René Dahms

ETH Zurich, Spring 2021

Last update: 26 April 2021

Stochastic Reserving

René Dahms

ETH Zurich, Spring 2021

Last update: 26 April 2021

1 Basics of claim reserving

- 1.1 Introduction and motivation
- 1.2 Basic terms and definitions
- 1.3 Literature and software

2 Chain-Ladder-Method (CLM)

- 2.1 How does the Chain-Ladder method work
- 2.2 Future development
- 2.3 Validation and examples (part 1 of 3)
- 2.4 Ultimate uncertainty
- 2.5 Validation and examples (part 2 of 3)
- 2.6 Solvency uncertainty
- 2.7 Validation and examples (part 3 of 3)
- 2.8 Literature

3 Other classical reserving methods

- 3.1 Complementary-Loss-Ration method (CLRM)
- 3.2 Bornhuetter-Ferguson method (BFM)
- 3.3 Benktander-Hovinen method (BHM)
- 3.4 Cape-Cod method
- 3.5 Extended-Complementary-Loss-Ration method (ECLRM)
- 3.6 Other methods
- 3.7 Literature

L______Table of contents

1 Basics of claim reserving 1.1 Introduction and motivation

1.2 Basic terms and definitions 1.3 Literature and software

2 Chain-Ladder-Method (CLM) 21 How does the Chain-Ladder method work

2.2 Future development

- 2.2 Future development 2.3 Validation and examples (part 1 of 3) 2.4 Ultimate uncertainty
- 2.5 Validation and examples (part 2 of 3) 2.6 Solvency uncertainty 2.7 Validation and examples (part 3 of 3)

2.8 Literature

- 3 Other classical reserving methods
 3 Other classical reserving methods
 11 Complementary Lose Relation method (LEMM)
 31 Decksmerk Vesicem method (201M)
 34 Open Cod method
 35 Disknet Complementary Lose-Ratios method (ECLIMM)
 36 Other methods
 31 Claration

4 Linear-Stochastic-Reserving methods

- 4.1 How do Linear-Stochastic-Reserving methods (LSRM) work
- 4.2 Future development
- 4.3 Ultimate uncertainty
- 4.4 Solvency uncertainty
- 4.5 Examples
- 4.6 Estimation of correlation of reserving Risks
- 4.7 Literature

5 Poisson-Model

- 5.1 Modelling the number of reported claims
- 5.2 Projection of the future outcome
- 5.3 Ultimate uncertainty of the Poisson-Model
- 5.4 Generalised linear models and reserving
- 5.5 Literature

L_____Table of contents

4 Linear-Stochastic-Reserving methods 4.1 How do Linear-Stochastic-Reserving methods (LSRM) work 4.1 How do Linear-Stechastic-Reserving method 4.2 Future development 4.3 Ultimate uncertainty 4.4 Solverzy uncertainty 4.5 Examples 4.0 Estimation of correlation of reserving Risks 4.7 Literature

5 Poisson-Model

5 Poisson-Model 5.1 Modeling the number of reported claims 5.2 Projection of the future outcome 5.3 Ultimate uncertainty of the Poisson-Model 5.4 Generalised linear models and reserving 5.5 Literature

6 Bootstrap for CLM

- 6.1 Motivation
- 6.2 Chain-Ladder method and bootstrapping, variant 1
- 6.3 Bootstrapping Chain-Ladder step by step, variant 1
- 6.4 Chain-Ladder method and bootstrapping, variant 2
- 6.5 Bootstrapping Chain-Ladder step by step, variant 2
- 6.6 Possible problems with bootstrapping
- 6.7 Parametric vs. non-parametric bootstrap
- 6.8 Literature

7 Mid year reserving

- 7.1 Problem of mid-year reserving
- 7.2 Methods for mid-year reserving
- 7.3 Conclusion
- 7.4 Literature

8 CLM: Bayesian & credibility approach

- 8.1 A Bayesian approach to the Chain-Ladder method
- 8.2 A credibility approach to the Chain-Ladder method
- 8.3 Example
- 8.4 Literature

L______Table of contents

6 Bootstrap for CLM

6 Bootstrap for CLM 6.1 Motivation 6.2 Chain-Ladder methods and bootstrapping, wreinet 1 6.2 Chain-Ladder method and bootstrapping, wreinet 2 6.4 Chain-Ladder method and bootstrapping, wreinet 2 6.5 Dootstrapping Chain-Ladder step by rise, variant 2 6.5 Passible problems with bootstrapping 6.7 Parametric vs. non-parametric bootstrap 6.3 Literature

7 Mid year reserving 7.1 Problem of mid-year reserving 7.2 Methods for mid-year reserving

8 CLM: Bayesian & credibility approach

8 LLM: Bayislan & credibility approach 8.1 A Bayesian approach to the Chain-Ladder method 8.2 A credibility approach to the Chain-Ladder method 8.3 Example 8.4 Literature

9 Separation of small and large claims

- 9.1 What is the problem with large claims
- 9.2 How to separate small from large claims
- 9.3 Estimation methods for small and large claims
- 9.4 Modelling the transition from small to large
- 9.5 Literature

10 Examples & Trail Exam

- 10.1 Examples using LSRMTools
- 10.2 Trail exams

L_____Table of contents

9 Separation of small and large claims 9.1 What is the problem with large claims 9.2 Hose to assurate small faces large claims 9.3 Estimation methods for small and large claims 9.4 Modeling the transition from small to large 9.5 Literature

10 Examples & Trail Exam 10.1 Examples using LSRMTools 10.2 Trail exams Stochastic Reserving Lecture 1 Introduction

René Dahms

ETH Zurich, Spring 2021

24 February 2021 (Last update: 26 April 2021)

Stochastic Reserving Lecture 1 Introduction

> René Dahms ETH Zurich, Spring 2022

24 February 2021 (Last update: 26 April 2021)

1 Basics of claim reserving

1.1 Introduction and motivation

- 1.1.1 General insurance
- 1.1.2 Claim reserves
- 1.1.3 Relevance of claim reserves
- 1.1.4 Purposes of (stochastic) loss reserving

1.2 Basic terms and definitions

- 1.2.1 Terminology
- 1.2.2 Triangles (trapezoids)
- 1.2.3 Stochastic reserving and Best Estimate
- 1.3 Literature and software

Lecture 1: Table of contents

Basics of claim reserving
 It Introduction and metionian
 It is function interaction
 Color memory
 It is functioned of claim reserves
 It is functioned of the reserves
 It is functioned of the reserves
 It is functioned of the reserves
 It is functioned on the reserves

All starts with:

An insured (policyholder) pays some premium to an insurer in order to **transfer** the (more or less directly related) **significant monetary consequences** (loss) of a **randomly** incurring **future event** (risk).

Examples 1.1

insurance	insured loss
Motor Liability (MTPL)	loss to a 3 rd person caused by a self-inflicted car accident
General Liability (GL)	loss to a 3^{rd} person caused by the policyholder, except car accidents
Fire (Property)	policyholders loss to household and property caused by fire
Health	policyholders loss caused by illness
Pension	policyholders loss, because of a long life
Life	'another persons loss' caused by the death of the insured

Life insurance

The insured risk depends directly on the life of the insured.

General (or Non-Life or P&C for property and casualty) insurance

The insured risk does not depends directly on the life of the insured.

Important words of the definition:

- transfer: therefore no self-insurance
- random future: not (completely) known, random in timing or amount
- loss: no lotteries and no betting
- significant loss: therefore no service contract

Reinsurance, Health and Accident

There are types of insurances which have components of both, Life and General insurance.

The classification depends on the regulator, the company and the accounting standard.

Switzerland

Life (and Pensions), Non-Life (General insurance or P&C), Health and Reinsurance

IFRS 17

An insurance contract is

'a contract under which one party (the issuer) accepts **significant** insurance risk from another party (the policyholder) by agreeing to **compensate the policyholder** if a specified **uncertain future** event (the insured event) **adversely affects** the policyholder'

Basics of claim reserving

There are types of insurances which have components of both. Life and General insurance. The classification depends on the regulator, the company and the accounting standard.

Life (and Pensions), Non-Life (General insurance or P&C), Health and Reinsurance

An insurance contract is

'a contract under which one party (the issuer) accepts significant insurance risk from another party (the policyholder) by agreeing to compensate the policyholder if a specified uncertain future event (the insured event) adversely affects the policyholder

Problem 1.2

At the end of a business year an insurer usually knows all its contracts but not all the corresponding claims and ultimate losses. Reasons may be:

- 1. Not yet materialised or detected claims. For instance, product liability insurance.
- 2. Not yet reported claims. For instance, time delay, because of holidays.
- 3. Unknown future payments for not yet finally settled claims.

©R. Dahms (ETH Zurich, Spring 2021)

• Strictly taken: From the point in time where the insurance contract is in force (or the insurance company has send a binding offer), the insurer has to account for all potential claims. The precise rules for this depend on regulation and accounting standard.

Payment pattern

depend strongly on the underlying risk (exposure). Therefore, in practice an actuary not only have to look at number based statistics, but also have to understand the type of the underlying exposure.

(2/2)

- -Basics of claim reserving
 - -Introduction and motivation

- red may be Motor Hull
- blue is typical for Garantie Décennale in France or Spain
- gray may be madatory accident insurance in Switzerland

Claim reserves are often the most important part of the balance sheet of a general insurer. Moreover, a small changes in the estimate of claim reserves may make the difference between an annual profit or loss.

balance sheet		Some examples*:					
	equity	insurer	equity	gain	reserves	gain reserves	
	other liabilities	Zurich	\$ 21.0	\$ 3.0	\$ 82.7	3.6 %	
assets	claim reserves	Allianz	€ 31.4	€ 3.5	€ 78.0	4.5 %	
		Swiss Re	\$ 11.7	\$ 3.0	\$ 49.5	6.1%	
		Munich Re	€ 14.1	€ 2.6	€ 45.0	5.8%	
		*Amounts (in billion) representing only the general insurance part of the company and are taken from the annual reports of 2012. The amounts are not entirely comparable, because the separation of the general insurance business from the other parts may be different from company to company.					

2021-04-26

- Basics of claim reserving

Claim reserves are often the most important part of the balance sheet of a general insurer. Moreover, a small changes in the estimate of claim reserves may make the difference between an annual profit or loss.

balance sheet		Some examples*:					
<u> </u>	equity	insurer	equity	gain	reserves	gain reserves	
	other Subdition	Zurich	\$ 21.0	\$ 3.0	\$ 82.7	3.6%	
		Allianz	€ 31.4	€ 3.5	€ 78.0	4.5%	
assets	staim reserves	Swiss Re	\$ 11.7	\$ 3.0	\$ 49.5	6.1%	
		Munich Re	€ 14.1	€ 2.6	€ 45.0	5.8%	
		Advances (in billion) representing only the general inservane part of the sumpary and are sidner from the annual myoris of 2023. The annuates are on entropy comparish, brancas the surport of the file general inservance business. Business from the atter parts may be different from company to company.					

Example: Converium AG

Converium AG was one of the largest reinsurers in the world. At 20^{th} July 2004 the company issued a profit warning caused by a strengthening of the claim reserves of the US general liability portfolio by \$400 million.

Consequences:

- loss of 35 % of equity
- an immediate deep plunge of over 50 % (about 70 % until October 2004) of the stock price
- rating downgrade from A to BBB+ by Standard & Poors
- unfriendly takeover by SCOR in 2007 (although Converium did make profit again and got its A rating back)

-Basics of claim reserving

-Introduction and motivation

Example: Converium AG

Converium AG was one of the largest reinsures in the world. At 20^{10} July 2004 the company issued a profit warning caused by a strengthening of the claim reserves of the US general liability portfolio by \$400 million. Consequences:

- loss of 35% of equity
- an immediate deep plunge of over 50 % (about 70 % until October 2004) of the stock price
- rating downgrade from A to BBB+ by Standard & Poors
- unfriendly takeover by SCOR in 2007 (although Converium did make profit again and got its A rating back)

Loss reserving

is an integral part of many processes. For instance:

- annual closings
- pricing
- forecasts
- measuring risks, like under IFRS 17, Solvency II and the Swiss Solvency Test (SST)
- modelling the value of customers

• ...

The resulting estimates for claim reserves depend on its purpose. For instance, loss reserving in the context of annual closings deals with the past, whereas in the context of pricing we are interested in the future. Moreover, in pricing one usually looks at a more detailed split in subportfolios than during closings.

- Basics of claim reserving

- is an integral part of many processes. For instance
- annual closings
- pricing
- forecasts
- · measuring risks, like under IFRS 17, Solvency II and the Swiss Solvency Test (SST)
- · modelling the value of customers

The resulting estimates for claim reserves depend on its purpose. For instance, loss reserving in the context of annual closings deals with the past, whereas in the context of pricing we are interested in the future. Moreover, in pricing one usually looks at a more detailed split in subportfolios than during closings.

Definition 1.3 (Case reserves or outstanding)

Case reserves are estimates of the (undiscounted) sum of all future payments made by claim managers on a claim by claim basis.

Definition 1.4 (Claim reserves or (technical) provisions)

Claim reserves are the estimates of the (undiscounted) sum of all future payments for claims (of a portfolio) that have already happened.

claim reserves = case reserves + IBNR

Definition 1.5 (Incurred but not yet reported (IBNyR) reserves)

IBNyR reserves are the part of the claim reserves that corresponds to not yet reported claims.

Definition 1.6 (Incurred but not enough reserved (IBNeR) reserves)

IBNeR reserves are the difference between the claim reserves for claims known to the insurer and the corresponding case reserves.

Definition 1.7 (IBNR or IBN(e/y)R)

 $\mathsf{IBNR}\ \mathsf{reserves} = \mathsf{IBNeR} + \mathsf{IBNyR}$

©R. Dahms (ETH Zurich, Spring 2021)

Stochastic Reserving: Lecture 1 24 Feb 2021 8 / 240

Provided we take a positive sign for claim reserves IBNyR are non-negative, whereas IBNeR may be positive or negative.

Usually, we will not look at discounted reserves, because discounting (and inflation) disturbs the development of claims and is dealt with separately, i.e. first get undiscounted figures and corresponding payment patterns and then discount.

Remarks 1.10

- Payments are often called paid (losses).
- The naming is not consistent within the actuarial world. For instance, actuaries often understand under IBNR only the IBNyR part.
- Precise definitions depend on the accounting standard. For instance, under IFRS 17 one has to discount the cash flows and one has to take the inception date (or the begin of the coverage period) instead of the accident date.

2021-04-26

—Basics of claim reserving

-Basic terms and definitions

Main objects

of reserving are claim development triangles (trapezoids), containing the development of payments (or other claim properties) per accident period for a whole portfolio.

- We assume that $I \ge J$. If I = J we have a triangle and otherwise a trapezoid, but for simplicity we will call it triangle anyway.
- rows = accident (or origin) periods
- columns = development periods
- diagonals = calendar periods
- $S_{i,k}$ are the payments during development period k for claims happened in accident period i. If more than one portfolio is involved we add an additional upper index m to indicate the triangle.
- Payments could be replaced by other claim properties like
 - changes of reported amounts (= incremental incurred)
 - number of newly reported claims
 - payments on just getting large claims

* . . .

Some actuaries look at those numbers from a different angel:

- accident periods or development periods decreasing instead of increasing
- permutation of accident, development and calendar periods

Moreover, the different kinds of periods have not to be based on the same single unit, like months, quarters or years. For instance, sometimes one looks at accident years and development months.

Reserving means

to project the future of the triangles in order to get full rectangles.

• \mathcal{D}^n is the σ -algebra of all information up to calender period n:

 $\mathcal{D}^{n} := \sigma \left(S^{m}_{i,k} \colon 0 \leq m \leq M, \, 0 \leq i \leq I, \, 0 \leq k \leq J \land (n-i) \right)$

- \mathcal{D}^I is the known part of the triangles.
- The unknown future of the triangles is:

 $\left\{ S^m_{i,k} \colon 0 \le m \le M, \ 0 < k \le J, \ I - k < i \le I \right\}$

We assume that there is no development after development period J. That means we assume that there is no **tail** development.

ultimate of accident period
$$i = \sum_{k=0}^{J} S^m_{i,k}$$
 claim reserves of accident period $i = \sum_{k=I+1-i}^{J} S^m_{i,k}$

On a diagonlal n we have for all accident and development periods i and k:

$$n = i + k,$$

in particular on the last known diagonal I we have I = k + i.
Definition 1.11 (Stochastic loss reserving)

We call a reserving method a stochastic reserving method if it is based on a stochastic model.

Remark 1.12

- Some actuaries call reserving methods that are based on simulations stochastic, even if they are not based on a stochastic model.
- Since we have a stochastic model, we usually expect beside the estimate of claim reserves some estimate of the corresponding uncertainties.

Types of stochastic reserving methods

We differentiate between

- distribution based reserving methods, which make explicit assumptions on the distribution of claim properties $S_{i,k}^m$ or related objects.
- distribution free reserving methods, which only makes assumptions on moments of the distribution of claim properties $S_{i,k}^m$ or related objects.

-Basics of claim reserving

-Basic terms and definitions

Definition 1.11 (Stochastic loss reserving)

We call a reserving method a stochastic reserving method if it is based on a stochastic model.

Remark 1.12

- Some actuaries call reserving methods that are based on simulations stochastic even if they are not based on a stochastic model.
- Since we have a stochastic model, we usually expect beside the estimate of claim reserves some estimate of the corresponding uncertainties.

Types of stochastic reserving methods

We differentiate between

- distribution based reserving methods, which make explicit assumptions on the distribution of claim properties Sⁿ₁ or related objects.
- distribution free reserving methods, which only makes assumptions on moments of the distribution of claim properties S^m_{1,k} or related objects.

Definition 1.13 (Best Estimate)

The Swiss regulator defines (translation)

... Best Estimate reserves are the conditional unbiased estimator of the conditional expectation of all future (undiscounted) cash flows based on all at the time of estimation available information ...

FINMA Rundschreiben 2008/42 Rückstellungen Schadenversicherung

Mathematically that could be interpreted like:

$$\widehat{\mathsf{E}} \underbrace{\left[\underbrace{\widehat{\mathsf{E}}}_{k=0}^{J} S_{i,k}^{m} \middle| \mathcal{D}^{I} \right] - \widehat{\mathsf{E}} \underbrace{\left[\sum_{k=0}^{J} S_{i,k}^{m} \middle| \mathcal{D}^{I+1} \right]}_{\text{estimated claims development result}} \middle| \mathcal{D}^{I} \right] = 0.$$

- Basics of claim reserving
 - -Basic terms and definitions

- A definition of Best Estimate reserves is not easily to find. We will look at the one of the Swiss regulator.
- At the first look this definition looks promising. But if you try to translate the phrase 'conditional unbiased estimator of a conditional expectation' into formulas you will get problems.
- One possibility is the following:
- First we do not look at future cash flows (or reserves) but at the ultimate payments. Since we know the already paid amounts, both views are equivalent, but ultimates are mathematically easier to handle then reserves:
- 1 We start with the expectation of the ultimate payments conditioned on all currently available information.
- 2 estimate

2021-04-26

- 3 One year later we do the same, but of course with more available information.
- 4 The difference is the observed claims development result (CDR) at time I + 1.
- 5 Taking the expectation conditioned on all currently available information we expect to get zero. From the business point of view this means, we assume that the CDR is zero within the planing framework at time *I*. Or in other words, we don not expect any profit or loss on already happened claims.

1 Basics of claim reserving

Uncertainty of the Best Estimate

- The Holy Grail of loss reserving is to estimate the (\mathcal{D}^{I} -conditional) distribution of the reserves. Unfortunately, this would require very restrictive model assumptions.
- At least we would like to estimate beside the Best Estimate the corresponding uncertainty. Often this is done via the mean squared error of prediction (mse):

Definition 1.14 (mse)

The \mathcal{B} -conditional mean square error of prediction of the estimate \widehat{Y} of a square integrable random variable Y is defined by

$$\mathsf{mse}_{\mathcal{B}}\left[\widehat{Y}\right] := \mathsf{E}\left[(Y - \widehat{Y})^2 \middle| \mathcal{B}\right].$$

In practice one often fits some distribution to the estimates of the first two centred moments \widehat{Y} and $\widehat{\mathrm{mse}}_{\mathcal{B}}\left[\widehat{Y}\right]$. In loss reserving one often takes a log-normal distribution.

Lemma 1.15 (Random and parameter error)

The mean squared error of prediction can be split into random the parameter error:

$$\mathsf{mse}_{\mathcal{B}}\left[\widehat{Y}\right] = \underbrace{\mathsf{Var}[Y|\mathcal{B}]}_{:} + \underbrace{\left(\mathsf{E}\left[Y - \widehat{Y} \middle| \mathcal{B}\right]\right)^{2}}_{:}$$

random error

A proof of the split of the mse will be given in Lecture 3.

