

incurred

threshold

0

200

400

600

800

0 1 2 3 4

paid small
large

expected results estimated results
AP ultimate reserves ultimate reserves small res. large res.

0 3100 0 3100 0 0 0
1 3100 0 3100 0 0 0
2 3100 550 3283 733 -312 1044
3 3100 1600 3259 1759 172 1588
4 3100 2590 3106 2596 1542 1054

total 15500 4740 15848 5088 1402 3686

• Under- and overestimation.
bb bb

• More than 75% of the reserves belong to the large triangle, which is usually less
stable.

bb bb

Conclusion (pros: 1
bb

versus cons: 1
bb

and 4
bb bb

)

Do not use the separation method ‘small and large by latest information’ for the estimation
of reserves.
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9 Separation of small and large claims
9.2 How to separate small from large claims

9.2.2 Ever and never large by latest information (1/3)

Ever and never large by latest information: Classification

claim is large at time k ⇐⇒ max
j≤I

(Xj) > threshold

Behaviour of large claim 1:

threshold

0

200

400

600

800

0 1 2 3 4

incurred

threshold

0

200

400

600

800

0 1 2 3 4

paid small
large

• We see that there are no leftovers and no double counting (at any point in time each part is

either red or green).
bb

• The classification depends on the estimation date (the colour of each block may change if we
look at it one period later). Therefore, accident periods are not comparable, i.e. we don’t

have consistency over time.
bb bb

• The separation is not continuous with respect to the threshold.
bb
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Ever and never large by latest information: Classification

claim is large at time k ⇐⇒ max
j≤I
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• We see that there are no leftovers and no double counting (at any point in time each part is

either red or green).
bb

• The classification depends on the estimation date (the colour of each block may change if we
look at it one period later). Therefore, accident periods are not comparable, i.e. we don’t

have consistency over time.
bb bb

• The separation is not continuous with respect to the threshold.
bb
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Separation of small and large claims

How to separate small from large claims

In order to get smoother triangles we have to avoid the reclassification of large claims as small.
One way to do so is to take all claims as large which have exceeded the threshold at least once.



9 Separation of small and large claims
9.2 How to separate small from large claims

9.2.2 Ever and never large by latest information (2/3)

Ever and never large by latest information: Projection
threshold

0

200

400

600

800

0 1 2 3 4

incurred

threshold

0

200

400

600

800

0 1 2 3 4

paid small
large

small 0 1 2 3 4

0 1000 500 300 0 0
1 1000 500 300 0 0
2 1000 500 300 0 0
3 1000 500 300 0 0
4 1300 650 390 0 0

f̂k 0.5 0.2 0.00 0.00

large 0 1 2 3 4

0 800 700 200 -400 0
1 800 700 200 -400 0
2 800 700 200 -400 0
3 800 700 200 -400 0
4 500 438 125 -250 0

f̂k 0.88 0.13 -0.24 0.00

• We see again that accident periods are not comparable, i.e. we don’t have
consistency over time.

• The triangle of small claims is much smoother.
bb bb
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Ever and never large by latest information: Projection
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• We see again that accident periods are not comparable, i.e. we don’t have
consistency over time.

• The triangle of small claims is much smoother.
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9 Separation of small and large claims
9.2 How to separate small from large claims

9.2.2 Ever and never large by latest information (3/3)

Ever and never large by latest information: Results
threshold

0

200

400
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800

0 1 2 3 4

incurred
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0

200

400

600

800

0 1 2 3 4

paid small
large

expected results estimated results
AP ultimate reserves ultimate reserves small res. large res.