(4/9)

Definition 1.16 (Ultimate uncertainty)

The ultimate uncertainty of the estimated ultimate (or reserves) of accident period i is defined by

$$\mathsf{mse}_{\mathcal{D}^{I}}\!\left[\sum_{k=0}^{J}\widehat{S}_{i,k}\right]\!=\mathsf{E}\!\left[\left(\sum_{k=0}^{J}(S_{i,k}-\widehat{S}_{i,k})\right)^{2}\middle|\mathcal{D}^{I}\right]$$

and analogously we define the ultimate uncertainty of the whole ultimate (or reserves) by

$$\mathsf{mse}_{\mathcal{D}^{I}}\left[\sum_{i=0}^{I}\sum_{k=0}^{J}\widehat{S}_{i,k}\right] = \mathsf{E}\left[\left(\sum_{i=0}^{I}\sum_{k=0}^{J}(S_{i,k}-\widehat{S}_{i,k})\right)^{2}\middle|\mathcal{D}^{I}\right].$$

2021-04-26

Basics of claim reserving Basic terms and definitions

The ultimate uncertainty of the estimated ultimate (or reserves) of accident period i is defined by

$$\mathrm{mse}_{\mathcal{D}^I}\!\left[\sum_{k=0}^J \widehat{S}_{i,k}\right] = \mathrm{E}\!\left[\left(\sum_{k=0}^J (S_{i,k} - \widehat{S}_{i,k})\right)^2 \middle| \mathcal{D}^I\right]$$

and analogously we define the ultimate uncertainty of the whole ultimate (or reserves) by

$$\mathrm{mse}_{\mathcal{D}^I}\!\left[\sum_{i=0}^I\sum_{k=0}^J\widehat{S}_{i,k}\right]\!=\!\mathsf{E}\!\left[\left(\sum_{i=0}^I\sum_{k=0}^J(S_{i,k}-\widehat{S}_{i,k})\right)^2\middle|\mathcal{D}^I\right].$$

Definition 1.17 (CDR)

The true claims development result (true CDR) of accident period i at time I+1 is the difference of the expected ultimates conditioned on all information at time I and I+1, i.e.:

$$\mathsf{CDR}_i^{I+1} := \mathsf{E}\left[\sum_{k=0}^J S_{i,k} \middle| \mathcal{D}^I\right] - \mathsf{E}\left[\sum_{k=0}^J S_{i,k} \middle| \mathcal{D}^{I+1}\right].$$

The (observed) claims development result (CDR) of accident period i at time I + 1 is the difference of the two corresponding estimates. If necessary we will denote the time of estimation by an additional upper index:

$$\widehat{\mathsf{CDR}}_{i}^{I+1} := \sum_{k=0}^{J} (\widehat{S}_{i,k}^{I} - \widehat{S}_{i,k}^{I+1}) = \sum_{k=I+1-i}^{J} \widehat{S}_{i,k}^{I} - \left(S_{i,I+1-i} + \sum_{k=I+2-i}^{J} \widehat{S}_{i,k}^{I+1}\right).$$

The true and the observed CDR of the aggregation of all accident periods are defined by:

$$\mathsf{CDR}^{I+1} := \sum_{i=0}^{I} \mathsf{CDR}_i^{I+1} \qquad \text{and} \qquad \widehat{\mathsf{CDR}}^{I+1} := \sum_{i=0}^{I} \widehat{\mathsf{CDR}}_i^{I+1}.$$

- A negative CDR corresponds to a loss and a positive CDR corresponds to a profit.
- If we have a Best Estimate then the estimate of the \mathcal{D}^{I} -conditional expectation of the observed CDR equals zero.

For the true CDR we have

2021-04-26

$$\mathsf{E}\Big[\mathsf{CDR}_i^{I+1}\Big|\mathcal{D}^I\Big] = \mathsf{E}\Bigg[\mathsf{E}\Bigg[\sum_{k=I+1-i}^J S_{i,k}\Bigg|\mathcal{D}^I\Bigg] - \left(S_{i,I+1-i} + \mathsf{E}\Bigg[\sum_{k=I+2-i}^J S_{i,k}\Bigg|\mathcal{D}^{I+1}\Bigg]\right)\Bigg|\mathcal{D}^I\Bigg] = 0.$$

But for the observed CDR it depends on how do we estimate. Best Estimate is implicitly defined by

$$\widehat{\mathsf{E}}\left[\widehat{\mathsf{CDR}}_{i}^{I+1} \middle| \mathcal{D}^{I}\right] = 0.$$

Uncertainty of the CDR

As we have seen in the example of Converium it is very important (in particular for the CFO, Solvency II or SST) to have some estimate of the uncertainty of the claims development result. Often this is done via some kind of mean squared error of prediction:

Definition 1.18 (Solvency uncertainty)

The solvency uncertainty of the estimated ultimate (or reserves) of accident period i is defined by

$$\mathsf{mse}_{0|\mathcal{D}^{I}} \bigg[\widehat{\mathsf{CDR}}_{i}^{I+1} \bigg] := \mathsf{E} \bigg[\bigg(\widehat{\mathsf{CDR}}_{i}^{I+1} - 0 \bigg)^{2} \bigg| \mathcal{D}^{I} \bigg]$$

and analogously we define the solvency uncertainty of the aggregated ultimate (or reserves) by

$$\mathsf{mse}_{0|\mathcal{D}^{I}}\bigg[\widehat{\mathsf{CDR}}^{I+1}\bigg] := \mathsf{E}\bigg[\left(\widehat{\mathsf{CDR}}^{I+1} - 0\right)^{2} \bigg| \mathcal{D}^{I}\bigg].$$

Remark 1.19

Since in practice the deviation of the observed CDR from zero is more important than its deviation from the true CDR, we take the difference between the observed CDR and zero instead of the difference between the observed CDR and the true CDR.

2021-04-26

- —Basics of claim reserving
 - -Basic terms and definitions

- SST means Swiss Solvency Test
- It is also possible to look at the deviation of the observed CDR from the true CDR. The corresponding uncertainty will always be less or equal to the one we are looking at.

Best Estimate reserves, ultimate and solvency uncertainty

will be the main objects of interest for these lectures. When estimating them you should always keep in mind:

- Best Estimate reserves can be compared with the real world. We only have to wait some (maybe very long) time. Moreover, observing the CDR and other statistics we can learn from the past in order to get better estimates in the future.
- But uncertainties cannot be compared with observations from the real world. They will always be a result of a model. Therefore, we cannot learn from the past in order to get better estimates in the future (we even cannot determine if some estimate is better than another).
- Best Estimate reserves and the corresponding uncertainties are like position and impulse in physics:

You cannot (should not) measure both simultaneously!

For instance, in order to get a Best Estimate you may apply some expert judgement, which cannot be reflected in the estimation of uncertainties by the underlying model.

-Basics of claim reserving

-Basic terms and definitions

Best Estimate reserves, ultimate and solvency uncertain

will be the main objects of interest for these lectures. When estimating them you should always keep in mind:

- Best Estimate reserves can be compared with the real world. We only have to wit some (maybe very long) time. Moreover, observing the CDR and other statistics we can learn from the past in order to get better estimates in the future.
- But uncertainties cannot be compared with observations from the real world. They will always be a result of a model. Therefore, we cannot learn from the past in order to get better estimates in the future (we even cannot determine if some estimate is better than another).
- Best Estimate reserves and the corresponding uncertainties are like position and impube in physics: You cannot (should not) measure both simultaneously!

You cannot (should not) measure both simultaneously! For instance, in order to get a Best Estimate you may apply some expert

judgement, which cannot be reflected in the estimation of uncertainties by the underlying model.

Conditional expectations and intuition

Let assume a mother has two children.

a) What (approximately) is the probability that she has two girls?

b) Assume in addition that she has at least one daughter.
 What (approximately) is the probability that she has two girls?

c) Assume in addition that one daughter was born on a Monday. What (approximately) is the probability that she has two girls?

2021-04-26

- Basics of claim reserving
 - -Basic terms and definitions

- In general insurance and in particular in reserving conditional probabilities and expectations play an important roll. But they are often not easy to understand.
- In order to illustrate this, let have a look at an easy exercise.
- Be careful: The human brain is not build for (conditional) probabilities and expectations.

(9/9)

Reserving in the real world:

- Basics of claim reserving
 - -Basic terms and definitions

- On the one hand there are information. If actuaries speak of reserving they often thinks in triangles or vectors, containing the usual candidates like payments, reported amounts and number of reported claims, or more exotic things like payments just before closing a claim.
- But often we forget that there are a lot of other very important sources of information, which even may not be numerical.
- On the other hand there are a lot of reserving methods which may help us to get a Best Estimate:
- Most of them are based on one triangle only, like Chain-Ladder or Cape Code.
- Others combine a triangle and a vector, like the Complementary-Loss-Ratio-Method and the Bornhuetter-Fergueson-Method.
- In recent years some methods, which combine several (in most cases two) triangles, have been propagated. For instance, Munich-Chain-Ladder, Extended-Complementary-Loss-Ratio-Method and Paid-Incurred-Chain-Claims-Method.
- But at the end the actuary has to include all the other information in order to get his or hers Best Estimate. And to be honest, often this has more to do with fortune telling than with mathematics or statistics.

Literature

[1] Claims Reserving Manual.

Institute of Actuaries, 2nd revised edition edition, 11 1997.

[2] Heinz Bauer.

Probability theory. Translated from the German by Robert B. Burckel. Berlin: de Gruyter, 1996.

[3] Heinz Bauer.

Measure and integration theory. Transl. from the German by Robert B. Burckel. Berlin: de Gruyter, 2001.

[4] Schmidt, Klaus D.

A Bibliography on Loss Reserving (permanent update). url: http://www.math.tu-dresden.de/sto/schmidt/dsvm/reserve.pdf.

- [5] Gregory C. Taylor.
 - Loss reserving : an actuarial perspective.

Huebner international series on risk, insurance, and economic security. Kluwer Academic, Boston [u.a.], 2000. Includes bibliographical references and index.

[6] Mario V. Wüthrich and Michael Merz. Stochastic claims reserving methods in insurance. Hoboken, NJ: John Wiley & Sons, 2008.

2021-04-26

Basics of claim reserving

Literature and software

- Claime Reserving Manual. Institute of Actuation. 2nd revised edition edition. 11 1997.
- Probability theory: Translated from the German by Robert II. Burckel.

Measure and integration theory. Transf. from the German by Robert B. Barciel Ballic de Gruyter, 2001.

A Bibliography on Loss Reserving (permanent update).

Loss meeting : an actuarial perspective.

Harbner international series on risk, insurance, and economic security. Klauer Academic, Boston

[6] Mario V. Wilzhrich and Michael Merz. Scochastic chains meanwing methods in insurance. Hoboleen, N.J. John Wiley & Sone, 2008.

- Free software:
 - * R (www.cran.r-project.org), in particular the packages actuar and ChainLadder.
 - * LSRM Tools (http://sourceforge.net/projects/lsrmtools/)

* . . .

- Commercial software:
 - IBNRS by Addactis
 - * CROS by Deloitte (not for sale any more)
 - * ResQ by Towers Watson (almost no further development)

* . . .

2021-04-26

Basics of claim reserving

- Free software:
- R (www.cran.r-project.org), in particular the packages actuar and ChainLadder.
- LSRM Tools (http://sourceforge.net/projects/larmtools/)
- Commercial software:
- · IBNRS by Addactis
- · CROS by Deloitte (not for sale any more)
- · ResQ by Towers Watson (almost no further development)

Stochastic Reserving Lecture 2 Chain-Ladder method

René Dahms

ETH Zurich, Spring 2021

3 March 2021 (Last update: 26 April 2021)

Stochastic Reserving Lecture 2 Chain-Ladder method

René Dahms

ETH Zurich, Spring 2021

3 March 2021 (Last update: 26 April 2021)

2 Chain-Ladder-Method (CLM)

2.1 How does the Chain-Ladder method work

2.1.1 Chain-Ladder method without stochastic

2.1.2 Stochastic behind the Chain-Ladder method

2.2 Future development

2.2.1 Projection of the future development

2.3 Validation and examples (part 1 of 3)

2.3.1 Chain-Ladder method on Payments and on Incurred

2.3.2 How to validate the Chain-Ladder assumptions

2.4 Ultimate uncertainty

2.4.1 Ultimate uncertainty of accident period \boldsymbol{i}

2.4.2 Ultimate uncertainty of the aggregation of all accident periods

2.5 Validation and examples (part 2 of 3)

2.5.1 Ultimate uncertainty

2.6 Solvency uncertainty

2.6.1 Solvency uncertainty of a single accident period

- 2.6.2 Solvency uncertainty of all accident periods
- 2.6.3 Uncertainties of further CDR's

2.7 Validation and examples (part 3 of 3)

2.7.1 Solvency uncertainty

2.8 Literature

Lecture 2: Table of contents

2 Chair Lader Method (CLM) 21. Be dra ft for March Lader method lader 21. Se handles (hand the Chair-Lader method lader 21. Se handles (hand the Chair-Lader method lader) 22. Validation and examples (per 14 of 1) 23. Validation and examples (per 14 of 1) 23. Validation and examples (per 14 of 1) 23. Validation and examples (per 14 of 1) 24. Bears and per tables (per 14 of 1) 24. Bears and per tables (per 14 of 1) 24. Bears and per tables (per 14 of 1) 25. Bears and per tables (per 14 of 1) 25. Validation of examples (per 14 of 1) 27. V

2.7.1 Solvency uncerta 2.8 Literature

Basic idea behind the Chain-Ladder method

The Chain-Ladder method is based on a single triangle. Originally it was formulated in terms of the cumulative payments

$$C_{i,k} := \sum_{j=0}^{k} S_{i,j}$$

instead of the payments $S_{i,k}$ during the development period k. The Chain-Ladder method is based on the idea that:

• cumulative payments of the next development period are approximately proportional to the cumulative payments of the current period, i.e.

$$C_{i,k+1} pprox f_k C_{i,k}; \text{ and }$$

• accident period are independent.

In particular that means that all accident periods are comparable with respect to their development.

- Chain-Ladder-Method (CLM)

Basic idea behind the Chain-Ladder method

The Chain-Ladder method is based on a single triangle. Originally it was formulated in terms of the cumulative payments

$$C_{i,k} := \sum_{j=0}^{k} S_{i,j}$$

instead of the payments $S_{i,k}$ during the development period k. The Chain-Ladder method is based on the idea that:

+ cumulative payments of the next development period are approximately proportional to the cumulative payments of the current period, i.e.

 $C_{i,k+1}\approx f_kC_{i,k}; \text{ and }$

· accident period are independent.

In particular that means that all accident periods are comparable with respect to their development.

2 Chain-Ladder-Method (CLM)

2.1 How does the Chain-Ladder method work $\buildrel 2.1.1$ Chain-Ladder method without stochastic

Simple example

	i∖k	0	1	2	3	4	ultimate	reserves
	0	$100 \xrightarrow{1.9}{1}$	90 <u>1.6</u> 3	$04 \xrightarrow{1.2} 3$	$80 \xrightarrow{1.0}{3}$	380	380	0 = 380 - 380
	1	120 <u>₂.</u> 2	65 <u>1.6</u> 4	$24 \xrightarrow{1.2}{5}$	30 <u>1.0</u>	530	530	0 = 530 - 530
	2	200 <u>₂.</u> 04	05 <u>1.6</u> 6	48 <u>1.3</u> 8	10 <u>1.0</u> €	310	810	162 = 810 - 648
	3	150 <u>1.9</u> 2	80 <u>1.6</u> 4	48 <u>1.2</u> 5	60 <u>1.0</u> 5	560	560	280 = 560 - 280
	4	200 <u>2.0</u> 4	$00 \xrightarrow{1.6} 6$	40 <u>1.2</u> 8	00 <u>1.0</u> 8	300	800	600 = 800 - 200
	\widehat{f}_k	2.0	1.6	1.2	1.0		3080	1042
$\widehat{f}_{0} = \frac{190+265+405+280}{100+120+200+150} = 2.0 = \sum_{i=0}^{I-1} \frac{C_{i,0}}{\sum_{h=0}^{I-1} C_{h,0}} \underbrace{\frac{C_{i,1}}{C_{i,0}}}_{\text{observed development factor}}$								
$f_1 =$	$=\frac{304}{190}$	+265+405	= 1.6			we	ight obser	ved development lactor
\widehat{f}_2 =	$=\frac{380}{304}$	$\frac{+530}{+424} = 1$.2					
$\widehat{f}_3 =$	$=\frac{380}{380}$	= 1.0						

- Chain-Ladder-Method (CLM)
 - -How does the Chain-Ladder method work

2.1 How does the Chain-Ladder method work 2.1.2 Stochastic behind the Chain-Ladder method

Definition 2.1 (σ -algebras)

• $\mathcal{B}_{i,k}$ is the σ -algebra of all information of accident period i up to development period k:

$$\mathcal{B}_{i,k} := \sigma \left(S_{i,j} \colon 0 \leq j \leq k \right) = \sigma \left(C_{i,j} \colon 0 \leq j \leq k \right)$$

• $\mathcal{D}_{i,k}$ is the σ -algebra containing all information up to accident period i and development period k:

 $\mathcal{D}_{i,k} := \sigma \left(S_{h,j} \colon 0 \leq h \leq i, \ 0 \leq j \leq k \right) = \sigma \left(B_{h,k} \colon 0 \leq h \leq i \right)$

• \mathcal{D}^n is the σ -algebra of all information up to calender period n: $\mathcal{D}^n := \sigma \left(S_{i,k} \colon 0 \le i \le I, \ 0 \le k \le J \land (n-i) \right)$ $= \sigma \left(C_{i,k} \colon 0 \le i \le I, \ 0 \le k \le J \land (n-i) \right)$

$$= \sigma \left(igcup_{i=0}^{I} igcup_{k=0}^{J \wedge (n-i)} \mathcal{B}_{i,k}
ight)$$

- \mathcal{D}_k is the $\sigma\text{-algebra}$ of all information up to development period k:

$$\begin{aligned} \mathcal{D}_k &:= \sigma \left(S_{i,j} \colon 0 \leq i \leq I, \ 0 \leq j \leq k \right) \\ &= \sigma \left(C_{i,j} \colon 0 \leq i \leq I, \ 0 \leq j \leq k \right) \\ &= \sigma \left(\bigcup_{i=0}^I \mathcal{B}_{i,k} \right) \end{aligned}$$

• $\mathcal{D}_k^n := \sigma \left(\mathcal{D}^n \cup \mathcal{D}_k \right)$

Stochastic Reserving Chain-Ladder-Method (CLM) Chain-Ladder Method (CLM) How does the Chain-Ladder method work σ -algebras

The σ -algebra \mathcal{D}_k^n is used in order to enable us to separate two arbitrary payments S_{i_1,k_1} and S_{i_2,k_2} with $(i_1,k_1) \neq (i_2,k_2)$. That means, for all $(i_1,k_1) \neq (i_2,k_2)$ there exists n and k such that

 $(S_{i_1,k_1}\in \mathcal{D}_k^n \quad \text{ and } \quad S_{i_2,k_2}\notin \mathcal{D}_k^n) \quad \text{ or } \quad (S_{i_1,k_1}\notin \mathcal{D}_k^n \quad \text{ and } \quad S_{i_2,k_2}\in \mathcal{D}_k^n).$

Assumption 2.A (Mack's Chain-Ladder method)

There exist development factors f_k and variance parameters σ_k^2 such that the cumulative payments

$$C_{i,k} := \sum_{j=0}^{k} S_{i,j}$$

satisfy
i)^{CLM}
$$E[C_{i,k+1} | B_{i,k}] = f_k C_{i,k}$$
,
ii)^{CLM} $Var[C_{i,k+1} | B_{i,k}] = \sigma_k^2 C_{i,k}$ and
iii)^{CLM} accident periods are independent.

Stochastic Reserving Chain-Ladder-Method (CLM) How does the Chain-Ladder method work

Assumption 2.4, (Mode's Casha adder method)
There soft advectment for
$$J_i$$
 and variance parameters σ_i^2 such that the
cashifter parameter $C_{ijkk} = \sum_{j=0}^{k} S_{ij}$
with
 $J_{ijkk}^{(1)} = \int_{i} C_{ijkk} = \int_{i} S_{ijk} S_{ij}$
with
 $J_{ijkk}^{(1)} = J_{ijk} C_{ijk}$.

$$J_{ijkk}^{(2)} = J_{ijk} C_{ijk}$$

$$J_{ijkk}^{(2)} = J_{ijk} C_{ijk}$$

$$J_{ijkk}^{(2)} = J_{ijk} C_{ijk}$$

$$J_{ijkk}^{(2)} = J_{ijkk} C_{ijkk}$$

$$J_{ijkk}^{(2)} = J_{ijkk} C$$

If $\mathcal{B}_{i,k}$ are replaced by \mathcal{D}_k^{i+k} then the last assumption about independence is not necessary, i.e. it is enough to assume

- $\widetilde{\mathrm{i})}^{\mathrm{CLM}} \hspace{0.1 cm} \mathrm{E} \Big[C_{i,k+1} \Big| \mathcal{D}_k^{i+k} \Big] \hspace{-.1 cm} = \hspace{-.1 cm} f_k C_{i,k} \text{,}$
- $\label{eq:clm} \mathrm{\widetilde{ii)}}^{\mathsf{CLM}} \ \, \mathrm{Var} \Big[C_{i,k+1} \Big| \mathcal{D}_k^{i+k} \Big] \! = \! \sigma_k^2 C_{i,k}.$

We will see later that we can replace the exposure $C_{i,k}$ on the right side by more arbitrary exposures, which will leads to a wide class of reserving methods, called Linear Stochastic Reserving methods (LSRMs), see section 4.

(3/4)

Remark 2.2

- Since accident periods are independent, $\mathcal{B}_{i,k}$ could be replaced by \mathcal{D}_k , $\mathcal{D}_{i,k}$ or \mathcal{D}_k^{i+k} .
- Published by Thomas Mack in 1991, see [22]. But other actuaries have used at least parts of the stochastic model before. The reserving method itself is much older.
- From a statistical point of view the estimation of development factors and variance parameters is critical, because we have to estimate 2J parameters by only $J(I \frac{J-1}{2})$ observed development factors. Therefore, in practise the reserving actuary has to include other information in order to overcome the lack of observed data (over parametrised model).
- The method cannot deal with incomplete triangles, where payments for early calendar periods are missing and therefore the cumulative payments for early accident periods are not complete (usually too small).
- There are other stochastic models that lead to the same estimates of the reserves. For instance, the over-dispersed Poisson model, see [11].

- Chain-Ladder-Method (CLM)
 - -How does the Chain-Ladder method work

Remark 2.2

- Since accident periods are independent, $\mathcal{B}_{i,k}$ could be replaced by $\mathcal{D}_k, \mathcal{D}_{i,k}$ or $\mathcal{D}_k^{i+k}.$ • Published by Thomas Mack in 1991, see [22]. But other actuaries have
- Published by Thomas Mack in 1991, see [22]. But other actuaries have used at least parts of the stochastic model before. The reserving method itself is much older.
- From a statistical point of view the estimation of development factors and variance parameters is critical, because we have to estimate 2J parameters by only J(----------------) observed development factors. Therefore, is practise the reserving actuary has to include other information in order to overcome the luck of observed data (over parametrised model).
- The method cannot deal with incomplete triangles, where payments for early calendar periods are missing and therefore the cumulative payments for early accident periods are not complete (usually too small).
- There are other stochastic models that lead to the same estimates of the reserves. For instance, the over-dispersed Poisson model, see [11].
Corollary 2.3

• The parts i)^{CLM} and ii)^{CLM} of Assumption 2.A can be rewritten in terms of the incremental payments $S_{i,k}$:

$$\begin{split} & \text{i'} \right)^{CL} \ \mathsf{E} \Big[S_{i,k+1} \Big| \mathcal{B}_{i,k} \Big] = (f_k - 1) C_{i,k} \text{ and} \\ & \text{ii'} \right)^{CL} \ \mathsf{Var} \Big[S_{i,k+1} \Big| \mathcal{B}_{i,k} \Big] = \sigma_k^2 C_{i,k}. \end{split}$$

Therefore, Assumption 2.A means that under the knowledge of $\mathcal{B}_{i,k}$ the cumulative payments $C_{i,k}$ are a good exposure for next periods payments $S_{i,k+1}$.

• Iterating part i)^{CLM} of Assumption 2.A we get

$$\mathsf{E}[C_{i,k+n}|\mathcal{B}_{i,k}] = \mathsf{E}[\mathsf{E}[C_{i,k+n}|\mathcal{B}_{i,k+n-1}]|\mathcal{B}_{i,k}]$$
$$= f_{k+n-1}\mathsf{E}[C_{i,k+n-1}|\mathcal{B}_{i,k}]$$
$$= \dots$$
$$= f_{k+n-1}\cdot\ldots\cdot f_kC_{i,k}.$$

$$\begin{split} & (c_1,c_2) \geq 2, \\ & (The arcs) (Mark of all of Y_{n-1}^{(Mark} of Assumption 2.4 Can be rewritten in terms of the incremental papersets <math display="inline">S_{n+1}^{(1)} = (C_{n-1},C_{n-1}$$

Proof of $i')^{CLM}$:

$$\begin{split} \mathsf{E} \Big[S_{i,k+1} \Big| \mathcal{B}_{i,k} \Big] &= \mathsf{E} \Big[C_{i,k+1} - C_{i,k} \Big| \mathcal{B}_{i,k} \Big] \\ &= \underbrace{\mathsf{E} \Big[C_{i,k+1} \Big| \mathcal{B}_{i,k} \Big] - C_{i,k}}_{C_{i,k} \text{ is } \mathcal{B}_{i,k} \text{ measurable}} \\ &= \underbrace{f_k C_{i,k}}_{\text{ij}) \mathsf{CLM}} \end{split}$$

Proof of ii')^{CLM}:

$$\begin{split} \mathsf{Var} \Big[S_{i,k+1} \Big| \mathcal{B}_{i,k} \Big] &= \mathsf{Var} \Big[C_{i,k+1} - C_{i,k} \Big| \mathcal{B}_{i,k} \Big] \\ &= \underbrace{\mathsf{Var} \Big[C_{i,k+1} \Big| \mathcal{B}_{i,k} \Big]}_{C_{i,k} \text{ is } \mathcal{B}_{i,k} \text{ measurable}} \end{split}$$

Lemma 2.4 (Chain-Ladder development factors)

Let Assumption 2.A be fulfilled and take arbitrary $\mathcal{D}^I \cap \mathcal{D}_k$ -measurable weights $0 \le w_{i,k} \le 1$ with

• $w_{i,k} = 0$ if $C_{i,k} = 0$ and • $\sum_{i=0}^{I-1-k} w_{i,k} = 1$ if $C_{i,k} \neq 0$ for at least one $0 \le i \le I - 1 - k$.

Then:

1. The weighted means $\widehat{f}_k := \sum_{i=0}^{I-1-k} w_{i,k} \frac{C_{i,k+1}}{C_{i,k}}$ (2.1)

of the observed development factors $\frac{C_{i,k+1}}{C_{i,k}}$ are \mathcal{D}_k -conditional unbiased estimators of the development factors f_k . In order to shorten notation, we use here and in the following the definition $\frac{0}{0} := 0$. Moreover, the weights $w_{i,k} := \frac{C_{i,k}}{\sum_{k=0}^{I-1-k} C_{k,k}}$ (2.2)

result in estimators \hat{f}_k with the smallest (\mathcal{D}_k -conditional) variance of all estimators of the form (2.1).

2. For all k and all $k_n > k_{n-1} > \ldots > k_0 \ge 0$ we have

$$\mathsf{Var}\Big[\widehat{f_k}\Big|\mathcal{D}_k\Big] = \sum_{i=0}^{I-1-k} \frac{\sigma_k^2 w_{i,k}^2}{C_{i,k}} \quad \text{and} \quad \mathsf{E}\Big[\widehat{f}_{k_n}\widehat{f}_{k_{n-1}}\cdot\ldots\cdot\widehat{f}_{k_0}\Big|\mathcal{D}_{k_0}\Big] = f_{k_n}f_{k_{n-1}}\cdot\ldots\cdot f_{k_0}.$$

©R. Dahms (ETH Zurich, Spring 2021)

(1/3)

Stochastic Reserving Chain-Ladder-Method (CLM) Future development

• unbiased:

$$\begin{split} \mathsf{E}\Big[\hat{f}_{k}\Big|\mathcal{D}_{k}\Big] &= \mathsf{E}\Big[\overset{I-1-k}{\sum_{i=0}^{0}}w_{i,k}\frac{\mathcal{C}_{i,k+1}}{\mathcal{C}_{i,k}}\Big|\mathcal{D}_{k}\Big] = \underbrace{\sum_{i=0}^{I-1-k}w_{i,k}\frac{\mathsf{E}\Big[\mathcal{C}_{i,k+1}\Big|\mathcal{D}_{k}\Big]}{\mathcal{C}_{i,k}}}_{\text{measurable with respect to }\mathcal{D}_{k}} = \underbrace{\sum_{i=0}^{I-k}w_{i,k}\frac{f_{k}\mathcal{C}_{i,k}}{\mathcal{C}_{i,k}}}_{\mathbf{ij}\mathsf{CLM}} = f_{k} \\ \bullet \text{ minimal variance:} \quad \mathsf{Var}\Big[\hat{f}_{k}\Big] = \mathsf{E}\Big[\mathsf{Var}\Big[\hat{f}_{k}\Big|\mathcal{D}_{k}\Big]\Big] + \mathsf{Var}\Big[\mathsf{E}\Big[\hat{f}_{k}\Big|\mathcal{D}_{k}\Big]\Big] = \mathsf{E}\Big[\mathsf{Var}\Big[\hat{f}_{k}\Big|\mathcal{D}_{k}\Big]\Big] = \mathsf{E}\Big[\mathsf{Var}\Big[\hat{f}_{k}\Big|\mathcal{D}_{k}\Big]\Big] = \mathsf{E}\Big[\mathsf{Var}\Big[\hat{f}_{k}\Big|\mathcal{D}_{k}\Big]\Big] = \mathsf{E}\Big[\mathsf{Var}\Big[\hat{f}_{k}\Big|\mathcal{D}_{k}\Big]\Big] = \mathsf{E}\Big[\mathsf{Var}\Big[\hat{f}_{k}\Big|\mathcal{D}_{k}\Big] = \mathsf{E}\Big[\mathsf{Var}\Big[\hat{f}_{k}\Big|\mathcal{D}_{k}\Big]\Big] = \mathsf{E}\Big[\mathsf{Var}\Big[\hat{f}_{k}\Big|\mathcal{D}_{k}\Big] = \mathsf{E}\Big[\mathsf{Var}\Big[\mathsf{Var}\Big[\mathsf{Var}\Big] = \mathsf{Var}\Big[\mathsf{Var}\Big[\mathsf{Var}\Big] = \mathsf{Var}\Big[\mathsf{Var}\Big[\mathsf{Var}\Big] = \mathsf{Var}\Big[\mathsf{Var}\Big[\mathsf{Var}\Big] = \mathsf{Var}\Big[\mathsf{Var}\Big] = \mathsf{Var}\Big[\mathsf{Var}\Big[\mathsf{Var}\Big] = \mathsf{Var}\Big[\mathsf{Var}\Big] = \mathsf{Var}\Big] = \mathsf{Var}\Big[\mathsf{Var}\Big] = \mathsf{Var}\Big[\mathsf{Var}\Big] = \mathsf{Var}\Big[\mathsf{Var}\Big] = \mathsf{Var}\Big[\mathsf{Var}\Big] = \mathsf{Var}\Big] = \mathsf{Var}\Big] = \mathsf{Var}\Big[\mathsf{Var}\Big] = \mathsf{Var}\Big] = \mathsf{Var}\Big] = \mathsf{Var}\Big[\mathsf{Var}\Big] = \mathsf{Var}\Big] = \mathsf{V$$

Estimator 2.5 (Chain-Ladder Ultimate)

Let Assumption 2.A be fulfilled. Then the estimates

$$\widehat{C}_{i,k} := \widehat{f}_{k-1} \cdot \ldots \cdot \widehat{f}_{I-i} C_{i,I-i}$$

are \mathcal{D}_{I-i} -conditional unbiased estimators of $C_{i,k}$, for $I - i < k \leq J$. In order to shorten notation, we define

$$\widehat{C}_{i,k} := C_{i,k},$$

for $0 \le k \le I - i$.

Theorem 2.6 (Chain-Ladder Best Estimate)

The Estimator 2.5 with the variance minimizing weights (2.2) satisfies the condition of a Best Estimate, i.e.

$$\widehat{\mathsf{E}}\Big[\widehat{C}_{i,J}^{I+1} - \widehat{C}_{i,J}^{I}\Big|\mathcal{D}^{I}\Big] = 0,$$

where the additional upper index specifies the time of estimation.

Stochastic Reserving Chain-Ladder-Method (CLM)

$$\begin{split} & \text{Control} > 3 \leq \text{Constrained} \\ & \text{Control} > 3 < A \text{ deals The the network} \\ & G_{in} = f_{i}, \dots, f_{i}, C_{i}, i \\ & \text{constrained} > A \text{ deals matters of } C_{i,\mu} \text{ for } i < k \leq J. \\ & \text{to obser to dealse matrixing and Gaussian of } C_{i,\mu} \text{ for } i < k \leq J. \\ & \text{to deals to dealse matrixing and dealse } \\ & \text{deals } \leq k \leq J - L. \\ & \text{Theorem 2.2 (Constrained and the three Elements)} \\ & \text{The Ensempt. 2.3 with two lowers minimizing undefined 2.3 undefined the condition } \\ & \text{deals the the dealse matrix} \quad & \text{E}[C_{ij}^{(1)}, C_{ij}^{(1)}] = 0. \end{split}$$

• Proof of unbiasedness:

$$\mathbf{E}[\hat{C}_{i,k} | \mathcal{D}_{I-i}] = \mathbf{E}[\hat{f}_{k-1} \cdot \dots \cdot \hat{f}_{I-i}C_{i,I-i} | \mathcal{D}_{I-i}] = \mathbf{E}[\mathbf{E}[\hat{f}_{k-1} | \mathcal{D}_{k-1}]\hat{f}_{k-2} \cdot \dots \cdot \hat{f}_{I-i}C_{i,I-i} | \mathcal{D}_{I-i}]$$

$$= \mathbf{E}[f_{k-1}\hat{f}_{k-2} \cdot \dots \cdot \hat{f}_{I-i}C_{i,I-i} | \mathcal{D}_{I-i}] = \dots = f_{k-1} \cdot \dots \cdot f_{I-i}C_{i,I-i}$$

$$= \mathbf{E}[C_{i,k} | \mathcal{D}_{I-i}]$$

$$\mathbf{D}_{i-k} = \sum_{i=1}^{L-k} \sum_{i=1}^{C_{i,k}} \sum_{i=1}^{C_{i,k+1}} \sum_{i=1}^{L-k} \sum_{i=1}^{C_{i,k+1}} \sum_{i=1}^{L-k} \sum_{i=1}^{C_{i,k+1}} \sum_{i=1}^{L-k} \sum_{i=1}^{C_{i,k+1}} \sum_{i=1}^{L-k} \sum_{i=1}^{C_{i,k+1}} \sum_{i=1}^{L-k} \sum_{i=1}^{C_{i,k+1}} \sum_{i=1}^{L-k} \sum_{i=1$$

$$\begin{split} \bullet \quad & \text{Best Estimate: } \hat{f}_{k}^{I+1} := \sum_{i=0}^{I-k} \frac{C_{i,k}}{\sum_{h=0}^{I-k} C_{h,k}} \frac{C_{i,k+1}}{C_{i,k}} = \left(1 - \frac{C_{I-k,k}}{\sum_{h=0}^{I-k} C_{h,k}}\right) \hat{f}_{k}^{I} + \frac{C_{I-k,k}}{\sum_{h=0}^{I-k} C_{h,k}} \frac{C_{I-k,k+1}}{C_{I-k,k}} \\ & \implies \quad \mathsf{E}\Big[\hat{f}_{k}^{I+1} \Big| \mathcal{D}_{k}^{I}\Big] = \left(1 - \frac{C_{I-k,k}}{\sum_{h=0}^{I-k} C_{h,k}}\right) \hat{f}_{k}^{I} + \frac{C_{I-k,k}}{\sum_{h=0}^{I-k} C_{h,k}} f_{k} =: \bar{f}_{k} \\ & \implies \quad \hat{\mathsf{E}}\Big[\hat{f}_{k}^{I+1} \Big| \mathcal{D}_{k}^{I}\Big] = \hat{f}_{k}^{I} \end{split}$$

$$\begin{split} \mathsf{E} \Big[\hat{C}_{i,J}^{I+1} \, \big| \mathcal{D}^I \Big] &= \mathsf{E} \Big[\hat{f}_{J-1}^{I+1} \cdot \ldots \cdot \hat{f}_{I+1-i}^{I+1} C_{i,I+1-i} \big| \mathcal{D}^I \Big] \\ &= \mathsf{E} \Big[\mathsf{E} \Big[\hat{f}_{J-1}^{I+1} \, \big| \mathcal{D}_{J-1}^I \Big] \hat{f}_{J-2}^{I+1} \cdot \ldots \cdot \hat{f}_{I+1-i}^{I+1} C_{i,I+1-i} \big| \mathcal{D}^I \Big] \\ &= \mathsf{E} \Big[\bar{f}_{J-1} \hat{f}_{J-2}^{I+1} \cdot \ldots \cdot \hat{f}_{I+1-i}^{I+1} C_{i,I+1-i} \big| \mathcal{D}^I \Big] \\ &= \ldots = \bar{f}_{J-1} \cdot \ldots \cdot \bar{f}_{I+1-i} \mathsf{E} \Big[C_{i,I+1-i} \big| \mathcal{D}^I \Big] = \bar{f}_{J-1} \cdot \ldots \cdot \bar{f}_{I+1-i} C_{i,I-i} \\ &\implies \qquad \hat{\mathsf{E}} \Big[\hat{C}_{i,J}^{I+1} \, \big| \mathcal{D}^I \Big] = \hat{f}_{J-1}^I \cdot \ldots \cdot \hat{f}_{I-i}^I C_{i,I-i} = \hat{C}_{i,J}^I = \hat{\mathsf{E}} \Big[\hat{C}_{i,J}^I \, \big| \mathcal{D}^I \Big]. \end{split}$$

(3/3)

Chain-Ladder method in practice

- The Chain-Ladder method is probably the most popular reserving method in general insurance and usually works fine for most of the standard business, provided we take care of:
 - * The size of the portfolio (has to be large enough to get the law of large numbers working).
 - * The homogeneity of the portfolio (for example exclude extraordinary large or late claims).
- But it has problems with:
 - * Inflation or other diagonal effects, because such effects contradict the assumption of independent accident periods.
 - * Too large or too small values at the last (known) diagonal. Because the values of the last diagonal are realisations of random variables, this may even happen if the portfolio satisfies Assumption 2.A perfectly.

2021-04-26

- Chain-Ladder-Method (CLM)
 - -Future development

Chain-Ladder method in practice

- The Chain-Ladder method is probably the most popular reserving method in general insurance and usually works fine for most of the standard business, provided we take care of:
- The size of the portfolio (has to be large enough to get the law of large numbers working).
- The homogeneity of the portfolio (for example exclude extraordinary large or late claims).
- · But it has problems with:
- Inflation or other diagonal effects, because such effects contradict the assumption of independent accident periods.
 Too large or too small values at the last (known) diagonal. Because the
- 100 targe or too areas values at the last (known) diagonal. Because the values of the last diagonal are realisations of random variables, this may even happen if the portfolio satisfies Assumption 2.A perfectly.

2 Chain-Ladder-Method (CLM)

2.3 Validation and examples (part 1 of 3)
 2.3.1 Chain-Ladder method on Payments and on Incurred

Example 2.7 (Chain-Ladder method on payments)

- We took the variance minimizing weights (2.2).
- For the calculation of the IBNR we used the corresponding incurred from Example 2.8.