0 3100 0 3100 0 0 0
1 3100 0 3100 0 0 0
2 3100 550 3100 550 0 550
3 3100 1600 3100 1600 500 1100
4 3100 2590 3153 2642 1830 813

total 15500 4740 15553 4792 2330 2463

• Under- and overestimation.
bb bb

• More than 50% of the reserves belong to the large triangle, which is usually less
stable.

bb bb

Conclusion (pros: 1
bb bb

and 1
bb

versus cons: 1
bb

and 3
bb bb

)

Do not use the separation method ‘ever and never large by latest information’ for the
estimation of reserves.
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Ever and never large by latest information: Results
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Conclusion (pros: 1
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9 Separation of small and large claims
9.2 How to separate small from large claims

9.2.3 Small and large now (1/3)

Small and large now: Classification

claim is large at time k ⇐⇒ Xk > threshold

Behaviour of large claim 1:

threshold

0

200

400

600

800

0 1 2 3 4

incurred

threshold

0

200

400

600

800

0 1 2 3 4

paid small
large

• We see that there are no leftovers and no double counting (each part is either red or

green).
bb

• The classification does not depend on the estimation date (the colour of each block does
not change if we look at it one period later). Therefore, accident periods are comparable,

i.e. we have consistency over time.
bb

• The separation is not continuous with respect to the threshold.
bb
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Small and large now: Classification

claim is large at time k ⇐⇒ Xk > threshold

Behaviour of large claim 1:
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• We see that there are no leftovers and no double counting (each part is either red or

green).
bb

• The classification does not depend on the estimation date (the colour of each block does
not change if we look at it one period later). Therefore, accident periods are comparable,

i.e. we have consistency over time.
bb

• The separation is not continuous with respect to the threshold.
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Separation of small and large claims

How to separate small from large claims

The separation method ‘ever and never large by latest information’ may stabilise the triangles.
But we still have inconsistent accident periods and therefore an under- or overestimation of
reserves. In order to get consistent accident periods we could consider a claim as large at time
k if it exceeds the threshold at this time.



9 Separation of small and large claims
9.2 How to separate small from large claims

9.2.3 Small and large now (2/3)

Small and large now: Projection
threshold

0

200

400

600

800

0 1 2 3 4

incurred

threshold

0

200

400

600

800

0 1 2 3 4

paid small
large

small 0 1 2 3 4

0 1300 200 300 350 0
1 1300 200 300 350 0
2 1300 200 300 350 0
3 1300 200 300 350 0
4 1300 200 300 350 0

f̂k 0.15 0.20 0.19 0.00

large 0 1 2 3 4

0 500 1000 200 -750 0
1 500 1000 200 -750 0
2 500 1000 200 -750 0
3 500 1000 200 -750 0
4 500 1000 200 -750 0

f̂k 2.00 0.13 -0.44 0.00

• We see again that accident periods are comparable, i.e. we have consistency
over time.

• We have huge amounts in late development periods, which usually makes
projections less stable. The reason for those amounts is the reclassification of a
large claim as small.

bb bb
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Small and large now: Projection
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• We see again that accident periods are comparable, i.e. we have consistency
over time.

• We have huge amounts in late development periods, which usually makes
projections less stable. The reason for those amounts is the reclassification of a
large claim as small.
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9 Separation of small and large claims
9.2 How to separate small from large claims

9.2.3 Small and large now (3/3)

Small and large now: Results
threshold

0

200

400

600

800

0 1 2 3 4

incurred

threshold

0

200

400

600

800

0 1 2 3 4

paid small
large

expected results estimated results
AP ultimate reserves ultimate reserves small res. large res.

0 3100 0 3100 0 0 0
1 3100 0 3100 0 0 0
2 3100 550 3100 550 350 200
3 3100 1600 3100 1600 850 750
4 3100 2590 3100 2590 1640 950

total 15500 4740 15500 4740 2840 1900

• No systematic under- or overestimation.
bb

• Still 40% of the reserves belong to the large triangle, which is usually less
stable.

bb

Conclusion (pros: 3
bb

versus cons: 2
bb

and 1
bb bb

)

Do not use the separation method ‘small and large now’ for the estimation of reserves.
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Small and large now: Results
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9 Separation of small and large claims
9.2 How to separate small from large claims