Payme	nts													
AP\DP	0	1	2	3	4	5	6	7	8	9	Current	Ultimate	Reserves	IBN(e/y)R
0	1'216'632	1'347'072	1'786'877	2'281'606	2'656'224	2'909'307	3'283'388	3'587'549	3'754'403	3'921'258	3921258	3'921'258	0	0
1	798'924	1'051'912	1'215'785	1'349'939	1'655'312	1'926'210	2'132'833	2'287'311	2'567'056	2'681'142	2567056	2'681'142	114'086	-238'813
2	1'115'636	1'387'387	1'930'867	2'177'002	2'513'171	2'931'930	3'047'368	3'182'511	3'424'441	3'576'632	3182511	3'576'632	394'121	318'805
3	1'052'161	1'321'206	1'700'132	1'971'303	2'298'349	2'645'113	3'003'425	3'214'137	3'458'471	3'612'174	3003425	3'612'174	608'749	198'253
4	808'864	1'029'523	1'229'626	1'590'338	1'842'662	2'150'351	2'368'112	2'534'252	2'726'902	2'848'093	2150351	2'848'093	697'742	-450'905
5	1'016'862	1'251'420	1'698'052	2'105'143	2'385'339	2'732'771	3'009'512	3'220'652	3'465'481	3'619'496	2385339	3'619'496	1'234'157	-82'931
6	948'312	1'108'791	1'315'524	1'487'577	1'730'732	1'982'819	2'183'614	2'336'811	2'514'452	2'626'200	1487577	2'626'200	1'138'623	-1'077'913
7	917'530	1'082'426	1'484'405	1'769'095	2'058'267	2'358'060	2'596'855	2'779'043	2'990'302	3'123'198	1484405	3'123'198	1'638'793	-1'284'899
8	1'001'238	1'376'124	1'775'689	2'116'244	2'462'160	2'820'781	3'106'435	3'324'374	3'577'088	3'736'063	1376124	3'736'063	2'359'939	-396'694
9	841'930	1'039'196	1'340'932	1'598'106	1'859'328	2'130'146	2'345'860	2'510'439	2'701'279	2'821'331	841930	2'821'331	1'979'401	-224'045
										Total	22399976	32'565'588	10'165'612	-3'239'141
Observ	ed developr	nent factors	(ratios)											
AP\DP	0->1	1->2	2->3	3->4	4->5	5->6	6->7	7->8	8->9					
0	1.10721	1.32649	1.27687	1.16419	1.09528	1.12858	1.09264	1.04651	1.04444					
1	1.31666	1.15579	1.11034	1.22621	1.16365	1.10727	1.07243	1.12230						
2	1.24358	1.39173	1.12747	1.15442	1.16663	1.03937	1.04435							
3	1.25571	1.28680	1.15950	1.16590	1.15088	1.13546								
4	1.27280	1.19436	1.29335	1.15866	1.16698									
5	1.23067	1.35690	1.23974	1.13310										
6	1.16923	1.18645	1.13079											
7	1.17972	1.37137												
8	1.37442													
Estimat	ed develop	ment factor	s											
	0->1	1->2	2->3	3->4	4->5	5->6	6->7	7->8	8->9					
	1.23430	1.29036	1.19179	1.16346	1.14565	1.10127	1.07016	1.07602	1.04444					
cum.	3.351028	2.714917	2.104007	1.765421	1.517393	1.324478	1.202685	1.12384	1.04444					

©R. Dahms (ETH Zurich, Spring 2021)

(1/4)

2021-04-26

- Chain-Ladder-Method (CLM) —Validation and examples (part 1 of 3)

								COMP		·				
-	-													
											Exclude	statute.	Period and	
	2022			124710	TROOM	DECE		118731		795347	104704	04040	LOOP:	
	1.0150	1007-007	CONTRACT	11100		0101	100	110020-014	-		100010-0		and and	
											300-01		40.00	
	10030			120730	THOM							CHARGE	100.00	
	100000	100.00	CONTRACTOR OF	100.00	Antion		100014-0		1.01.54		100.00	-	The state of the s	
	PF10			1-9710							140101			
		790.00	Deces						OWNE		14445		710.00	
	10010-000					Chief Int.			117100					
	PTID													
-	-		hades!											
	815	1.12	415	110	111	111	1.12	1.00	815					
	1,803	13040	LINE	3,340	1,0000	LORE	3,9084	LINES	1044					
	1000			3450										
		1,26121		1.600	1.10103	1.040	1,200,000							
		1,78-81												
	1.170			1000										
	1200	4.30484												
	1,340	11840												
	1.175	1.00.00												
-	and diversion													
	818	1.0	848	814	8.0	314	417	1.48	8.4					
	1.000	1200		1.000	11000	1.050	14100		1.000					

2 Chain-Ladder-Method (CLM)

2.3 Validation and examples (part 1 of 3)
 2.3.1 Chain-Ladder method on Payments and on Incurred

Example 2.8 (Chain-Ladder method on incurred losses)

- We took the variance minimizing weights (2.2).
- For the calculation of the reserves we used the corresponding payments from Example 2.7.

Incurre	d													
AP\DP	0	1	2	3	4	5	6	7	8	9	Current	Ultimate	Reserves	IBN(e/y)R
0	3'362'115	5'217'243	4'754'900	4'381'677	4'136'883	4'094'140	4'018'736	3'971'591	3'941'391	3'921'258	3921258	3'921'258	0	0
1	2'640'443	4'643'860	3'869'954	3'248'558	3'102'002	3'019'980	2'976'064	2'946'941	2'919'955	2'905'040	2919955	2'905'040	337'984	-14'915
2	2'879'697	4'785'531	4'045'448	3'467'822	3'377'540	3'341'934	3'283'928	3'257'827	3'230'899	3'214'395	3257827	3'214'395	31'884	-43'432
3	2'933'345	5'299'146	4'451'963	3'700'809	3'553'391	3'469'505	3'413'921	3'379'921	3'351'984	3'334'861	3413921	3'334'861	331'436	-79'060
4	2'768'181	4'658'933	3'936'455	3'512'735	3'385'129	3'298'998	3'243'821	3'211'515	3'184'970	3'168'701	3298998	3'168'701	1'018'350	-130'297
5	3'228'439	5'271'304	4'484'946	3'798'384	3'702'427	3'632'746	3'571'987	3'536'413	3'507'182	3'489'267	3702427	3'489'267	1'103'928	-213'160
6	2'927'033	5'067'768	4'066'526	3'704'113	3'561'274	3'494'250	3'435'807	3'401'589	3'373'473	3'356'241	3704113	3'356'241	1'868'664	-347'872
7	3'083'429	4'790'944	4'408'097	3'842'969	3'694'775	3'625'239	3'564'605	3'529'104	3'499'934	3'482'056	4408097	3'482'056	1'997'651	-926'041
8	2'761'163	4'132'757	3'538'198	3'084'593	2'965'643	2'909'829	2'861'161	2'832'666	2'809'252	2'794'903	4132757	2'794'903	1'418'779	-1'337'854
9	3'045'376	5'025'345	4'302'373	3'750'799	3'606'160	3'538'291	3'479'112	3'444'462	3'415'991	3'398'542	3045376	3'398'542	2'556'612	353'166
										Total	35804729	33'065'263	10'665'287	-2'739'466
Observ	ed develop	nent factors	(ratios)											
AP\DP	0->1	1->2	2->3	3->4	4->5	5->6	6->7	7->8	8->9					
0	1.55177	0.91138	0.92151	0.94413	0.98967	0.98158	0.98827	0.99240	0.99489					
1	1.75874	0.83335	0.83943	0.95489	0.97356	0.98546	0.99021	0.99084						
2	1.66182	0.84535	0.85722	0.97397	0.98946	0.98264	0.99205							
3	1.80652	0.84013	0.83128	0.96017	0.97639	0.98398								
4	1.68303	0.84493	0.89236	0.96367	0.97456									
5	1.63277	0.85082	0.84692	0.97474										
6	1.73137	0.80243	0.91088											
7	1.55377	0.92009												
8	1.49675													
Estimat	ed develop	ment factor	s											
	0->1	1->2	2->3	3->4	4->5	5->6	6->7	7->8	8->9					
	1.65016	0.85613	0.87180	0.96144	0.98118	0.98327	0.99004	0.99173	0.99489					
cum.	1.115968	0.67628	0.789923	0.906085	0.942427	0.960504	0.976842	0.986669	0.99489					

©R. Dahms (ETH Zurich, Spring 2021)

(2/4)

2021-04-26

- Chain-Ladder-Method (CLM)
 - -Validation and examples (part 1 of 3)

		-	12200	07 55	o reser	VEL WE	used 1	the cor	respon	ding p	aymen	ts fron	n Exai	- 94
											Partiel I	1000		-
	10000	1000044	170000	10110	11.000.0	10010-0-0	10.476	110.04	1-1-1	19.9 20	A.4.54	101120		
	(NOTE: NO	4140100	THEFTOM .	72474			233394	17497941	DOUBO		10.004	0000	11744	- 14
	10000	110004	110111-0	-	1117-00	1.000	100.000	COURSE.	1.14 8.0		10100-0	10.000	10.000	
	2464346	12PEAU		20690		1-0-110	24.716		226790		36264	200408	111-04	-14
	CHOR										104004	7.9475		
	10010-0	111100	110.000	1000	COMPANY.	DA/TR.	10.00	11000	1141144	1000.00	10051	1000	Contract	100
	2501240	101736	100706	20410	716229	14430	20100	1102208			10+2.1	20124	Thirty	- 00
	THE N.P.		EVENTER	794000					7-013-0		10,000	PATTO	TROOM	
				inite here			200 Automatic		200.00		18693			
											201010	238340		311

-	-	and Sectors	hered.											
		8.10			8.15	516	1.10	218						
					4.16167		1.1627		1040					
	3.04%	4.000	10.00	1040		1000	1.000	4,700.04						
	s de la séc	4.8626	440.04	14160	4.10100	1-020	6.000							
	1.890	CHEES		1.500										
	1.000	1.00.00	100.0	1.000										
	1440	6.80.60	- Landra											
		4.8083												
	LPAN	0.0000												
	Less													
-		-												
	818	1.0	848	814		314	417	1.4	8.4					
	1000	6.800.0	10.00		1.10.00	100.0	1.000	10011	1000					

2 Chain-Ladder-Method (CLM)	 2.3 Validation and examples (part 1 of 3) 2.3.1 Chain-Ladder method on Payments and on Incurred
-----------------------------	--

Comparison of the two results

- Both, payments and incurred losses, will eventually result in the same ultimate. But the estimates are not the same! This gap is a systematic problem of projecting payments and incurred losses independently of each other. For more information see [7].
- Although in total the difference is only 5 % we have much larger differences per accident period, which almost cancel each other.

	Chai	in-Ladder-Metho	od on Paymen	ts	Ch	ain-Ladder-Meth	nod on Incurred	ł	Reserves	: Incurred - Payments
AP\UP	Current	Ultimate	Reserves	IBN(e/y)R	Current	Ultimate	Reserves	IBN(e/y)R	Reserves	in % of mean Reserves
0	3'921'258	3'921'258	0	0	3'921'258	3'921'258	0	0	0	
1	2'567'056	2'681'142	114'086	-238'813	2'919'955	2'905'040	337'984	-14'915	223'897	99%
2	3'182'511	3'576'632	394'121	318'805	3'257'827	3'214'395	31'884	-43'432	-362'237	-170%
3	3'003'425	3'612'174	608'749	198'253	3'413'921	3'334'861	331'436	-79'060	-277'313	-59%
4	2'150'351	2'848'093	697'742	-450'905	3'298'998	3'168'701	1'018'350	-130'297	320'608	37%
5	2'385'339	3'619'496	1'234'157	-82'931	3'702'427	3'489'267	1'103'928	-213'160	-130'228	-11%
6	1'487'577	2'626'200	1'138'623	-1'077'913	3'704'113	3'356'241	1'868'664	-347'872	730'040	49%
7	1'484'405	3'123'198	1'638'793	-1'284'899	4'408'097	3'482'056	1'997'651	-926'041	358'857	20%
8	1'376'124	3'736'063	2'359'939	-396'694	4'132'757	2'794'903	1'418'779	-1'337'854	-941'160	-50%
9	841'930	2'821'331	1'979'401	-224'045	3'045'376	3'398'542	2'556'612	353'166	577'211	25%
Total	22'399'976	32'565'588	10'165'612	-3'239'141	35'804'729	33'065'263	10'665'287	-2'739'466	499'676	5%

(3/4)

- Chain-Ladder-Method (CLM)
 - -Validation and examples (part 1 of 3)

Comparison of the two results

- Both, payments and incurred losses, will eventually result in the same ultimate. But the estimates are not the same! This gap is a systematic problem of projecting payments and incurred losses independently of each other. For more information see [7].
- Although in total the difference is only 5% we have much larger differences per accident period, which almost cancel each other.

	famout	UTINA ST	Rection	810.53	Ortest	Water	neere	*****	Roanes.	
	1147294	DMINO	114266				11700		LOW	10
	110120	1201201	1943.0	1000	FDC87		1.200			110
	THOMAS .	1987334	1011101	100.00		111000	1010			.045
		1144700	80740			724534			1.179.00	379
	concer.	riteren.				1801.04				- 10
	OWNER	710/201				YYXX-B	10000		Cardeda.	10
	THEFT	7107394	THETO		example.	780704	199704		Detter	275
	1100344	CONTRACTOR OF	10000		111/14	(THEN.	1000			
	88.(3464	DECH	(MARK)		2040378	22467-0		XEM	1028	2.0
100		1000008			7/20/12	100030	1000.00		4110.0	10

©R. Dahms (ETH Zurich, Spring 2021)

2021-04-26

- Chain-Ladder-Method (CLM)
 - Validation and examples (part 1 of 3)

Validation of Chain-Ladder Assumption 2.A

- Since we only have very few data, any statistical validation of Assumption 2.A will usually fail.
- There are some helpful statistics and graphical presentations that can be used to get a feeling about which estimate we should trust more. In the following slides we will show some of them.
- The most important information is the knowledge about the composition of the underlying portfolio and the corresponding risks. We usually face the problem of splitting up the portfolio in subportfolios, which are as homogeneous as possible, but are not too small in order to get the law of large numbers working. Typical criteria for separation are:
 - * Type of the risk insured.
 - * Type of claims, like property damage or bodily injury.
 - * Type of payments, like lump sums, annuities, salvage and subrogation or deductibles.
 - * Type of case reserves, like automatically generated, set individually by a normal claims manager or set individually by an expert.
 - * Complexity of the claims, often the size of the claim may be a criteria for its complexity.
 - * . . .
- Finally, actuaries have to use other information, too, in order to determine their estimates.

- Chain-Ladder-Method (CLM)
 - -Validation and examples (part 1 of 3)

Validation of Chain-Ladder Assumption 2.A

- Since we cely have very few data, any statistical validation of Assumption 2.4 will usually fail.
 Three are some helpful statistics and graphical presentations that can be used to get
- There are some helpful statistics and graphical presentations that can be used to ge a feeling about which estimate we should trust more. In the following slides we will show some of them.
- those some or team. • The most important information is the knowledge about the composition of the underlying portfolio and the conseponding rules. We usually face the problem of splitting up the portfolio is wubberfolio, within the ran k throngeneous as possible, but are not too usual in order to get the law of large numbers working. Typical criteria for separation are:
- Type of the risk insured.
- · Type of claims, like property damage or bodily injury.
- Type of clasmi, mit propeny samage in decay mpay.
 Type of payments, like lamp sama, annulise, sahvage and subregation or deductibles.
 Type of case meanes, like automatically generated, set individually by a normal claims.
- manager or set individually by an expert. - Complexity of the claims, often the size of the claim may be a criteria for its complexity
- Finally, actuaries have to use other information, too, in order to determine their estimates.

- 2 Chain-Ladder-Method (CLM)
- 2.3 Validation and examples (part 1 of 3) ■ 2.3.2 How to validate the Chain-Ladder assumptions

(2/6)The projection of incurred is more stable and closer to the estimated ultimate than the projection

of payments. This may be an indication to trust it more.

©R. Dahms (ETH Zurich, Spring 2021)

2021-04-26

- Chain-Ladder-Method (CLM)
 - Validation and examples (part 1 of 3)

The projection of incurred is more stable and closer to the estimated ultimate than the projection of payments. This may be an indication to trust it more.

2.3 Validation and examples (part 1 of 3)
▲ 2.3.2 How to validate the Chain-Ladder assumptions

(3/6)

Plot of residuals The residuals are defined by $\frac{\frac{C_{i,k+1}}{C_{i,k}} - \hat{f}_k}{\sqrt{\sqrt{\operatorname{Var}}\left[\frac{C_{i,k+1}}{C_{i,k}} \middle| \mathcal{D}_k\right]}} = \frac{\frac{C_{i,k+1}}{C_{i,k}} - \hat{f}_k}{\sqrt{\frac{\hat{\sigma}_k^2}{C_{i,k}}}}.$

Payments

Incurred

The residual plots are very similar, except that the incurred residuals look a bit more symmetric.

2021-04-26

- Chain-Ladder-Method (CLM)

(4/6)

Backtesting step by step

Here we compare the observed values with the one step backwards projected estimate, i.e.

$$C_{i,k}$$
 with $rac{C_{i,k+1}}{\widehat{f}_k}$

Payments

Back testin	g (step by step)								
AP\DP	0	1	2	3	- 4	5	6	7	8	9
0 Actual	1'216'632	1'347'072	1'786'877	2'281'606	2'656'224	2'909'307	3'283'388	3'587'549	3'754'403	3'921'258
Expected	1'170'166	1'444'338	1'863'710	2'221'146	2'584'208	2'960'606	3'260'420	3'489'162	3'754'403	3'921'258
1 Actual	798'924	1'051'912	1'215'785	1'349'939	1'655'312	1'926'210	2'132'833	2'287'311	2'567'056	
Expected	800/095	987'559	1'274'303	1'518'698	1'766'940	2'024'301	2'229'297	2'385'698	2'567'056	
2 Actual	1'115'636	1'387'387	1'930'867	2'177'002	2'513'171	2'931'930	3'047'368	3'182'511		
Expected	1'067'324	1'317'400	1'699'914	2'025'937	2'357'091	2'700'409	2'973'872	3'182'511		
3 Actual	1'052'161	1'321'206	1'700'132	1'971'303	2'298'349	2'645'113	3'003'425			
Expected	1'077'930	1'330'492	1716'807	2'046'069	2'380'524	2'727'244	3'003'425			
4 Actual	808'864	1'029'523	1'229'626	1'590'338	1'842'662	2'150'351				
Expected	849'916	1'049'053	1'353'652	1'613'265	1'876'965	2'150'351				
5 Actual	1'016'862	1'251'420	1'698'052	2'105'143	2'385'339					
Expected	1'080'115	1'333'188	1'720'287	2'050'216	2'385'339					
6 Actual	948'312	1'108'791	1'315'524	1'487'577						
Expected	783'700	967'322	1'248'190	1'487'577						
7 Actual	917'530	1'082'426	1'484'405							
Expected	932'012	1'150'384	1'484'405							
8 Actual	1'001'238	1'376'124								
Expected	1'114'901	1'376'124								
9 Actual	841'930									
Expected	841'930									

Incurred

Back testin	g (step by step)								
AP\DP	0	1	2	3	4	5	6	7	8	9
0 Actual	3'362'115	5'217'243	4'754'900	4'381'677	4'136'883	4'094'140	4'018'736	3'971'591	3'941'391	3'921'258
Expected	3'523'773	5'798'272	4'964'103	4'327'694	4'160'808	4'082'501	4'014'219	3'974'241	3'941'391	3'921'258
1 Actual	2'640'443	4'643'860	3'869'954	3'248'558	3'102'002	3'019'980	2'976'064	2'946'941	2'919'955	
Expected	2'603'157	4'295'624	3'677'625	3'205'145	3'082'509	3'024'495	2'973'909	2'944'291	2'919'955	
2 Actual	2'879'697	4'785'531	4'045'448	3'467'822	3'377'540	3'341'934	3'283'928	3'257'827		
Expected	2'880'365	4'753'051	4'069'253	3'547'565	3'410'763	3'346'572	3'290'599	3'257'827		
3 Actual	2'933'345	5'299'146	4'451'963	3'700'809	3'553'391	3'469'505	3'413'921			
Expected	2'988'313	4'931'181	4'221'757	3'680'518	3'538'588	3'471'991	3'413'921			
4 Actual	2'768'181	4'658'933	3'936'455	3'512'735	3'385'129	3'298'998				
Expected	2'839'419	4'685'483	4'011'406	3'497'135	3'362'277	3'298'998				
5 Actual	3'228'439	5'271'304	4'484'946	3'798'384	3'702'427					
Expected	3'126'673	5'159'498	4'417'226	3'850'928	3'702'427					
6 Actual	2'927'033	5'067'768	4'066'526	3'704'113						
Expected	3'007'470	4'962'794	4'248'822	3'704'113						
7 Actual	3'083'429	4'790'944	4'408'097							
Expected	3'120'211	5'148'834	4'408'097							
8 Actual	2'761'163	4'132'757								
Expected	2'504'465	4'132'757								
9 Actual	3'045'376									
Expected	3'045'376									

Incurred seems to be a bit more stable, in particular for later development periods.

- Chain-Ladder-Method (CLM)

2 Chain-Ladder-Method (CLM)	adder-Method (CLM)
-----------------------------	--------------------

(5/6)

Backtesting the ultimate

Here we compare the projected ultimate starting at development period k with the one starting at development period I - i (the estimated ultimate), i.e.

$$C_{i,k}\prod_{j=k}^{J-1}\widehat{f_j}\qquad\text{with}\qquad C_{i,I-i}\prod_{j=I-i}^{J-1}\widehat{f_j}=\widehat{C}_{i,J}.$$

Payments

Incurred

Back testi	ng (current to	ultimate)									Back tes
AP\DP	0	1	2	3	4	5	6	7	8	9	AP\DP
0	4'076'968	3'657'189	3'759'602	4'027'995	4'030'535	3'853'313	3'948'882	4'031'830	3'921'258	3'921'258	0
1	2'677'217	2'855'854	2'558'020	2'383'211	2'511'758	2'551'223	2'565'126	2'570/571	2'681'142		1
2	3'738'527	3'766'641	4'062'558	3'843'326	3'813'467	3'883'277	3'665'024	3'576'632			2
3	3'525'821	3'586'965	3'577'090	3'480'181	3'487'498	3'503'394	3'612'174				3
4	2'710'526	2'795'070	2'587'142	2'807'617	2'796'042	2'848'093					4
5	3'407'533	3'397'502	3'572'713	3'716'465	3'619'496						5
6	3'177'820	3'010'276	2'767'872	2'626'200							6
7	3'074'669	2'938'697	3'123'198								7
8	3'355'176	3'736'063									8
9	2'821'331										9

Back testi	ng (current to	ultimate)								
AP\DP	0	1	2	3	4	5	6	7	8	9
0	3'752'013	3'528'319	3'756'003	3'970'171	3'898'710	3'932'438	3'925'670	3'918'644	3'921'258	3'921'258
1	2'946'650	3'140'552	3'056'964	2'943'469	2'923'411	2'900'703	2'907'144	2'907'654	2'905'040	
2	3'213'650	3'236'361	3'195'591	3'142'141	3'183'085	3'209'941	3'207'879	3'214'395		
3	3'273'519	3'583'709	3'516'707	3'353'247	3'348'812	3'332'473	3'334'861			
4	3'089'201	3'150'745	3'109'495	3'182'836	3'190'237	3'168'701				
5	3'602'835	3'564'880	3'542'761	3'441'658	3'489'267					
6	3'266'475	3'427'232	3'212'241	3'356'241						
7	3'441'008	3'240'022	3'482'056							
8	3'081'370	2'794'903								
9	3'398'542									

Again, incurred seems to be a bit more stable, in particular for later development periods.

2021-04-26

- Chain-Ladder-Method (CLM) —Validation and examples (part 1 of 3)

2	Chain-	Ladde	r-Met	hod (CLM))

Sensitivity to exclusion or inclusion of individual observed development factors

Here we compare the projected ultimate based on the selected development factors with the projected ultimate if we exclude (or include) a observed development factor within the estimation of f_k .

Incurred

Payments

ensitivi	ty test on exclus	ions and inclu	usions of indh	vidual observe	ed developmi	ant factors					Sensitivity test on exclu	ions and incl	usions of indi	vidual observ	ed developme	nt factors
AP\DP		0	1	2	3	4	5	6	7	8	AP\DP	0	1	2	3	4
0	Ratio	1.10721	1.32649	1.27687	1.16419	1.09528	1.12858	1.09264	1.04651	1.04444	0 Ratio	1.55177	0.91138	0.92151	0.94413	0.98967
Char	ge of reserves	0.45%	-0.30%	-1.34%	-0.02%	2.20%	-1.78%	-2.93%	10.99%	-11.99%	Change of reserves	-1.07%	2.21%	3.85%	-2.12%	1.61%
1	Ratio	1.31666	1.15579	1.11034	1.22621	1.16365	1.10727	1.07243	1.12230		1 Ratio	1.75874	0.83335	0.83943	0.95489	0.97356
Char	ge of reserves	-0.18%	0.83%	0.82%	-0.87%	-0.44%	-0.23%	-0.16%	-7.00%		Change of reserves	0.90%	-0.80%	-1.97%	-0.56%	-1.01%
2	Ratio	1.24358	1.39173	1.12747	1.15442	1.16663	1.03937	1.04435			2 Ratio	1.66182	0.84535	0.85722	0.97397	0.98946
Char	ige of reserves	-0.03%	-0.86%	1.11%	0.22%	-0.85%	4.07%	2.99%			Change of reserves	0.11%	-0.39%	-0.93%	1.15%	1.21%
3	Ratio	1.25571	1.28680	1.15950	1.16590	1.15088	1.13546				3 Ratio	1.80652	0.84013	0.83128	0.96017	0.97639
Char	ge of reserves	-0.05%	0.03%	0.48%	+0.05%	-0.19%	-1.95%				Change of reserves	1.46%	-0.65%	-2.91%	-0.13%	-0.75%
4	Ratio	1.27280	1.19436	1.29335	1.15866	1.16698					4 Ratio	1.68303	0.84493	0.89236	0.96367	0.97456
Char	ge of reserves	-0.09%	0.58%	-1.03%	0.08%	-0.59%					Change of reserves	0.29%	-0.39%	1.28%	0.21%	-0.97%
5	Ratio	1.23067	1.35690	1.23974	1.13310						5 Ratio	1.63277	0.85082	0.84692	0.97474	
Char	ge of reserves	0.01%	-0.50%	-0.71%	0.71%						Change of reserves	-0.18%	-0.21%	-1.80%	1.36%	
6	Ratio	1.16923	1.18645	1.13079							6 Ratio	1.73137	0.80243	0.91088		
Char	ge of reserves	0.18%	0.68%	0.67%							Change of reserves	0.76%	-2.07%	2.52%		
7	Ratio	1.17972	1.37137								7 Ratio	1.55377	0.92009			
Char	ige of reserves	0.14%	-0.52%								Change of reserves	-0.95%	2.32%			
8	Ratio	1.37442									8 Ratio	1.49675				
Chas	an of receiver	-0.4056									Chapter of receptor	-1 2456				

Again, incurred seems to be a bit more stable, in particular for later development periods.

0.98158 0.98827 0.99240 0.99489

0.44%

0.98264 0.99205

0.98391 -0.75% 0.175

1.619 -0.525 -0.973 0.86% 0.99084 0.9902 0.06% -0.64%

1.21% -0.15% 0.803 (6/6)

- Chain-Ladder-Method (CLM)

Stochastic Reserving Lecture 3 (Continuation of Lecture 2) Chain-Ladder method

René Dahms

ETH Zurich, Spring 2021

10 March 2021 (Last update: 26 April 2021)

Chain-Ladder-Method (CLM) —Validation and examples (part 1 of 3)

Stochastic Reserving Lecture 3 (Continuation of Lecture 2) Chain-Ladder method

René Dahma

ETH Zurich, Spring 2021

10 March 2021 (Last update: 26 April 2021)

2 Chain-Ladder-Method (CLM)

2.1 How does the Chain-Ladder method work

- 2.1.1 Chain-Ladder method without stochastic
- 2.1.2 Stochastic behind the Chain-Ladder method

2.2 Future development

2.2.1 Projection of the future development

2.3 Validation and examples (part 1 of 3)

- 2.3.1 Chain-Ladder method on Payments and on Incurred
- 2.3.2 How to validate the Chain-Ladder assumptions

2.4 Ultimate uncertainty

- 2.4.1 Ultimate uncertainty of accident period \boldsymbol{i}
- 2.4.2 Ultimate uncertainty of the aggregation of all accident periods

2.5 Validation and examples (part 2 of 3)

2.5.1 Ultimate uncertainty

2.6 Solvency uncertainty

- 2.6.1 Solvency uncertainty of a single accident period
- 2.6.2 Solvency uncertainty of all accident periods
- 2.6.3 Uncertainties of further CDR's

2.7 Validation and examples (part 3 of 3)

2.7.1 Solvency uncertainty

2.8 Literature

2021-04-26

- Chain-Ladder-Method (CLM)
 - Validation and examples (part 1 of 3)
 - Lecture 3: Table of contents

2 Chairs Laders Mathed (CLM) 31 Show for the North Schwardhaus, Schward, Schwar

Ultimate uncertainty of a single accident period (repetition)

The ultimate uncertainty of the estimated ultimate (or reserves) of accident period i is defined by

$$\mathsf{mse}_{\mathcal{D}^{I}}\Big[\widehat{C}_{i,J}\Big] = \mathsf{E}\bigg[\Big(C_{i,J} - \widehat{C}_{i,J}\Big)^{2}\bigg|\mathcal{D}^{I}\bigg].$$

The mse can be split into random and parameter error

$$\mathsf{mse}_{\mathcal{D}^{I}}\left[\widehat{C}_{i,J}\right] = \underbrace{\mathsf{Var}\left[C_{i,J}\middle|\mathcal{D}^{I}\right]}_{\mathsf{random error}} + \underbrace{\mathsf{E}\left[C_{i,J}-\widehat{C}_{i,J}\middle|\mathcal{D}^{I}\right]^{2}}_{\mathsf{parameter error}}$$

and analogously for the ultimate uncertainty of the whole reserves.

2021-04-26

Chain-Ladder-Method (CLM)

-Ultimate uncertainty

Ultimate uncertainty of a single accident period (repetition) The ultimate uncertainty of the estimated ultimate (or reserves) of accident period i is defined by $\operatorname{mse}_{D^{I}}\left[\widehat{C}_{i,J}\right] = \mathbb{E}\left[\left(C_{i,J} - \widehat{C}_{i,J}\right)^{2} | \mathcal{D}^{I} \right]$ The mse can be split into random and parameter error $\mathsf{mse}_{\mathcal{D}^{J}}\left[\hat{C}_{i,J}\right] = \underbrace{\mathsf{Var}[C_{i,J}|\mathcal{D}^{I}]}_{\text{cardion error}} + \underbrace{\mathsf{E}\left[C_{i,J} - \hat{C}_{i,J}|\mathcal{D}^{I}\right]^{2}}_{\text{parameter error}}$ and analogously for the ultimate uncertainty of the whole reserves

$$\begin{split} \mathsf{Var}\Big[C_{i,J}\Big|\mathcal{D}^I\Big] &= \mathsf{Var}\Big[C_{i,J} - \widehat{C}_{i,J}\Big|\mathcal{D}^I\Big] \\ &= \underbrace{\mathsf{E}\!\left[\left(C_{i,J} - \widehat{C}_{i,J}\right)^2\Big|\mathcal{D}^I\right]}_{=\mathsf{mse}_{\mathcal{D}I}\left[\widehat{C}_{i,J}\right]} \!- \mathsf{E}\!\left[C_{i,J} - \widehat{C}_{i,J}\Big|\mathcal{D}^I\right]^2 \end{split}$$

2 Chain-Ladder-Method (CLM)	2.4 Ultimate uncertainty					
	2.4.1 Ultimate uncertainty of accident period i					

Taylor approximation of the mse (introduced by Ancus Röhr in [12])

Lets look at the (multi-linear) functional:

$$U_i(\mathbf{g})\,x:=g_{J-1}\cdots g_{I-i}x.$$

Then we get:

$$\begin{split} \frac{\partial}{\partial g_j} U_i(\mathbf{g}) & x = g_{J-1} \cdots g_{j+1} g_{j-1} \cdots g_{I-i} x = \frac{U_i(\mathbf{g}) x}{g_j}, \\ U_i(\widehat{\mathbf{f}}) & C_{i,I-i} = \widehat{f}_{J-1} \dots \widehat{f}_{I-i} C_{i,I-i} = \widehat{C}_{i,J}, \\ U_i(\mathbf{F}_i) & C_{i,I-i} = F_{i,J-1} \dots F_{i,I-i} C_{i,I-i} = C_{i,J} \quad \text{and} \\ & C_{i,J} - \widehat{C}_{i,J} \approx \sum_{k=I-i}^{J-1} \frac{\partial}{\partial F_{i,k}} U_i(\mathbf{F}_i) \Big|_{\widehat{\mathbf{f}}} C_{i,I-i} \left(F_{i,k} - \widehat{f}_k\right) \\ & = \sum_{k=I-i}^{J-1} \frac{\widehat{C}_{i,J}}{\widehat{f}_k} \left(F_{i,k} - \widehat{f}_k\right), \end{split}$$

where we used a first order Taylor approximation and \mathbf{F}_i and $\hat{\mathbf{f}}$ denote the vector of all link ratios $F_{i,k}$: $= C_{i,k+1}/C_{i,k}$ of accident period i and the vector of all estimated development factors \hat{f}_k , respectively.

Note, for $i + k \ge I$ we have:

$$\mathsf{E}\big[F_{i,k}|\mathcal{D}^I\big] = f_k, \quad \mathsf{Var}\big[F_{i,k}|\mathcal{D}^I\big] \approx \frac{\widehat{\sigma}_k^2}{\widehat{C}_{i,k}} \quad \text{and} \quad \mathsf{Cov}\big[F_{i,k}, F_{h,j}|\mathcal{D}^I\big] = 0 \text{ for } (i,k) \neq (h,j).$$

Take preventions of the new (related by hours laber
$$|\cdot||_{1}^{-1}$$
 that are the global sectors
$$D(d) = p_{1} - p_{2} - p_{1} - d_{2}$$

$$= D(d) = p_{1} - p_{2} - d_{2} - d_{2}$$

$$= D(d) = p_{1} - p_{2} - d_{2} - d_{$$

Sine
$$F_{i,k} = C_{i,k+1}/C_{i,k}$$
, we get for $i + k \ge I$

$$\mathbb{E}\left[F_{i,k}|\mathcal{D}^{I}\right] = \mathbb{E}\left[\mathbb{E}\left[F_{i,k}|\mathcal{D}_{k}^{i+k}\right]|\mathcal{D}^{I}\right] = \mathbb{E}\left[\mathbb{E}\left[\frac{C_{i,k+1}}{C_{i,k}}\left|\mathcal{D}_{k}^{i+k}\right]\right]\mathcal{D}^{I}\right] = \mathbb{E}\left[f_{k}|\mathcal{D}^{I}\right] = f_{k}$$

$$\operatorname{Var}\left[F_{i,k}|\mathcal{D}^{I}\right] = \mathbb{E}\left[\operatorname{Var}\left[F_{i,k}|\mathcal{D}_{k}^{i+k}\right]\right|\mathcal{D}^{I}\right] + \operatorname{Var}\left[\mathbb{E}\left[F_{i,k}|\mathcal{D}_{k}^{i+k}\right]\right|\mathcal{D}^{I}\right]$$

$$= \mathbb{E}\left[\frac{\operatorname{Var}\left[C_{i,k+1}\left|\mathcal{D}_{k}^{i+k}\right]\right]}{C_{i,k}^{2}}\left|\mathcal{D}^{I}\right] + 0 = \mathbb{E}\left[\frac{\sigma_{k}^{2}C_{i,k}}{C_{i,k}^{2}}\left|\mathcal{D}^{I}\right] \approx \frac{\widehat{\sigma}_{k}^{2}}{\widehat{C}_{i,k}}.$$

For the covariance statement we get: If h+j < I then $F_{h,j} \in \mathcal{D}^I$ and we are done. Otherwise, since $(i,k) \neq (h,j)$, either $F_{i,k} \in \mathcal{D}_j^{h+j}$ or $F_{h,j} \in \mathcal{D}_k^{i+k}$. Lets assume the first:

$$\begin{split} \mathsf{Cov}\Big[F_{i,k},F_{h,j}\big|\mathcal{D}^I\Big] &= \mathsf{E}\Big[\mathsf{Cov}\Big[F_{i,k},F_{h,j}\big|\mathcal{D}_j^{h+j}\Big]\Big|\mathcal{D}^I\Big] + \mathsf{Cov}\Big[\mathsf{E}\Big[F_{i,k}\big|\mathcal{D}_j^{h+j}\Big],\mathsf{E}\Big[F_{h,j}\big|\mathcal{D}_j^{h+j}\Big]\Big|\mathcal{D}^I\Big] \\ &= 0 + \mathsf{Cov}\Big[F_{i,k},f_j\big|\mathcal{D}^I\Big] = 0 \end{split}$$
Estimator 2.9 (Linear approximation of the ultimate uncertainty of accident period i)

$$\begin{split} & \mathsf{mse}_{\mathcal{D}^{I}}\left[\widehat{C}_{i,J}\right] = \mathsf{E}\Big[\Big(C_{i,J} - \widehat{C}_{i,J}\Big)^{2}\Big|\mathcal{D}^{I}\Big] \\ &\approx \mathsf{E}\Big[\left(\sum_{k=I-i}^{J-1} \frac{\widehat{C}_{i,J}}{\widehat{f}_{k}}\left(F_{i,k} - \widehat{f}_{k}\right)\right)^{2}\Big|\mathcal{D}^{I}\Big] \qquad (\mathsf{Taylor approximation}) \\ &= \sum_{k_{1},k_{2}=I-i}^{J-1} \frac{\widehat{C}_{i,J}}{\widehat{f}_{k_{1}}} \frac{\widehat{C}_{i,J}}{\widehat{f}_{k_{2}}} \mathsf{E}\Big[\Big(F_{i,k_{1}} - \widehat{f}_{k_{1}}\Big)\left(F_{i,k_{2}} - \widehat{f}_{k_{2}}\right)\Big|\mathcal{D}^{I}\Big] \\ &= \sum_{k_{1},k_{2}=I-i}^{J-1} \frac{\widehat{C}_{i,J}}{\widehat{f}_{k_{1}}} \frac{\widehat{C}_{i,J}}{\widehat{f}_{k_{2}}} \left(\mathsf{Cov}[F_{i,k_{1}},F_{i,k_{2}}|\mathcal{D}^{I}] + \left(\widehat{f}_{k_{1}} - f_{k_{1}}\right)\left(\widehat{f}_{k_{2}} - f_{k_{2}}\right)\Big) \\ &\approx \sum_{k_{1},k_{2}=I-i}^{J-1} \frac{\widehat{C}_{i,J}}{\widehat{f}_{k_{1}}} \frac{\widehat{C}_{i,J}}{\widehat{f}_{k_{2}}} \left(\underbrace{\mathsf{Cov}[F_{i,k_{1}},F_{i,k_{2}}|\mathcal{D}^{I}]}_{random error} + \underbrace{\mathsf{Cov}[\widehat{f}_{k_{1}},\widehat{f}_{k_{2}}\Big|\mathcal{D}_{k_{1}\wedge k_{2}}\Big]}_{parameter error}\right) \\ &\approx \sum_{k=I-i}^{J-1} \frac{\widehat{\sigma}_{k}^{2}}{\widehat{f}_{k}^{2}} \widehat{C}_{i,J}^{2} \frac{1}{\widehat{C}_{i,k}} + \underbrace{\sum_{k=I-i}^{J-1} \frac{\widehat{\sigma}_{k}^{2}}{\widehat{f}_{k}^{2}} \widehat{C}_{i,J}^{2} \sum_{h=0}^{I-k-1} \frac{w_{h,k}^{2}}{C_{h,k}}}_{h=0} = \widehat{C}_{i,J}^{2} \sum_{k=I-i}^{J-1} \frac{\widehat{\sigma}_{k}^{2}}{\widehat{f}_{k}^{2}} \left(\frac{1}{\widehat{C}_{i,k}} + \sum_{h=0}^{I-k-1} \frac{w_{h,k}^{2}}{C_{h,k}}}\right) \\ &\approx \underbrace{\sum_{k=I-i}^{J-1} \frac{\widehat{\sigma}_{k}^{2}}{\widehat{f}_{k}^{2}} \widehat{C}_{i,J}^{2} \frac{1}{\widehat{f}_{k}}}_{parameter error}} = \widehat{C}_{i,J}^{2} \sum_{k=I-i}^{J-1} \frac{\widehat{\sigma}_{k}^{2}}{\widehat{f}_{k}^{2}} \left(\frac{1}{\widehat{C}_{i,k}} + \sum_{h=0}^{I-k-1} \frac{w_{h,k}^{2}}{C_{h,k}}}\right) \\ &= \widehat{C}_{i,J}^{2} \sum_{k=I-i}^{J-1} \widehat{\sigma}_{k}^{2} \sum_{k=I-i}^{J-1} \frac{\widehat{\sigma}_{k}^{2}}{\widehat{f}_{k}^{2}}} \widehat{C}_{i,J}^{2} \sum_{h=0}^{I-k-1} \frac{w_{h,k}^{2}}{C_{h,k}}} = \widehat{C}_{i,J}^{2} \sum_{k=I-i}^{J-1} \widehat{\sigma}_{k}^{2}} \sum_{k=I-i}^{J-1} \frac{\widehat{\sigma}_{k}^{2}}{\widehat{f}_{k}^{2}}} \widehat{C}_{i,k}^{2} \sum_{h=0}^{I-k-1} \frac{\widehat{\sigma}_{k}^{2}}{C_{h,k}^{2}}} \sum_{h=0}^{I-1} \widehat{\sigma}_{k}^{2}} \sum_{h=0}^{I-1} \widehat{\sigma}_{h,k}^{2}} \sum_{h=0}^{I-1} \widehat{\sigma}_{h,k}^{2}} \sum_{h=0}^{I-1} \widehat{\sigma}_{h,k}^{2}} \sum_{h=0}^{I-1} \widehat{\sigma}_{h,k}^{2} \sum_{h=0}^{I-1} \widehat{\sigma}_{h,k}^{2}} \sum_{h=0$$