9.2.4 Ever and never large up to now (1/3)

Ever and never large up to now: Classification

claim is large at time k ⇐⇒ max
j≤k

(Xj) > threshold

Behaviour of large claim 1:

threshold

0

200

400

600

800

0 1 2 3 4

incurred

threshold

0

200

400

600

800

0 1 2 3 4

paid small
large

• We see that there are no leftovers and no double counting (each part is either red or green).
bb

• The classification does not depend on the estimation date (the colour of each block does not
change if we look at it one period later). Therefore, accident periods are comparable, i.e. we

have consistency over time.
bb

• The separation is not continuous with respect to the threshold.
bb
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Ever and never large up to now: Classification

claim is large at time k ⇐⇒ max
j≤k
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Behaviour of large claim 1:
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• We see that there are no leftovers and no double counting (each part is either red or green).
bb

• The classification does not depend on the estimation date (the colour of each block does not
change if we look at it one period later). Therefore, accident periods are comparable, i.e. we

have consistency over time.
bb

• The separation is not continuous with respect to the threshold.
bb
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Separation of small and large claims

How to separate small from large claims

Taking the separation method ‘large and small now’ we get consistent accident periods, but lose
some stability of the projection. Therefore, lets try to combine the ‘large and small now’ with
‘ever and never large by latest information’. That means we consider a claim as large at time k
if it exceeded the threshold at least once up to time k.



9 Separation of small and large claims
9.2 How to separate small from large claims

9.2.4 Ever and never large up to now (2/3)

Ever and never large up to now: Projection
threshold

0

200

400

600

800

0 1 2 3 4

incurred

threshold

0

200

400

600

800

0 1 2 3 4

paid small
large

small 0 1 2 3 4

0 1300 200 300 0 0
1 1300 200 300 0 0
2 1300 200 300 0 0
3 1300 200 300 0 0
4 1300 200 300 0 0

f̂k 0.15 0.20 0.00 0.00

large 0 1 2 3 4

0 500 1000 200 -400 0
1 500 1000 200 -400 0
2 500 1000 200 -400 0
3 500 1000 200 -400 0
4 500 1000 200 -400 0

f̂k 2.00 0.13 0.24 0.00

• We see again that accident periods are comparable, i.e. we have consistency
over time.

• The triangle of small claims is much smoother, in particular for late
development periods. But claims that will become large in the future may have
huge changes in incurred losses or payments during the time where they are still
small.

bb bb
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Ever and never large up to now: Projection
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• We see again that accident periods are comparable, i.e. we have consistency
over time.

• The triangle of small claims is much smoother, in particular for late
development periods. But claims that will become large in the future may have
huge changes in incurred losses or payments during the time where they are still
small.
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9 Separation of small and large claims
9.2 How to separate small from large claims

9.2.4 Ever and never large up to now (3/3)

Ever and never large up to now: Results
threshold

0

200

400

600

800

0 1 2 3 4

incurred

threshold

0

200

400

600

800

0 1 2 3 4

paid small
large

expected results estimated results
AP ultimate reserves ultimate reserves small res. large res.

0 3100 0 3100 0 0 0
1 3100 0 3100 0 0 0
2 3100 550 3100 550 0 550
3 3100 1600 3100 1600 500 1100
4 3100 2590 3100 2590 1290 1300

total 15500 4740 15500 4740 1790 2950

• No systematic under- or overestimation.
bb

• More than 60% of the reserves belong to the large triangle, which is usually less
stable.

bb bb

Conclusion (pros: 4
bb

versus cons: 2
bb

and 1
bb bb

)

If the threshold is chosen carefully, i.e. if not too much reserves are transferred to the
large triangle, we can use the separation method ‘ever and never large up to now’ for the
estimation of reserves.
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Conclusion (pros: 4
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If the threshold is chosen carefully, i.e. if not too much reserves are transferred to the
large triangle, we can use the separation method ‘ever and never large up to now’ for the
estimation of reserves.
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How to separate small from large claims

Claims that will become large in the future may have huge changes in incurred losses or payments
during the time where they are still small. Therefore, the triangle of small claims may not be so
stable as expected.
In order to avoid this behaviour we have to take smaller threshold, which on the other side will
transfer more reserves into the triangle of large claims.