Stochastic Reserving Chain-Ladder-Method (CLM) Ultimate uncertainty

$$\begin{split} & \mathsf{E}\Big[\Big(F_{i,k_{1}}-\hat{f}_{k_{1}}\Big)\left(F_{i,k_{2}}-\hat{f}_{k_{2}}\right)\big|\mathcal{D}^{I}\Big] = \mathsf{E}\Big[\Big(\!\Big(F_{i,k_{1}}-f_{k_{1}}\Big)-\Big(\hat{f}_{k_{1}}-f_{k_{1}}\Big)\!\Big)\Big(\!\Big(F_{i,k_{2}}-f_{k_{2}}\Big)-\Big(\hat{f}_{k_{2}}-f_{k_{2}}\Big)\!\Big)\Big|\mathcal{D}^{I}\Big] \\ & = \mathsf{E}\Big[\Big(F_{i,k_{1}}-f_{k_{1}}\Big)\Big(F_{i,k_{2}}-f_{k_{2}}\Big)\big|\mathcal{D}^{I}\Big] - \mathsf{E}\Big[\Big(F_{i,k_{1}}-f_{k_{1}}\Big)\Big(\hat{f}_{k_{2}}-f_{k_{2}}\Big)\big|\mathcal{D}^{I}\Big] \\ & - \mathsf{E}\Big[\Big(\hat{f}_{k_{1}}-f_{k_{1}}\Big)\Big(F_{i,k_{2}}-f_{k_{2}}\Big)\big|\mathcal{D}^{I}\Big] + \mathsf{E}\Big[\Big(\hat{f}_{k_{1}}-f_{k_{1}}\Big)\Big(\hat{f}_{k_{2}}-f_{k_{2}}\Big)\big|\mathcal{D}^{I}\Big] \\ & = \mathsf{Cov}\Big[F_{i,k_{1}},F_{i,k_{2}}\big|\mathcal{D}^{I}\Big] - \mathsf{E}\Big[F_{i,k_{1}}-f_{k_{1}}\big|\mathcal{D}^{I}\Big]\Big(\hat{f}_{k_{2}}-f_{k_{2}}\Big) \\ & - \mathsf{E}\Big[F_{i,k_{2}}-f_{k_{2}}\big|\mathcal{D}^{I}\Big]\Big(\hat{f}_{k_{1}}-f_{k_{1}}\Big) + \Big(\hat{f}_{k_{1}}-f_{k_{1}}\Big)\Big(\hat{f}_{k_{2}}-f_{k_{2}}\Big) \\ & = \mathsf{Cov}\Big[F_{i,k_{1}},F_{i,k_{2}}\big|\mathcal{D}^{I}\Big] - 0 - 0 + \Big(\hat{f}_{k_{1}}-f_{k_{1}}\Big)\Big(\hat{f}_{k_{2}}-f_{k_{2}}\Big) \end{split}$$

For $k_1 < k_2$ we have $\widehat{f}_{k_1} \in \mathcal{D}_{k_2}$ and $F_{i,k_1} \in \mathcal{D}_{k_2}^I.$ This leads to

$$\begin{split} \mathsf{Cov}\Big[\widehat{f}_{k_1}, \widehat{f}_{k_2} \middle| \mathcal{D}_{k_1 \wedge k_2}\Big] &= \mathsf{E}\Big[\mathsf{Cov}\Big[\widehat{f}_{k_1}, \widehat{f}_{k_2} \middle| \mathcal{D}_{k_2}\Big] \middle| \mathcal{D}_{k_1 \wedge k_2}\Big] + \mathsf{Cov}\Big[\mathsf{E}\Big[\widehat{f}_{k_1} \middle| \mathcal{D}_{k_2}\Big], \mathsf{E}\Big[\widehat{f}_{k_2} \middle| \mathcal{D}_{k_2}\Big] \middle| \mathcal{D}_{k_1 \wedge k_2}\Big] \\ &= 0 + \mathsf{Cov}\Big[\widehat{f}_{k_1}, f_{k_2} \middle| \mathcal{D}_{k_1 \wedge k_2}\Big] = 0 \\ \mathsf{Cov}\Big[F_{i,k_1}, F_{i,k_2} \middle| \mathcal{D}^I\Big] &= \mathsf{E}\Big[\mathsf{Cov}\Big[F_{i,k_1}, F_{i,k_2} \middle| \mathcal{D}^I_{k_2}\Big] \middle| \mathcal{D}^I\Big] + \mathsf{Cov}\Big[\mathsf{E}\Big[F_{i,k_1} \middle| \mathcal{D}^I_{k_2}\Big], \mathsf{E}\Big[F_{i,k_2} \middle| \mathcal{D}^I_{k_2}\Big] \middle| \mathcal{D}^I\Big] \\ &= 0 + \mathsf{Cov}\Big[F_{i,k_1}, f_{k_2} \middle| \mathcal{D}^I\Big] = 0 \end{split}$$

 \sim

(4/6)

Corollary 2.10

• If we use the variance minimizing weights

$$w_{i,k} = \frac{C_{i,k}}{\sum\limits_{h=0}^{I-k-1} C_{h,k}}$$

we get

$$\mathsf{mse}_{\mathcal{D}^{I}}\Big[\widehat{C}_{i,J}\Big] \approx \widehat{C}_{i,J}^{2} \sum_{k=I-i}^{J-1} \frac{\widehat{\sigma}_{k}^{2}}{\widehat{f}_{k}^{2}} \left(\frac{1}{\widehat{C}_{i,k}} + \frac{1}{\sum_{h=0}^{I-k-1} C_{h,k}}\right)$$

• For the estimated coefficient of variation (and variance minimizing weights) we get

$$\begin{split} \widehat{\mathrm{VaC}}\left(\widehat{C}_{i,J}\right) &:= \frac{\sqrt{\widehat{\mathrm{Var}}\left[C_{i,J}\right]}}{\widehat{\mathrm{E}}\left[\widehat{C}_{i,J}\right]} \approx \frac{\sqrt{\widehat{\mathrm{mse}}_{\mathcal{D}^{I}}\left[\widehat{C}_{i,J}\right]}}{\widehat{C}_{i,J}} \\ &= \sqrt{\sum_{k=I-i}^{J-1} \frac{\widehat{\sigma}_{k}^{2}}{\widehat{f}_{k}^{2}} \left(\frac{1}{\widehat{C}_{i,k}} + \frac{1}{\sum_{h=0}^{I-k-1} C_{h,k}}\right)}_{C_{\cdot,k}} (\text{or } I \text{ with } I - i = v) \to \infty} \quad 0 \quad \left(\mathrm{or} \sqrt{\sum_{k=v}^{J-1} \frac{\widehat{\sigma}_{k}^{2}}{\widehat{f}_{k}^{2}} \frac{1}{\widehat{C}_{i,k}}}\right), \end{split}$$

which means the coefficient of variation of the ultimate uncertainty (or at least of the parameter error) vanishes with increasing volume. Usually, this is not valid in practice. Therefore, you should always consider in addition some **model error**.

If we always use only the n last observed diagonals in order to estimate the development factors the parameter error term in the coefficient of variation will not converge to zero for $I \to \infty$. In practice, this is often a reasonable approach, because the comparability of the development of very old (calender) periods in respect to the expected future is very questionable. Nevertheless, you should always consider some **model error**.

Corollary 2.11

- Instead of using a Taylor approximation you can directly estimate the random and the parameter error like Mack has done in the original approach, see [22]. The result is the same.
- For the process error we have made five approximations:
 - * Taylor approximation,
 - * $\operatorname{Var}\left[\frac{1}{C_{i,k}}|\mathcal{D}^{I}\right] \approx \frac{1}{C_{i,k}},$
 - * $C_{i,k} \approx \widehat{C}_{i,k}$,
 - * $f_k \approx \hat{f}_k$, and
 - * $\sigma_k^2 \approx \widehat{\sigma}_k^2$.

Following the original calculation of Mack, one can see that the first two approximation cancel each other.

Couldry 2111 Couldry 2111 a + Tyle approximation year can dreatly unitants themodern and the parameter over the Mach An dows in the originalapproxch, so (22). The reach is the same<math>a + Tar the process area whose make for approximations: $<math>a + T_{a} = C_{a} + C$

Original estimation of the random error:

$$\begin{split} \mathsf{Var} \begin{bmatrix} C_{i,J} \middle| \mathcal{D}^I \end{bmatrix} &= \underbrace{\mathsf{Var} \begin{bmatrix} C_{i,J} \middle| \mathcal{B}_{i,I-i} \end{bmatrix}}_{\text{iii}j\mathsf{CLM}} \\ &= \mathsf{Var} \big[\mathsf{E} \begin{bmatrix} C_{i,J} \middle| \mathcal{B}_{i,J-1} \end{bmatrix} \middle| \mathcal{B}_{i,I-i} \big] + \mathsf{E} \big[\mathsf{Var} \begin{bmatrix} C_{i,J} \middle| \mathcal{B}_{i,J-1} \end{bmatrix} \middle| \mathcal{B}_{i,I-i} \big] \\ &= \underbrace{\mathsf{Var} \Big[f_{J-1} C_{i,J-1} \middle| \mathcal{B}_{i,I-i} \Big]}_{\mathbf{i}j\mathsf{CLM}} + \underbrace{\mathsf{E} \Big[\sigma_{J-1}^2 C_{i,J-1} \middle| \mathcal{B}_{i,I-i} \Big]}_{\mathbf{i}j\mathsf{CLM}} \\ &= f_{J-1}^2 \mathsf{Var} \Big[C_{i,J-1} \middle| \mathcal{B}_{i,I-i} \Big] + \sigma_{J-1}^2 \underbrace{\int_{j=I-i}^{J-2} f_j C_{i,I-i}}_{\mathbf{Corollary} \ 2.3} \\ &= \cdots = \sum_{k=I-i}^{J-1} \int_{j=k+1}^{J-1} f_j^2 \sigma_k^2 \prod_{j=I-i}^{k-1} f_j C_{i,I-i} \\ &= \sum_{k=I-i}^{J-1} \frac{\sigma_k^2}{f_k^2 \prod_{j=I-i}^{j-1} f_j C_{i,I-i}} \left(\prod_{j=I-i}^{J-1} f_j C_{i,I-i} \right)^2 \\ &\approx \widehat{C}_{i,J}^2 \sum_{k=I-i}^{J-1} \frac{\widehat{\sigma}_k^2}{\widehat{f_k^2 \prod_{j=I-i}^{k-1} \widehat{f_j C}_{i,I-i}}} \Big] \\ &= \widehat{C}_{i,J}^2 \int_{k=I-i}^{J-1} \frac{\widehat{\sigma}_k^2}{\widehat{f_k^2 \widehat{C}_{i,k}}} \end{split}$$

Estimator 2.12 (Variance parameter)

Let Assumption 2.A be fulfilled. Then

$$\widehat{\sigma}_k^2 := \frac{1}{Z_k} \sum_{i=0}^{I-1-k} C_{i,k} \left(\frac{C_{i,k+1}}{C_{i,k}} - \widehat{f}_k \right)^2,$$

with

$$Z_k := I - 2 - k + \sum_{i=0}^{I-1-k} w_{i,k}^2 \frac{1}{C_{i,k}} \sum_{h=0}^{I-1-k} C_{h,k},$$

are D_k -conditional unbiased estimators for the variance parameters σ_k^2 , provided that $Z_k > 0$. If $Z_k < 0$ one could take

$$\widehat{\sigma}_k^2 := \min\left(\frac{(\widehat{\sigma}_{k-1}^2)^2}{\widehat{\sigma}_{k-2}^2}, \widehat{\sigma}_{k-2}^2, \widehat{\sigma}_{k-1}^2\right).$$

Variance minimizing weights

of (2.2) lead to
$$Z_k = I - k - 1$$
.

©R. Dahms (ETH Zurich, Spring 2021)

Unbiasedness:

$$\begin{split} & \mathsf{E} \Bigg[C_{i,k} \left(\frac{C_{i,k+1}}{C_{i,k}} - \hat{f}_k \right)^2 \Big| \mathcal{D}_k \Bigg] = C_{i,k} \mathsf{Var} \Bigg[\frac{C_{i,k+1}}{C_{i,k}} - \hat{f}_k \Big| \mathcal{D}_k \Bigg] \\ &= C_{i,k} \mathsf{Var} \Bigg[\frac{C_{i,k+1}}{C_{i,k}} - \sum_{h=0}^{I-k-1} w_{h,k} \frac{C_{h,k+1}}{C_{h,k}} \Big| \mathcal{D}_k \Bigg] \\ &= C_{i,k} \mathsf{Var} \Bigg[\sum_{h=0}^{I-k-1} \left(\frac{C_{i,k+1}}{(I-k)C_{i,k}} - w_{h,k} \frac{C_{h,k+1}}{C_{h,k}} \right) \Big| \mathcal{D}_k \Bigg] \\ &= C_{i,k} \sum_{h_1=0}^{I-1-k} \sum_{h_2=0}^{I-k-1} \mathsf{Cov} \Bigg[\left(\frac{C_{i,k+1}}{(I-k)C_{i,k}} - w_{h_1,k} \frac{C_{h_1,k+1}}{C_{h_1,k}} \right), \left(\frac{C_{i,k+1}}{(I-k)C_{i,k}} - w_{h_2,k} \frac{C_{h_2,k+1}}{C_{h_2,k}} \right) \Big| \mathcal{D}_k \Bigg] \\ &= C_{i,k} \sum_{h_1=0}^{I-1-k} \sum_{h_2=0}^{I-1-k} \mathsf{Cov} \Bigg[\left(\frac{\sigma_k^2}{(I-k)^2 C_{i,k}} - \frac{\sigma_k^2 w_{i,k}}{(I-k)C_{i,k}} \mathbf{1}_{h_1=i} - \frac{\sigma_k^2 w_{i,k}}{(I-k)C_{i,k}} \mathbf{1}_{h_2=i} + \frac{\sigma_k^2 w_{h,k} w_{h_2,k}}{C_{h_1,k}} \mathbf{1}_{h_1=h_2} \Bigg) \\ &= \sigma_k^2 \left(1 - 2w_{i,k} + C_{i,k} \sum_{h=0}^{I-1-k} \frac{w_{h,k}^2}{C_{h,k}} \right) \underset{\text{change order of summation}}{\Longrightarrow} \sum_{i=0}^{I-1-k} \mathsf{E} \Bigg[C_{i,k} \left(\frac{C_{i,k+1}}{C_{i,k}} - \hat{f}_k \right)^2 \Big| \mathcal{D}_k \Bigg] = Z_k \end{aligned}$$

Taking the variance minimizing weights we get

$$Z_k = I - 2 - k + \sum_{i=0}^{I-1-k} \frac{C_{i,k}^2}{\left(\sum_{h=0}^{I-1-k} C_{h,k}\right)^2} \frac{1}{C_{i,k}} \sum_{h=0}^{I-1-k} C_{h,k} = I - 2 - k + \sum_{i=0}^{I-1-k} \frac{C_{i,k}}{\sum_{h=0}^{I-1-k} C_{h,k}} = I - 1 - k.$$

$$\begin{split} & \text{Enstants 2.21 (Outring parametry)} \\ & \text{Let Aussign 2.4.5 eMRH. Then } \\ & \pi_1^2 = \frac{1}{2_h}\sum_{k=2}^{k-2}C_{k,k}\left(\frac{C_{k+k}}{C_{k+k}}-k\right)^k, \\ & \text{with } \\ & \pi_1^2 = 1-2-k+\sum_{k=2}^{k-2}w_{k-1}^2\sum_{k=2}^{k-2}C_{k,k}, \\ & \text{ar } N_{k-1} \text{ constants } \text{ for the strates parameters } \sigma_{k}^2 \text{ possible of the } \\ & \sigma_{k-2}^2 = \sigma_{k-1}^2 \sum_{k=2}^{k-2} \sum_{k=2}^{k-2} \sigma_{k-1}^2 \sum_{k=2}^{k-2} \sigma_{k-1}^2 \sum_{k=2}^{k-2} \sum_{k=2}^{k-2} \sum_{k=2}^{k-2} \sum_{k=2}^{k-2} \sigma_{k-1}^2 \sum_{k=2}^{k-2} \sum_{k=2}$$

(1/3)

Ultimate uncertainty of all accident periods

Analogue to the procedure we used for a single accident period, we split the ultimate uncertainty of the aggregation of all accident periods into:

$$\mathsf{mse}_{\mathcal{D}^{I}}\left[\sum_{i=0}^{I}\widehat{C}_{i,J}\right] = \underbrace{\mathsf{Var}\left[\sum_{i=I-J+1}^{I}C_{i,J}\middle|\mathcal{D}^{I}\right]}_{\mathsf{random error}} + \underbrace{\mathsf{E}\left[\sum_{i=I-J+1}^{I}\left(C_{i,J}-\widehat{C}_{i,J}\right)\middle|\mathcal{D}^{I}\right]^{2}}_{\mathsf{squared parameter estimation error}}$$

Since accident periods are independent, the random error of the sum of all accident periods is simply the sum of all single periods random errors. But for the parameter error this is not the case, because the accident periods are coupled via the same estimated development factors.