9 Separation of small and large claims
9.2 How to separate small from large claims

9.2.5 Ever large up to now and never large by latest information (1/4)

Ever large up to now and never large by latest information

• If a claim has huge changes in payments or incurred losses before it
exceeds the threshold the first time, it can disturb the triangle of small
claims significantly.

• Therefore, ‘ever and never large up to now’ may not lead to smooth
enough triangles of small claims and we would like to take all claims out
that have exceeded the threshold at least once, i.e. we would like to use
‘never large by latest information’.

• But as we have seen ‘ever and never large by latest information’ leads to
not comparable accident periods and over- or underestimation of
reserves.

• A compromise could be to put all claim that ‘have never been large by
latest information’ into the triangle of small claims and all claims that
‘were ever large up to now’ into the triangle of large claims.

• Although this leads to not comparable accident periods within the
triangle of small claims as well as leftovers, the corresponding
systematic overestimation can often be controlled.
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Ever large up to now and never large by latest information

• If a claim has huge changes in payments or incurred losses before it
exceeds the threshold the first time, it can disturb the triangle of small
claims significantly.

• Therefore, ‘ever and never large up to now’ may not lead to smooth
enough triangles of small claims and we would like to take all claims out
that have exceeded the threshold at least once, i.e. we would like to use
‘never large by latest information’.

• But as we have seen ‘ever and never large by latest information’ leads to
not comparable accident periods and over- or underestimation of
reserves.

• A compromise could be to put all claim that ‘have never been large by
latest information’ into the triangle of small claims and all claims that
‘were ever large up to now’ into the triangle of large claims.

• Although this leads to not comparable accident periods within the
triangle of small claims as well as leftovers, the corresponding
systematic overestimation can often be controlled.
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Separation of small and large claims

How to separate small from large claims

The separation method ‘ever and never large up to now’, which combined the two methods

• ever and never large by latest information
• small and large now

has good properties but may still leave a lot of reserves within the triangle of large claims. On
way to get around this is to take the following method.



9 Separation of small and large claims
9.2 How to separate small from large claims

9.2.5 Ever large up to now and never large by latest information (2/4)

Ever large up to now and never large by latest information: Classification

claim is large at time k ⇐⇒ max
j≤k

(Xj) > threshold

claim is small at time k ⇐⇒ max
j≤I

(Xj) ≤ threshold

Behaviour of large claim 1:

threshold
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200
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incurred

threshold

0

200

400

600

800

0 1 2 3 4

paid small
large

• We have leftovers: Large claims are not counted until they get large for the first time.
bb

• The classification of small claims depends on the estimation date (the colour of each block may
change if we look at it one period later). Therefore, accident periods are not comparable, i.e. we

don’t have consistency over time. The large triangle is consistent over time.
bb

• The separation is not continuous with respect to the threshold.
bb
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don’t have consistency over time. The large triangle is consistent over time.
bb

• The separation is not continuous with respect to the threshold.
bb
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9 Separation of small and large claims
9.2 How to separate small from large claims

9.2.5 Ever large up to now and never large by latest information (3/4)

Ever large up to now and never large by latest information:
Projection

threshold

0

200

400

600

800

0 1 2 3 4

incurred

threshold

0

200

400

600

800

0 1 2 3 4

paid small
large

small 0 1 2 3 4

0 1000 500 300 0 0
1 1000 500 300 0 0
2 1000 500 300 0 0
3 1000 500 300 0 0
4 1300 650 390 0 0

f̂k 0.5 0.2 0.00 0.00

large 0 1 2 3 4

0 500 1000 200 -400 0
1 500 1000 200 -400 0
2 500 1000 200 -400 0
3 500 1000 200 -400 0
4 500 1000 200 -400 0

f̂k 2.00 0.13 0.24 0.00

• We see again that accident periods of small claims are not comparable, i.e. we
don’t have consistency over time.