Stochastic Reserving

2021-04-26

- Chain-Ladder-Method (CLM)
 - -Ultimate uncertainty

Jltimate uncertainty of all accident period

Analogue to the procedure we used for a single accident period, we split the ultimate uncertainty of the aggregation of all accident periods into:

Since accident periods are independent, the random error of the sum of all accident periods is simply the sum of all single periods random errors. But for the parameter error this is not the case, because the accident periods are coupled via the same estimated development factors. Estimator 2.13 (of the ultimate uncertainty of all accident periods)

$$\begin{split} & \operatorname{mse}_{\mathcal{D}^{I}}\left[\sum_{i=0}^{I}\widehat{C}_{i,J}\right] = \operatorname{E}\left[\left(\sum_{i=0}^{I}\left(C_{i,J}-\widehat{C}_{i,J}\right)\right)^{2}\middle|\mathcal{D}^{I}\right] \\ &\approx \operatorname{E}\left[\left(\sum_{i=0}^{I}\sum_{k=I-i}^{J-1}\frac{\widehat{C}_{i,J}}{\widehat{f}_{k}}\left(F_{i,k}-\widehat{f}_{k}\right)\right)^{2}\middle|\mathcal{D}^{I}\right] \quad (\text{Taylor approximation}) \\ &= \sum_{i_{1},i_{2}=0}^{I}\sum_{k_{1}=I-i_{1}}^{J-1}\sum_{k_{2}=I-i_{2}}^{J-1}\frac{\widehat{C}_{i,J}}{\widehat{f}_{k_{1}}}\frac{\widehat{C}_{i_{2},J}}{\widehat{f}_{k_{2}}}\operatorname{E}\left[\left(F_{i_{1},k_{1}}-\widehat{f}_{k_{1}}\right)\left(F_{i_{2},k_{2}}-\widehat{f}_{k_{2}}\right)\middle|\mathcal{D}^{I}\right] \\ &= \sum_{k_{1},k_{2}=0}^{J-1}\sum_{i_{1}=I-k_{1}}^{I}\sum_{i_{2}=I-k_{2}}^{I}\frac{\widehat{C}_{i_{1},J}}{\widehat{f}_{k_{1}}}\frac{\widehat{C}_{i_{2},J}}{\widehat{f}_{k_{2}}}\left(\operatorname{Cov}\left[F_{i_{1},k_{1}},F_{i_{2},k_{2}}\middle|\mathcal{D}^{I}\right]+\left(\widehat{f}_{k_{1}}-f_{k_{1}}\right)\left(\widehat{f}_{k_{2}}-f_{k_{2}}\right)\right) \\ &\approx \sum_{k_{1},k_{2}=0}^{J-1}\sum_{i_{1}=I-k_{1}}^{I}\sum_{i_{2}=I-k_{2}}^{I}\frac{\widehat{C}_{i_{1},J}}{\widehat{f}_{k_{1}}}\frac{\widehat{C}_{i_{2},J}}{\widehat{f}_{k_{2}}}\left(\operatorname{Cov}\left[F_{i_{1},k_{1}},F_{i_{2},k_{2}}\middle|\mathcal{D}^{I}\right]+\left(\operatorname{Cov}\left[\widehat{f}_{k_{1}},\widehat{f}_{k_{2}}\middle|\mathcal{D}_{k_{1}\wedge k_{2}}\right]\right) \\ &\approx \sum_{k_{1},k_{2}=0}^{J-1}\sum_{i_{1}=I-k_{1}}^{I}\sum_{i_{2}=I-k_{2}}^{I}\frac{\widehat{C}_{i_{1},J}}{\widehat{f}_{k_{1}}}\frac{\widehat{C}_{i_{2},J}}{\widehat{f}_{k_{2}}}\left(\operatorname{Cov}\left[F_{i_{1},k_{1}},F_{i_{2},k_{2}}\middle|\mathcal{D}^{I}\right]+\operatorname{Cov}\left[\widehat{f}_{k_{1}},\widehat{f}_{k_{2}}\middle|\mathcal{D}_{k_{1}\wedge k_{2}}\right]\right) \\ &\approx \sum_{k=0}^{J-1}\frac{\widehat{\sigma}_{k}^{2}}{\widehat{f}_{k}^{2}}\sum_{i=I-k}^{I}\widehat{C}_{i,J}\frac{\widehat{C}_{i_{1},J}}{\widehat{C}_{i,k}}}+\underbrace{\sum_{k=0}^{J-1}\frac{\widehat{\sigma}_{k}^{2}}{\widehat{f}_{k}^{2}}\left(\sum_{i=I-k}^{I}\widehat{C}_{i,J}\right)^{2}\sum_{h=0}^{I-k-1}\frac{w_{h,k}^{2}}{\widehat{C}_{h,k}}}_{h_{k}}}{\operatorname{Fandom error}}\right) \\ &= \operatorname{Cov}\left[\widehat{f}_{k}^{2},\sum_{i=I-k}^{I}\widehat{C}_{i,J}\frac{1}{\widehat{C}_{i,k}}+\operatorname{Cov}\left[\widehat{f}_{k}^{2},\sum_{i=I-k}^{I}\widehat{C}_{i,J}\right]^{2}\sum_{h=0}^{I}\widehat{C}_{h,k}}}_{h_{k}}\right) \\ &= \operatorname{Cov}\left[\widehat{f}_{k}^{2},\sum_{i=I-k}^{I}\widehat{C}_{i,J}\frac{1}{\widehat{C}_{i,k}}}_{h_{k}}+\operatorname{Cov}\left[\widehat{f}_{k}^{2},\sum_{i=I-k}^{I}\widehat{C}_{i,J}\right]^{2}\sum_{h=0}^{I}\widehat{C}_{h,k}}_{h_{k}}}_{h_{k}}\right) \right] \\ &= \operatorname{Cov}\left[\widehat{f}_{k}^{2},\sum_{i=I-k}^{I}\widehat{C}_{i,J}\frac{1}{\widehat{C}_{i,k}}}_{h_{k}}+\operatorname{Cov}\left[\widehat{f}_{k}^{2},\sum_{i=I-k}^{I}\widehat{C}_{i,J}\right]^{2}\sum_{h=0}^{I}\widehat{C}_{h,k}}_{h_{k}}}_{h_{k}}\right) \right] \\ &= \operatorname{Cov}\left[\widehat{f}_{k}^{2},\sum_{i=I-k}^{I}\widehat{C}_{i,J}\frac{1}{\widehat{C}_{i,k}}}_{h_{k}}+\operatorname{Cov}\left[\widehat{f}_{k}^{2},\sum_{i=I-k}^{I}\widehat{C}_{i,J}\frac{1}$$

For $i_1+k_1\geq I$ and $i_2+k_2\geq I$ we get

$$\begin{split} &\mathsf{Cov}\Big[F_{i_1,k_1},F_{i_2,k_2}\Big|\mathcal{D}^I\Big] \\ &=\mathsf{Cov}\Big[\mathsf{E}\Big[F_{i_1,k_1}\Big|\mathcal{D}^I_{k_1\vee k_2}\Big],\mathsf{E}\Big[F_{i_2,k_2}\Big|\mathcal{D}^I_{k_1\vee k_2}\Big]\Big|\mathcal{D}^I\Big] +\mathsf{E}\Big[\mathsf{Cov}\Big[F_{i_1,k_1},F_{i_2,k_2}\Big|\mathcal{D}^I_{k_1\vee k_2}\Big]\Big|\mathcal{D}^I\Big] \\ &=0+\mathbf{1}_{i_1=i_2}\mathbf{1}_{k_1=k_2}\sigma_{k_1}^2\mathsf{E}\bigg[\frac{1}{C_{i_1,k_1}}\bigg|\mathcal{D}^I\bigg] \approx \mathbf{1}_{i_1=i_2}\mathbf{1}_{k_1=k_2}\widehat{\sigma}_{k_1}^2\frac{1}{\widehat{C}_{i_1,k_1}} \\ &\mathsf{Cov}\Big[\widehat{f}_{k_1},\widehat{f}_{k_2}\Big|\mathcal{D}_{k_1\wedge k_2}\Big] =\mathbf{1}_{k_1=k_2}\sigma_{k_1}^2\sum_{h=0}^{I-k_1-1}\frac{w_{h,k_1}^2}{C_{h,k}}. \end{split}$$

Therefore,

$$\begin{split} & \operatorname{mse}_{\mathcal{D}I}\left[\hat{C}_{i,J}\right] \\ & \approx \sum_{k_1,k_2=0}^{J-1} \sum_{i_1=I-k_1}^{I} \sum_{i_2=I-k_2}^{I} \frac{\hat{C}_{i_1,J}}{\hat{f}_{k_1}} \frac{\hat{C}_{i_2,J}}{\hat{f}_{k_2}} \hat{\sigma}_{k_1}^2 \mathbf{1}_{k_1=k_2} \left(\mathbf{1}_{i_1=i_2} \frac{1}{\hat{C}_{i_1,k_2}} + \sum_{h=0}^{I-k_1-1} \frac{w_{h,k_1}^2}{C_{h,k_1}} \right) \\ & = \sum_{k=0}^{J-1} \frac{\hat{\sigma}_k^2}{\hat{f}_k^2} \left(\sum_{i=I-k}^{I} \hat{C}_{i,J}^2 \frac{1}{\hat{C}_{i,k}} + \left(\sum_{i=I-k}^{I} \hat{C}_{i,J} \right)^2 \sum_{h=0}^{I-k-1} \frac{w_{h,k}^2}{C_{h,k}} \right) \end{split}$$

2 Chain-Ladder-Method (CLM)

Corollary 2.14

If we use the variance minimizing weights

$$w_{i,k} = \frac{C_{i,k}}{\sum\limits_{h=0}^{I-k-1} C_{h,k}}$$

 \sim

and the notation $\widehat{C}_{i,k}:=C_{i,k}\text{, for }i+k\leq I\text{, we get}$

$$\begin{split} \mathsf{mse}_{\mathcal{D}^{I}} \begin{bmatrix} \widehat{C}_{i,J} \end{bmatrix} \\ &\approx \sum_{k=0}^{J-1} \frac{\widehat{\sigma}_{k}^{2}}{\widehat{f}_{k}^{2}} \left(\sum_{i=I-k}^{I} \frac{\widehat{C}_{i,J}^{2}}{\widehat{C}_{i,k}} + \left(\sum_{i=I-k}^{I} \widehat{C}_{i,J} \right)^{2} \frac{1}{\sum_{h=0}^{I-k-1} C_{h,k}} \right) \\ &= \sum_{k=0}^{J-1} \frac{\widehat{\sigma}_{k}^{2}}{\widehat{f}_{k}^{2}} \left(\sum_{i=I-k}^{I} \frac{\widehat{C}_{i,J}^{2}}{\left(\sum_{h=0}^{I} \widehat{C}_{h,J} \right)^{2}} \frac{\left(\sum_{h=0}^{I} \widehat{C}_{h,J} \right)^{2}}{\widehat{C}_{i,k}} + \frac{\left(\sum_{i=I-k}^{I} \widehat{C}_{i,J} \right)^{2}}{\left(\sum_{h=0}^{I} \widehat{C}_{h,J} \right)^{2}} \frac{\left(\sum_{h=0}^{I} \widehat{C}_{h,J} \right)^{2}}{\widehat{C}_{i,k}} \right) \\ &= \sum_{k=0}^{J-1} \frac{\widehat{\sigma}_{k}^{2}}{\widehat{f}_{k}^{2}} \left(\sum_{i=I-k}^{I} \frac{\widehat{C}_{i,k}^{2}}{\left(\sum_{h=0}^{I} \widehat{C}_{h,k} \right)^{2}} \frac{\left(\sum_{h=0}^{I} \widehat{C}_{h,J} \right)^{2}}{\widehat{C}_{i,k}} + \frac{\left(\sum_{i=I-k}^{I} \widehat{C}_{i,k} \right)^{2}}{\left(\sum_{h=0}^{I} \widehat{C}_{h,J} \right)^{2}} \frac{\left(\sum_{h=0}^{I} \widehat{C}_{h,J} \right)^{2}}{\sum_{h=0}^{I-k-1} C_{h,k}} \right) \\ &= \left(\sum_{i=0}^{I} \widehat{C}_{i,J} \right)^{2} \sum_{k=0}^{J-1} \frac{\widehat{\sigma}_{k}^{2}}{\widehat{f}_{k}^{2}} \left(\frac{1}{\sum_{i=0}^{I-k-1} \widehat{C}_{i,k}} - \frac{1}{\sum_{i=0}^{I} \widehat{C}_{i,k}} \right) \end{split}$$

For each k < J we have

$$\sum_{i=0}^{I} \hat{C}_{i,k+1} = \sum_{i=0}^{I-k-1} C_{i,k+1} + \sum_{i=I-k}^{I} \hat{C}_{i,k+1} = \frac{\sum_{i=0}^{I-k-1} C_{i,k+1}}{\sum_{i=0}^{I-k-1} C_{i,k}} \sum_{i=0}^{I-k-1} C_{i,k} + \sum_{i=I-k}^{I} \hat{f}_k \hat{C}_{i,k} = \hat{f}_k \sum_{i=0}^{I} \hat{C}_{i,k}.$$

Therefore, we get for each $k \ge I - i$

$$\frac{\hat{C}_{i,J}}{\sum_{i=0}^{I}\hat{C}_{i,J}} = \frac{\hat{f}_{J-1}\cdots\hat{f}_k\hat{C}_{i,k}}{\hat{f}_{J-1}\cdots\hat{f}_k\sum_{i=0}^{I}\hat{C}_{i,k}} = \frac{\hat{C}_{i,k}}{\sum_{i=0}^{I}\hat{C}_{i,k}}.$$

Finally,

$$\begin{split} \sum_{i=I-k}^{I} \frac{\hat{C}_{i,k}^{2}}{\left(\sum_{h=0}^{I} \hat{C}_{h,k}\right)^{2}} \frac{1}{\hat{C}_{i,k}} + \frac{\left(\sum_{i=I-k}^{I} \hat{C}_{i,k}\right)^{2}}{\left(\sum_{h=0}^{I} \hat{C}_{h,k}\right)^{2}} \frac{1}{\sum_{h=0}^{I-k-1} C_{h,k}} \\ &= \frac{\sum_{i=I-k}^{I} \hat{C}_{i,k} \sum_{i=0}^{I-k-1} \hat{C}_{i,k} + \left(\sum_{i=I-k}^{I} \hat{C}_{i,k}\right)^{2}}{\left(\sum_{i=0}^{I} \hat{C}_{i,k}\right)^{2} \sum_{i=0}^{I-k-1} C_{i,k}} \\ &= \frac{\sum_{i=I-k}^{I} \hat{C}_{i,k} \left(\sum_{i=0}^{I-k-1} \hat{C}_{i,k} + \sum_{i=I-k}^{I} \hat{C}_{i,k}\right)}{\left(\sum_{i=0}^{I} \hat{C}_{i,k}\right)^{2} \sum_{i=0}^{I-k-1} C_{i,k}} \\ &= \frac{\sum_{i=I-k}^{I} \hat{C}_{i,k}}{\sum_{i=0}^{I-k-1} \hat{C}_{i,k}} = \frac{1}{\sum_{i=0}^{I-k-1} \hat{C}_{i,k}} - \frac{1}{\sum_{i=0}^{I} \hat{C}_{i,k}} \end{split}$$

2 Chain-Ladder-Method (CLM)

Credibility like weighting of ultimates

One way of combining (two or more) estimates for the same ultimate is to use a credibility like weighting. This means, for an estimated ultimate we take the lesser credibility the further away it is from the last known value. In formula:

Estimator 2.15 (Credibility like weighted ultimate)

Let $\widehat{C}^m_{i,J}$, $0 \leq m \leq M$, be estimates of the same (unknown) ultimate. Then

$$\sum_{m=0}^{M} \underbrace{\min\left(\frac{\hat{C}_{i,J}^{m}}{C_{i,I-i}^{m}}, \frac{C_{i,I-i}^{m}}{\hat{C}_{i,J}^{m}}\right) \left(\sum_{l=0}^{M} \min\left(\frac{\hat{C}_{i,J}^{l}}{C_{i,I-i}^{l}}, \frac{C_{i,I-i}^{l}}{\hat{C}_{i,J}^{l}}\right)\right)^{-1}}_{\text{mixing weights}} \hat{C}_{i,J}^{m}$$

is a credibility like weighted mean of these estimates.

Remark 2.16 (Credibility like weighted ultimate uncertainty)

We will see later, see Section 4, that it is possible to transfer the weighting of ultimates to the corresponding ultimate uncertainties.

Stochastic Reserving

- Chain-Ladder-Method (CLM)
 - -Validation and examples (part 2 of 3)

Credibility like weighting of ultimate

One way of combining (two or more) estimates for the same ultimate is to use a credibility like weighting. This means, for an estimated ultimate we take the lesser credibility the further away it is from the last known value. In formula:

Extended 2.15 (Credibility like weighted self-match definition) Let \hat{C}_{ij}^n , $0 \le m \le M$, be estimates of the same (arknown) admate. Then $\sum_{m=0}^{M} \min_{\substack{i \le i_{ij} \le i_{ij}}} \frac{C_{ij}}{C_{ij}^n} \cdot \sum_{\substack{i_{ij} \le i_{ij} \le i_{ij}}} \left(\sum_{m=0}^{M} \min_{\substack{i_{ij} \le i_{ij} \le i_{ij}}} \frac{C_{ij}}{C_{ij}^n} \right)^{-1} \tilde{C}_{ij}^n$ ing contribution of the weighted mass of these estimate.

emark 2.16 (Credibility like weighted ultimate uncertainty)

We will see later, see Section 4, that it is possible to transfer the weighting of ultimate to the corresponding ultimate uncertainties.

2 Chain-Ladder-Method (CLM)

Credibility like weighting of ultimates from Examples 2.7 and 2.8

- We used the standard estimators for the variance parameters, see Estimator 2.12.
- Since the incurred values are much faster near the ultimate, the corresponding projection gets more weight.

4.0	Payn	nents	Incu	rred	Credibility like weighting		
AP	Ultimate	Reserves	Ultimate	Reserves	Ultimate	Reserves	
0	3'921'258		3'921'258		3'921'258		
1	2'681'142	114'086	2'905'040	337'984	2'795'238	228'182	
2	3'576'632	394'121	3'214'395	31'884	3'386'164	203'653	
3	3'612'174	608'749	3'334'861	331'436	3'462'371	458'946	
4	2'848'093	697'742	3'168'701	1'018'350	3'027'598	877'247	
5	3'619'496	1'234'157	3'489'267	1'103'928	3'542'859	1'157'520	
6	2'626'200	1'138'623	3'356'241	1'868'664	3'075'415	1'587'838	
7	3'123'198	1'638'793	3'482'056	1'997'651	3'347'249	1'862'844	
8	3'736'063	2'359'939	2'794'903	1'418'779	3'126'759	1'750'635	
9	2'821'331	1'979'401	3'398'542	2'556'612	3'254'340	2'412'410	
Total	32'565'588	10'165'612	33'065'263	10'665'287	32'939'252	10'539'276	

Stochastic Reserving

2021-04-26

- Chain-Ladder-Method (CLM) —Validation and examples (part 2 of 3)

	Payr	nents	incu	med	Credibility like weighting		
AP.	Ultimate	Reserves	Ultimate	Reserves	Ultimate	Reserves	
0	3'921'258		3'921'258		3'921'258		
1	2'681'142	114'086	2'905'040	337'984	2795'238	228'18	
2	3'576'632	394'121	3'214'395	31'884	3'386'164	203'65	
3	3'612'174	608'749	3'334'861	331'438	3'462'371	458'94	
- 4	2'848'093	697'742	3'168'701	1'018'350	3'027'598	877'24	
5	3'619'496	1'234'157	3'489'267	11033928	3'542'859	1'157'52	
8	2'626'200	1'138'623	3'356'241	1'868'864	3'075'415	1'587'83	
7	3'123'198	116387793	3'482'056	1'997'651	3'347'249	1'862'84	
8	3736'063	2'359'939	2794'903	1'418'779	3126759	1750'63	
9	2'821'331	1'979'401	3'398'542	2'556'612	3'254'340	2'412'41	
Total	32'565'588	10'165'612	33'065'263	10'665'287	32'939'252	10/539/27	

2 Chain-Ladder-Method (CLM)	2.5 Validation and examples (part 2 of 3) └ 2.5.1 Ultimate uncertainty	(3/7)

The projection of incurred is much faster very close and stable to the estimated ultimate than the projection of payments. This may be an indication to trust it more.

©R. Dahms (ETH Zurich, Spring 2021)

Stochastic Reserving

2021-04-26

- Chain-Ladder-Method (CLM)
 - Validation and examples (part 2 of 3)

The projection of incurred is much faster very close and stable to the estimated ultimate than the projection of payments. This may be an indication to trust it more.

2 Chain-Ladder-Method (CLM)

(4/7)

Ultimate uncertainties for Examples 2.7 and 2.8

- We used the standard estimators for the variance parameters, see Estimator 2.12.
- Since the incurred values are a bit more stable, in particular for later development periods, the corresponding uncertainties are lower.
- The linear approximation for the (parameter estimation) uncertainty results in almost the same values as without approximation.

	Ultimate un	certainty fo	r payments	Ultimate ur	ncertainty fo	or incurred	Credibility like weighting		
AP	Proc Var	Para Err	Total	Proc Var	Para Err	Total	Proc Var	Para Err	Total
0									
1	68'914	56'985	89'423	1'935	1'665	2'553	32'813	27'101	42'558
2	184'912	144'485	234'666	4'160	3'097	5'186	85'511	66'895	108'568
3	203'838	154'232	255'612	7'819	4'967	9'264	90'233	68'639	113'373
4	223'462	135'431	261'298	9'419	5'434	10'874	95'731	57'690	111'770
5	270'501	178'156	323'899	30'001	14'319	33'243	106'489	70'459	127'689
6	241'283	131'817	274'942	51'348	22'054	55'884	87'607	48'121	99'953
7	330'933	173'453	373'634	153'690	60'273	165'086	170'661	77'709	187'520
8	437'284	227'437	492'894	198'225	66'754	209'163	228'791	98'782	249'205
9	430'953	182'846	468'137	302'941	107'849	321'566	274'932	99'374	292'340
Total	865'025	1'247'250	1'517'861	397'988	222'173	455'802	449'186	499'717	671'926
Linear	Linear approximation								
Total	865'025	1'246'787	1'517'480	397'988	222'157	455'794	449'186	499'556	671'806

©R. Dahms (ETH Zurich, Spring 2021)

54 / 240

	lince the he corresp The linear arris value	incurred w ponding u approxim as as with	alues are noertaieté ation for t out appro	a bit more is are low the (paran simation.	stable, in ir. setor estim	particula ution) ur	r for later certainty	developme results in a	nt peri
	Utimate an	timate uncertainty for payments' Ultimate uncertainty for incurred Credibility like weighting							
"	Proc Yar	Para Dr.	Total	Proc Var	Para Err	Total	Proc Var	Para Dr	Total
0									
1	68914	56165	89/423	1105	1965	2553	32853	27101	4258
- 2	104912	1441485	234 900	4160	5/297	\$166	05511	66055	100'54
3	207536	1547222	255/912	7012	4967	9264	90233	66/639	11225
- 4	227-462	125'421	261298	7412	5434	17074	95731	57 550	11177
- 5	271501	1781156	325 899	30'001	14318	33'243	106'489	71450	12768
- 0	241203	1311017	274942	51/348	22/054	55'004	07/007	48121	99'96
7	330933	173'453	375/534	153'690	60/273	165'086	170/661	77709	10753
8	437,254	227437	402704	1107225	05754	200163	225791	56762	24725
- 6	430'953	182'848	468137	302941	107849	321568	274'932	69/374	28234
Total	065'025	1247250	1517001	397968	2221173	455'000	4491100	459717	671%6
Linear	approximat	ice .							
Takel	262.025	1245787	1317,650	207205	222"IAT	4557794	447135	400.000	67176

The uncertainty of the weighing has been calculated using a LSRM coupling of both CLM via the exposure $R_{i,k}^{0,1} = R_{i,k}^{1,0} := R_{i,k}^{0,0} + R_{i,k}^{1,1}$, see Section 4.