• The inconsistency over time leads to a systematic overestimation, because the
claims that are not yet large are projected within the small triangle as IBNeR and
within the large triangle as IBNyR. Therefore, the overestimation equals

540 = 300︸︷︷︸
size at time k = 0

· 1.5 · 1.2︸ ︷︷ ︸
cumulative development factors of small claims

• The triangle of small claims is much smoother.
bb bb
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• We see again that accident periods of small claims are not comparable, i.e. we
don’t have consistency over time.

• The inconsistency over time leads to a systematic overestimation, because the
claims that are not yet large are projected within the small triangle as IBNeR and
within the large triangle as IBNyR. Therefore, the overestimation equals

540 = 300︸︷︷︸
size at time k = 0
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9 Separation of small and large claims
9.2 How to separate small from large claims

9.2.5 Ever large up to now and never large by latest information (4/4)

Ever large up to now and never large by latest information:
Results

threshold

0

200

400

600

800

0 1 2 3 4

incurred

threshold

0

200

400

600

800

0 1 2 3 4

paid small
large

expected results estimated results
AP ultimate reserves ultimate reserves small res. large res.

0 3100 0 3100 0 0 0
1 3100 0 3100 0 0 0
2 3100 550 3100 550 0 550
3 3100 1600 3100 1600 500 1100
4 3100 2590 3640 3130 1830 1300

total 15500 4740 16040 5280 2330 2950

• Systematic overestimation, which often can be controlled.
bb bb

• More than 60% of the reserves belong to the large triangle, which is usually less stable.
But, since the small triangle is much more stable, we could increase the threshold and
therefore transfer more reserves to the small triangle.

bb bb

Conclusion (pros: 1
bb bb

and 2
bb

versus cons: 5
bb

)

If we control the systematic overestimation the separation method ‘ever large up to now and
never large by latest information’ can be used.
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therefore transfer more reserves to the small triangle.
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9 Separation of small and large claims
9.2 How to separate small from large claims

9.2.6 Attritional and excess (1/3)

Attritional and excess: Classification

attritional part at time k := min(Xk, threshold)

excess part at time k := Xk −min(Xk, threshold)

Behaviour of large claim 1:

threshold

0

200

400

600

800

0 1 2 3 4

incurred

threshold

0

200

400

600

800

0 1 2 3 4

paid attritional
excess

• We see that there are no leftovers and no double counting (each part is either red or green).
bb

• The classification does not depend on the estimation date (the colour of each block does not
change if we look at it one period later). Therefore, accident periods are comparable, i.e. we

have consistency over time.
bb

• The separation is continuous with respect to the threshold.
bb
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Another method of separation is to split up large claims into a normal (attritional) and an
exceptional (excess) part.



9 Separation of small and large claims
9.2 How to separate small from large claims

9.2.6 Attritional and excess (2/3)

Attritional and excess: Projection
threshold

0

200

400

600

800

0 1 2 3 4

incurred

threshold

0

200

400

600

800

0 1 2 3 4

paid attritional
excess

attritional 0 1 2 3 4

0 1700 600 300 -50 0
1 1700 600 300 -50 0
2 1700 600 300 -50 0
3 1700 600 300 -50 0
4 1700 600 300 -50 0

f̂k 0.35 0.13 -0.02 0.00

excess 0 1 2 3 4

0 100 600 200 -350 0
1 100 600 200 -350 0
2 100 600 200 -350 0
3 100 600 200 -350 0
4 100 600 200 -350 0

f̂k 6.00 0.29 -0.39 0.00

• We see again that accident periods are comparable, i.e. we have consistency over time.
• The triangle of small claims is much smoother, in particular for late development periods.

But claims that will become large in the future may have huge changes in incurred losses
or payments during the time where they are still small.

bb bb

• The triangle of large claims shows huge development. Therefore, most estimation methods
will not work.

bb

• One method that often works for the excess part is ECLRM with additional virtual case
reserves Radd

i,k for not yet large claims:

Radd
i,k := (N̂i,J −Ni,k)︸ ︷︷ ︸

number of claims that will become large after time k

· (m̂i,j︸︷︷︸
mean ultimate of a large claim

−threshold)
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• We see again that accident periods are comparable, i.e. we have consistency over time.
• The triangle of small claims is much smoother, in particular for late development periods.

But claims that will become large in the future may have huge changes in incurred losses
or payments during the time where they are still small.

bb bb

• The triangle of large claims shows huge development. Therefore, most estimation methods
will not work.

bb

• One method that often works for the excess part is ECLRM with additional virtual case
reserves Radd

i,k for not yet large claims:

Radd
i,k := (N̂i,J −Ni,k)︸ ︷︷ ︸

number of claims that will become large after time k

· (m̂i,j︸︷︷︸
mean ultimate of a large claim

−threshold)

2
0
2
1
-0

4
-2

6

Stochastic Reserving

Separation of small and large claims

How to separate small from large claims



9 Separation of small and large claims
9.2 How to separate small from large claims

9.2.6 Attritional and excess (3/3)

Attritional and excess: Results
threshold

0

200

400

600

800

0 1 2 3 4

incurred

threshold

0

200

400

600

800

0 1 2 3 4

paid attritional
excess

expected results estimated results
AP ultimate reserves ultimate reserves attritional res. excess res.

0 3100 0 3100 0 0 0
1 3100 0 3100 0 0 0
2 3100 550 3100 550 100 450
3 3100 1600 3100 1600 1050 550
4 3100 2590 3100 2590 2040 550

total 15500 4740 15500 4740 3190 1550

• No systematic under- or overestimation.
bb

• Less than 33% of the reserves belong to the large triangle, which is usually less
stable.

bb

Conclusion (pros: 6
bb

versus cons: 2
bb

)

Usually, I prefer the separation method ‘attritional and excess’. But we have to be very
careful with the projection of the excess part.
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• No systematic under- or overestimation.
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• Less than 33% of the reserves belong to the large triangle, which is usually less
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Conclusion (pros: 6
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)
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careful with the projection of the excess part.
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9 Separation of small and large claims
9.2 How to separate small from large claims

9.2.7 Separation methods summary

name
definition of large
(th:=threshold)

leftovers
or

double

consistent
accident
periods

continuous
in

threshold

stable
projections

under- or
overes-
timation

huge re-
serves for
large claims

large and small
by latest

information

large at time k
⇔ XI >th

bb bb bb bb bb bb bb bb bb bb

ever and never
large by latest
information

large at time k
⇔

maxj≤I(Xj) >th

bb bb bb bb bb bb bb bb bb bb

small and large
now

large at time k
⇔ Xk >th

bb bb bb bb bb bb bb

ever and never
large up to

now

large at time k
⇔

maxj≤k(Xj) >th

bb bb bb bb bb bb bb bb

ever large up
to now and
never large
by latest

information

large at time k
⇔

maxj≤k(Xj) >th
small at time k

⇔
maxj≤I(Xj) ≤th

bb bb bb bb bb bb bb bb bb

attritional and
excess

attritional part
:= min(Xk, th)
excess part :=

Xk−min(Xk, th)

bb bb bb bb bb bb bb bb bb
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name
definition of large
(th:=threshold)

leftovers
or

double
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periods

continuous
in

threshold
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large claims

large and small
by latest
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large at time k
⇔ XI >th

bb bb bb bb bb bb bb bb bb bb
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large by latest
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large at time k
⇔

maxj≤I(Xj) >th

bb bb bb bb bb bb bb bb bb bb

small and large
now

large at time k
⇔ Xk >th

bb bb bb bb bb bb bb

ever and never
large up to

now

large at time k
⇔

maxj≤k(Xj) >th

bb bb bb bb bb bb bb bb

ever large up
to now and
never large
by latest

information

large at time k
⇔

maxj≤k(Xj) >th
small at time k

⇔
maxj≤I(Xj) ≤th

bb bb bb bb bb bb bb bb bb

attritional and
excess

attritional part
:= min(Xk, th)
excess part :=

Xk−min(Xk, th)

bb bb bb bb bb bb bb bb bb
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How to separate small from large claims

The motivation story (from up to down of the table):

• first idea is to take latest information
• try to get smoother triangles
• try to get consistent accident periods
• try to combine the last two
• try to reduce the amount of reserves within the triangle of large claims
• split up each claims in a ‘good’ and a ‘bad’ part

I prefer the last two separation methods. But under special circumstances, for instance lack of
data, it is possible that even the first one is the most suitable method.



9 Separation of small and large claims 9.3 Estimation methods for small and large claims

Estimation methods for small (attritional) claims

• There are no general restrictions to the reserving methods used for small (or
attritional) claims.

• Depending on the separation method it might be better to use the paid triangle
instead of the incurred triangle, in particular if early development periods are
disturbed by future large claims, which usually does not affect the payments as much
as the incurred losses.

Estimation methods for large (excess) claims

• Often we have to be very careful with standard methods like CLM and ECLRM, in
particular, if we don’t have any large claim in early development periods.

• It is not unusual that the triangles of large claims are so unstable that we have to fall
back on expert judgement in order to estimate the reserves.

Estimate overall uncertainties

• One way to estimate uncertainties is to couple the estimations of small and large
claims, for instance by LSRMs.

• In practice, if we use expert judgement, it is often better to estimate uncertainties on
an aggregated level.
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Estimation methods for small (attritional) claims

• There are no general restrictions to the reserving methods used for small (or
attritional) claims.

• Depending on the separation method it might be better to use the paid triangle
instead of the incurred triangle, in particular if early development periods are
disturbed by future large claims, which usually does not affect the payments as much
as the incurred losses.

Estimation methods for large (excess) claims

• Often we have to be very careful with standard methods like CLM and ECLRM, in
particular, if we don’t have any large claim in early development periods.

• It is not unusual that the triangles of large claims are so unstable that we have to fall
back on expert judgement in order to estimate the reserves.

Estimate overall uncertainties

• One way to estimate uncertainties is to couple the estimations of small and large
claims, for instance by LSRMs.

• In practice, if we use expert judgement, it is often better to estimate uncertainties on
an aggregated level.
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9 Separation of small and large claims 9.4 Modelling the transition from small to large (1/4)

Bifurcation of large and small losses: Basic idea

The separation methods we have seen up to now do not look at stochastic
transition of claims from the triangle of small claims to the one of large claims.
We now want to try to model these transitions and will follow the notation
of U. Riegel [30]. The basic idea is to look separately at:

• the development of small claims conditioned given they are still small
at the next period.

• the development of large claims without claims that just exceed the
threshold the first time.

• the number of new large claims and their mean expected loss at the
time they get large.
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9 Separation of small and large claims 9.4 Modelling the transition from small to large (2/4)

Bifurcation of large and small losses: Notations

• Pi,k and Ii,k denote the total cumulative payments and incurred losses of all
claims of accident period i at development period k.

• We call a claim large at time k if its incurred loss did exceed the threshold at
least once up to time k (ever large up to now).

• With Ni,k we denote the number of large claims of accident period i up to
development period k.

• We denote by XI
i,ν,k and XP

i,ν,k the incurred loss and the cumulative
payments, respectively, of the ν-th large claim of accident period i at
development periods k.

• L
(j)
i,k :=

∑Ni,j

ν=1 X
I
i,ν,k denotes the incurred losses at development period k of

all up to time j large claims of accident period i.

• A
(j)
i,k := Pi,k −

∑Ni,j

ν=1 X
P
i,ν,k are the cumulative payments at development

period k of all claims that are still small at time j.
• The information of incurred losses and payments of small and large claims as

well as the individual information of already large claims is denoted by

Bi,k := σ
{
Pi,j, Ii,j, X

P
i,ν,j, X

I
i,ν,j : j ≤ k, ν ≤ Ni,k

}
.
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9 Separation of small and large claims 9.4 Modelling the transition from small to large (3/4)

Bifurcation of large and small losses: Model (1 of 2)

1. Accident periods as well as individual claims are independent.
2. The number of large claims develop according to CLM, i.e.

E[Ni,k+1|Bi,k]= nkNi,k.

3. The cumulative payments of small claims as long as they stay small develop
according to CLM, i.e.

E
[
A

(k+1)
i,k+1

∣∣∣Bi,k, A
(k+1)
i,k

]
= akA

(k+1)
i,k .

4. The incurred losses of already large claims develop according to CLM, i.e.

E
[
L
(k)
i,k+1

∣∣∣Bi,k

]
= lkL

(k)
i,k .

5. Claims that just became large have a mean incurred loss of xIk+1 and had mean

cumulative payments xPk just before they got large, i.e.

E
[
XI

i,ν,k+1

∣∣Bi,k

]
= xIk+1 and E

[
XP

i,ν,k

∣∣Bi,k

]
= xPk , for Ni,k < ν ≤ Ni,k+1.

6. Assumptions on covariances.
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• We could use other LSRMs instead of CLM. But if so we may have to adapt the
covariance conditions and the calculations may become even more complicated.

• The use of cumulative payments for the small claims is due to the German marked,
where, because of the local statutory regulations (HGB), the history of incurred losses is
often disturbed.

• Except for the additional conditioning for small claims and the different upper index for
large claims the formulas are almost the same as for LSRMs.



9 Separation of small and large claims 9.4 Modelling the transition from small to large (4/4)

Bifurcation of large and small losses: Model (2 of 2)

We can rewrite the expectations as follows:

2. E[Ni,k+1|Bi,k]= nkNi,k.

3. E
[
A

(k+1)
i,k+1

∣∣∣Bi,k

]
= akA

(k)
i,k − ak(nk − 1)xPk Ni,k.︸ ︷︷ ︸

large claims right before becoming large

4. E
[
L
(k+1)
i,k+1

∣∣∣Bi,k

]
= lkL

(k)
i,k + (nk − 1)xIk+1Ni,k.︸ ︷︷ ︸

claims that just have become large

These formulas look like a LSRM but with up to two development factors per
claim property.
Therefore, the same techniques will work and we can derive estimators for
the ultimate outcome and for uncertainties.
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Therefore, the same techniques will work and we can derive estimators for
the ultimate outcome and for uncertainties.2
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2. is unchanged.

3. E
[
A

(k+1)
i,k+1

∣∣∣Bi,k
]
= E

[
E
[
A

(k+1)
i,k+1

∣∣∣Bi,k, A(k+1)
k

]∣∣∣Bi,k
]
= akE

[
A

(k+1)
k

∣∣∣Bi,k
]

= ak


A

(k)
i,k − E




Ni,k+1∑

ν=Ni,k+1

XP
i,ν,k

∣∣∣∣∣∣
Bi,k






= ak

(
A

(k)
i,k − E

[
Ni,k+1 −Ni,k

∣∣Bi,k
]
E
[
XP

i,Ni,k+1,k

∣∣∣Bi,k
])

= akA
(k)
i,k − ak(nk − 1)xP

k Ni,k

4. E
[
L
(k+1)
i,k+1

∣∣∣Bi,k
]
= E



L(k)
i,k+1 +

Ni,k+1∑

ν=Ni,k+1

XI
i,ν,k+1

∣∣∣∣∣∣
Bi,k





= lkL
(k)
i,k + E

[
Ni,k+1 −Ni,k

∣∣Bi,k
]
E
[
XI

i,Ni,k+1,k

∣∣∣Bi,k
]

= lkL
(k)
i,k + (nk − 1)xI

kNi,k
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10 Examples & Trail Exam 10.1 Examples using LSRMTools

Preparation (only if Covid-19 allow for it)

Please bring your laptop with installed LSRMTools.

If you have problems to get the LSRMTools running
bb

be 30 minutes earlier and you will be helped.
bb

(only if Covid-19 allow
for it)
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10 Examples & Trail Exam 10.2 Trail exams

Train exam

If someone of you is brave enough we can make a trail

examination.
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