One can derive estimators for the ultimate uncertainty without a first order Taylor approximation, see [21]. In practice, the resulting figures are almost alike.

©R. Dahms (ETH Zurich, Spring 2021)

Stochastic Reserving: Lecture 3 10 Mar 2021 55 / 240

The projection of incurred losses results in a more symmetric and tight distribution than the projection of payments. Therefore, if we believe in the incurred projection and the corresponding estimate of the ultimate uncertainty we would expect that the true future payments will only deviate from the estimated reserves by a small amount. Whereas the projection of payments indicates much larger differences (uncertainty).

The uncertainty of the weighing has been calculated using a LSRM coupling of both CLM via the exposure $R_{i,k}^{0,1} = R_{i,k}^{1,0} = R_{i,k}^{1,0} = R_{i,k}^{1,1} = R_{i,k}^{1,1}$, see Section 4.

Problem 2.17 (Fitting a distribution to Best Estimate reserves and mse)

Assume that for a portfolio we have

- A Best Estimate for the reserves,
- an estimate for uncertainties in terms of mse and the corresponding estimate of the reserves *R*. That means the method, which was used for the estimation of the uncertainty gives us a corresponding estimate of the reserves, which will usually differ from the Best Estimate reserves.

How to fit a distribution to those estimates?

Fitting a distribution to Best Estimate reserves and mse

• Shifting the distribution: Means we fit the distribution with

$$\label{eq:expectation} \begin{split} \text{Expectation} &= \text{Best Estimate reserves (or ultimate)} \\ \text{Variance} &= \widehat{\text{mse}} \end{split}$$

• Stretching the distribution: Means we fit the distribution with

Expectation = Best Estimate reserves (or ultimate)

$$\mathsf{Variance} = \frac{\widehat{\mathsf{mse}} \cdot (\mathsf{Best Estimate reserves})^2}{R^2}$$

I prefer the stretching, as long as it leads to plausible results, which in particular is not the case if $R\approx 0.$

Density plot of the Lognormal distributions

Stretching means to keep the coefficient of variation $\frac{\sqrt{Variance}}{Expectation}$ constant.

Stochastic Reserving Lecture 4 (Continuation of Lecture 2) Chain-Ladder method

René Dahms

ETH Zurich, Spring 2021

17 March 2021 (Last update: 26 April 2021) Stochastic Reserving

Chain-Ladder-Method (CLM) —Validation and examples (part 2 of 3)

Stochastic Reserving Lecture 4 (Continuation of Lecture 2) Chain-Ladder method

René Dahma

ETH Zurich, Spring 2021

17 March 2021 (Last update: 26 April 2021)

2 Chain-Ladder-Method (CLM)

2.1 How does the Chain-Ladder method work

2.1.1 Chain-Ladder method without stochastic

2.1.2 Stochastic behind the Chain-Ladder method

2.2 Future development

2.2.1 Projection of the future development

2.3 Validation and examples (part 1 of 3)

- 2.3.1 Chain-Ladder method on Payments and on Incurred
- 2.3.2 How to validate the Chain-Ladder assumptions

2.4 Ultimate uncertainty

- 2.4.1 Ultimate uncertainty of accident period \boldsymbol{i}
- 2.4.2 Ultimate uncertainty of the aggregation of all accident periods

2.5 Validation and examples (part 2 of 3)

2.5.1 Ultimate uncertainty

2.6 Solvency uncertainty

- 2.6.1 Solvency uncertainty of a single accident period
- 2.6.2 Solvency uncertainty of all accident periods
- 2.6.3 Uncertainties of further CDR's

2.7 Validation and examples (part 3 of 3)

2.7.1 Solvency uncertainty

2.8 Literature

Stochastic Reserving

2021-04-26

- Chain-Ladder-Method (CLM)
 - Validation and examples (part 2 of 3)
 - Lecture 4: Table of contents

2 Chairs Laders Mathed (CLM) 31 Show for the North Schwardhaus, Schwa

Claims development result and solvency uncertianty (repetition)

The observed claims development result (CDR) at time I + 1 of a single accident period i is the (observed) difference of the estimated ultimates of estimation time I and estimation time I + 1:

$$\widehat{\mathsf{CDR}}_i^{I+1} := \widehat{C}_{i,J}^I - \widehat{C}_{i,J}^{I+1}.$$

Here and in the following we denote (if necessary) the time of estimation by an additional upper index.

A negative CDR corresponds to a loss and a positive CDR corresponds to a profit. Moreover, in the Best Estimate case the estimate of the conditionally expected CDR is zero, i.e.

$$\widehat{\mathsf{E}}\left[\widehat{\mathsf{CDR}}_{i}^{I+1}\middle|\mathcal{D}^{I}\right] = 0$$

The solvency uncertainty of a single accident period *i* is defined as the mse of the \widehat{CDR}_i^{IT} conditioned under all information at time *I*, i.e.

$$\begin{split} \mathsf{mse}_{0|\mathcal{D}^{I}} \bigg[\widehat{\mathsf{CDR}}_{i}^{I+1} \bigg] &:= \mathsf{E} \bigg[\left(\widehat{\mathsf{CDR}}_{i}^{I+1} - 0 \right)^{2} \bigg| \mathcal{D}^{I} \bigg] \\ &= \underbrace{\mathsf{Var} \bigg[\widehat{C}_{i,J}^{I+1} \bigg| \mathcal{D}^{I} \bigg]}_{\mathsf{random \ error}} + \underbrace{\mathsf{E} \bigg[\widehat{C}_{i,J}^{I+1} - \widehat{C}_{i,J}^{I} \bigg| \mathcal{D}^{I} \bigg]^{2}}_{\mathsf{parameter \ error}}. \end{split}$$

(1/7)

Stochastic Reserving

2021-04-26

- Chain-Ladder-Method (CLM)
 - -Solvency uncertainty

lairns development result and solvency uncertainty (repetition)

The observed claims development result (CDR) at time I + 1 of a single accident period i is the (observed) difference of the estimated ultimates of estimation time I and estimation time I + 1: $\overline{\text{CDR}}_{i}^{-1} := C_{i,I}^{0} - C_{i,I}^{0,1}$.

Here and in the following we denote (if necessary) the time of estimation by an additional upper index.

nose. A negative CDR corresponds to a loss and a positive CDR corresponds to a profit. Moreover, in the Best Estimate case the estimate of the conditionally expected CDR is zero, i.e.

 $\mathbb{E}\left[\widetilde{\mathsf{CDR}}_{i}^{I+1}\middle|\mathcal{D}^{I}\right]=0.$

The solvency uncertainty of a single accident period i is defined as the mas of the \overline{CDR}_{i}^{I} conditioned under all information at time I_{i} i.e.

 $\operatorname{mag}_{\mathbb{R}\mathbb{Z}^{d}}\left[\widetilde{\operatorname{CDR}}_{i}^{\ell+1}\right] := \mathbb{E}\left[\left(\widetilde{\operatorname{CDR}}_{i}^{\ell+1} - 0\right)^{2}\right]\mathcal{D}^{1}$ $= \operatorname{Var} \left[\widehat{C}_{i,J}^{J+1} | \mathcal{D}^{J} \right] + \mathbb{E} \left[\widehat{C}_{i,J}^{J+1} - \widehat{C}_{i,J}^{J} | \mathcal{D}^{J} \right]$

2 Chain-Ladder-Method (CLM) 2.6 Solvency uncertainty 2.6.1 Solvency uncertainty of a single accident period

(2/7)

Assumption 2.B (Consistent estimates over time)

In order to have consistent estimates at times I and I + 1 we assume that there exist $\mathcal{D}^I \cap \mathcal{D}_k$ -measurable weights $0 \le w_{I-k,k}^{I+1} \le 1$ with

•
$$C_{I-k,k} = 0$$
 implies $w_{I-k,k}^{I+1} = 0$,
• $w_{i,k}^{I+1} := (1 - w_{I-k,k}^{I+1}) w_{i,k}^{I}$, for $0 \le i \le I - 1 - k$.

Remark 2.18

The above assumption means that we do not change our (relative) believes into the old development periods and only put some credibility $w_{I-k,k}^{I+1}$ to the new encountered development. The variance minimizing weights, introduced in Lemma 2.4, satisfy Assumption 2.B.

Lemma 2.19 (Consistent estimates over time)

Let Assumptions 2.A and 2.B be fulfilled. Then we have

$$\begin{split} & 1. \ \widehat{f}_{k}^{I+1} = (1 - w_{I-k,k}^{I+1}) \widehat{f}_{k}^{I} + w_{I-k,k}^{I+1} \frac{C_{I-k,k+1}}{C_{I-k,k}} = (1 - w_{I-k,k}^{I+1}) \widehat{f}_{k}^{I} + w_{I-k,k}^{I+1} F_{I-k,k}, \\ & 2. \ \overline{f}_{k} := \mathsf{E}\Big[\widehat{f}_{k}^{I+1} \Big| \mathcal{D}^{I}\Big] = \mathsf{E}\Big[\widehat{f}_{k}^{I+1} \Big| \mathcal{D}^{I}_{k}\Big] = (1 - w_{I-k,k}^{I+1}) \widehat{f}_{k}^{I} + w_{I-k,k}^{I+1} f_{k} \approx \widehat{f}_{k}^{I}, \\ & 3. \ \overline{C}_{i,J} := \mathsf{E}\Big[\widehat{C}_{i,J}^{I+1} \Big| \mathcal{D}^{I}\Big] = \prod_{k=I+1-i}^{J-1} \overline{f}_{k} f_{I-i} C_{i,I-i}, \\ & 4. \ \widehat{\mathsf{E}}\Big[\widehat{\mathsf{CDR}}_{i}^{I+1} \Big| \mathcal{D}^{I}\Big] = 0, \ \text{which means we have a Best Estimate.} \end{split}$$

Assumption 2 In order to be $D^2 \cap D_2$ -mean	(Consistent estimates over time) consistent estimates at times I and $I + 1$ we assume that there esh ble weights $0 \le w_{I+1,n}^{I+1} \le 1$ with
• $C_{l-k,k} =$ • $w_{l,k}^{l+1} := ($	mplies $w_{I+k,k}^{I+1} = 0$, $w_{I+k,k}^{I+1} w_{i,k}^{I+1}$, for $0 \le i \le I - 1 - k$.
Remark 2.18 The above asso opment periods The variance m	ption means that we do not change our (mixtue) believes into the old devel of only pat some coddbility $w_{1-1,k}^{l+1}$ to the new encountered development. mixing weights, introduced in Lemma 2.4, satisfy Assumption 2.B.
Lemma 2.19 (existent estimates over time) 2.4 and 2.8 he fulfilled. Then we have
1. $\hat{f}_{k}^{T+1} = (1$	$w_{T-4,k}^{I+1} \hat{f}_{k}^{2} + w_{T-4,k}^{I+1} \frac{c_{T-4,k+1}}{c_{T-4,k}} = (1 - w_{T-4,k}^{I+1}) \hat{f}_{k}^{2} + w_{T-4,k}^{I+1} F_{I-4,k},$ $(z) = (z_{T-4,k}) \hat{z}_{k}^{2} + (z_{T-4,k}) \hat{z}_{k}^{2}$

$$\begin{split} & \mathbf{x} \cdot \widetilde{\mathbf{C}}_{i,T} = \mathbb{E} \begin{bmatrix} \widetilde{\boldsymbol{c}}_{i,T}^{i-1} & \mathbf{j} \\ \widetilde{\boldsymbol{c}}_{i,T}^{i-1} & \mathbf{z} \end{bmatrix}^{i-1} = \prod_{k=1}^{i-1} \sum_{j=1}^{i-1} \widetilde{f}_k f_{k-i} C_{i,T-i}, \\ & \mathbf{z} \cdot \widetilde{\mathbb{E}} \begin{bmatrix} \overline{\mathbf{CDR}}_i^{i+1} \end{bmatrix} \mathbf{p}^T \end{bmatrix} = 0, \text{ which means we have a Best Estimate.} \end{split}$$

$$1. \quad \hat{f}_{k}^{I+1} := \sum_{i=0}^{I-k} w_{i,k}^{I+1} \frac{C_{i,k+1}}{C_{i,k}} = (1 - w_{I-k,k}^{I+1}) \sum_{i=0}^{I-k-1} w_{i,k}^{I} \frac{C_{i,k+1}}{C_{i,k}} + w_{I-k,k}^{I+1} \frac{C_{I-k,k+1}}{C_{I-k,k}} \\ = (1 - w_{I-k,k}^{I+1}) \hat{f}_{k}^{I} + w_{I-k,k}^{I+1} \frac{C_{I-k,k+1}}{C_{I-k,k}} = (1 - w_{I-k,k}^{I+1}) \hat{f}_{k}^{I} + w_{I-k,k}^{I+1} F_{I-k,k}$$

$$2. \qquad \Longrightarrow \qquad \mathbb{E} \Big[\hat{f}_{k}^{I+1} \Big| \mathcal{D}_{k}^{I} \Big] = \mathbb{E} \Big[\hat{f}_{k}^{I+1} \Big| \mathcal{D}_{k}^{I} \Big] = (1 - w_{I-k,k}^{I+1}) \hat{f}_{k}^{I} + w_{I-k,k}^{I+1} f_{k}$$

$$\Rightarrow \quad \hat{f}_{k} := \hat{f}_{k}^{I}$$
3.
$$\mathbb{E}[\hat{C}_{i,J}^{I+1} | \mathcal{D}^{I}] = \mathbb{E}\begin{bmatrix} \int_{k=I+1-i}^{J-1} \hat{f}_{k}^{I+1} C_{i,I+1-i} | \mathcal{D}^{I}\end{bmatrix} = \mathbb{E}\left[\mathbb{E}[\hat{f}_{J-1}^{I+1} | \mathcal{D}_{J-1}^{I}] \prod_{k=I+1-i}^{J-2} \hat{f}_{k}^{I+1} C_{i,I+1-i} | \mathcal{D}^{I}\end{bmatrix}$$

$$= \bar{f}_{J-1} \mathbb{E}\begin{bmatrix} \int_{k=I+1-i}^{J-2} \hat{f}_{k}^{I+1} C_{i,I+1-i} | \mathcal{D}^{I}\end{bmatrix} = \dots = \prod_{k=I+1-i}^{J-1} \bar{f}_{k} \mathbb{E}[C_{i,I+1-i} | \mathcal{D}^{I}]$$

$$= \prod_{k=I+1-i}^{J-1} \bar{f}_{k} \mathbb{E}[C_{i,I+1-i} | \mathcal{B}_{i,I-i}] = \prod_{k=I+1-i}^{J-1} \bar{f}_{k} \mathcal{I}_{I-i} C_{i,I-i}$$

$$4. \quad \mathbb{E}[\widehat{CDR}_{i}^{I+1} | \mathcal{D}^{I}] = \mathbb{E}[\hat{C}_{i,J}^{I} | \mathcal{D}^{I}] - \mathbb{E}[\hat{C}_{i,J}^{I+1} | \mathcal{D}^{I}] = \prod_{k=I-i}^{J-1} \hat{f}_{k}^{I} C_{i,I-i} - \prod_{k=I+1-i}^{J-1} \bar{f}_{k} f_{I-i} C_{i,I-i}$$

$$\approx \prod_{k=I-i}^{J-1} \hat{f}_{k}^{I} C_{i,I-i} - \prod_{k=I+1-i}^{J-1} \hat{f}_{k}^{I} \hat{f}_{I-i}^{I-i} C_{i,I-i} = 0$$
Taylor approximation of next years estimates

Recall the (multi-linear) functional:

$$U_i(\mathbf{g}) x := g_{J-1} \cdots g_{I-i} x.$$

Then we get:

$$\begin{split} \frac{\partial}{\partial g_j} U_i(\mathbf{g}) & x = g_{J-1} \cdots g_{j+1} g_{j-1} \cdots g_{I-i} x = \frac{U_i(\mathbf{g}) x}{g_j}, \\ U_i(\widehat{\mathbf{f}}^I) & C_{i,I-i} = \widehat{f}_{J-1}^I \dots \widehat{f}_{I-i}^I C_{i,I-i} = \widehat{C}_{i,J}^I, \\ U_i(\mathbf{F}_i^{I+1}) & C_{i,I-i} = \widehat{f}_{J-1}^{I+1} \dots \widehat{f}_{I-i+1}^{I+1} F_{i,I-i} C_{i,I-i} = \widehat{C}_{i,J}^{I+1} \quad \text{and} \\ & \widehat{C}_{i,J}^{I+1} - \widehat{C}_{i,J}^I \approx \sum_{k=I-i}^{J-1} \frac{\partial}{\partial F_{i,k}^{I+1}} U_i(\mathbf{F}_i^{I+1}) \bigg|_{\widehat{\mathbf{f}}^I} C_{i,I-i}^I \left(F_{i,k}^{I+1} - \widehat{f}_k^I\right), \\ & = \frac{C_{i,J}^I}{\widehat{f}_{I-i}^I} \left(F_{i,I-i} - \widehat{f}_{I-i}^I\right) + \sum_{k=I-i+1}^{J-1} \frac{C_{i,J}^I}{\widehat{f}_k^I} w_{I-k,k}^{I+1} \left(F_{I-k,k} - \widehat{f}_k^I\right) \end{split}$$

where we used a first order Taylor approximation and $\hat{\mathbf{f}}^I$ denotes the vector of the at time I estimated development factors and \mathbf{F}_i^{I+1} is a vector with components

$$F_{i,k}^{I+1} := \begin{cases} \widehat{f}_k^{I+1}, & \text{for } i+k > I, \\ F_{i,k}, & \text{for } i+k = I. \end{cases}$$

The red parts are the difference to the ultimate uncertainty case.

Stochastic Reserving Chain-Ladder-Method (CLM) Chain-Ladder-Method (CLM) Solvency uncertainty
$$\begin{split} & \label{eq:second} Triple approximation of the parameters in the data of the parameters in the data of the parameters of the parameters in the parameters of the paramete$$

For k = I - i we get

$$F_{i,I-i}^{I+1} - \hat{f}_{I-i}^{I} = F_{i,I-i} - \hat{f}_{I-i}^{I}$$

and for k > I - i it is

 $F_{i,k}^{I+1} - \hat{f}_k^I = \hat{f}_k^{I+1} - \hat{f}_k^I = (1 - w_{I-k,k}^{I+1})\hat{f}_k^I + w_{I-k,k}^{I+1}F_{I-k,k} - \hat{f}_k^I = w_{I-k,k}^{I+1} \left(F_{I-k,k} - \hat{f}_k^I\right)$

2 Chain-Ladder-Method (CLM)

2.6 Solvency uncertainty 2.6.1 Solvency uncertainty of a single accident period

(4/7)

Linear approximation of the CDR

If we replace in the linear approximation of the ultimate, i.e. in

$$C_{i,J} - \widehat{C}_{i,J}^{I} \approx \sum_{k=I-i}^{J-1} \frac{\widehat{C}_{i,J}^{I}}{\widehat{f}_{k}^{I}} \left(F_{i,k} - \widehat{f}_{k}^{I} \right),$$

the term
$$\left(F_{i,k} - \widehat{f}_{k}^{I}\right)$$
 by
 $\widetilde{F}_{i,k}^{I} - \widetilde{\widetilde{f}}_{i,k}^{I} := \begin{cases} F_{I-k,k} - \widehat{f}_{k}^{I}, & \text{for } k = I-i, \\ w_{I-k,k}^{I+1} \left(F_{I-k,k} - \widehat{f}_{k}^{I}\right), & \text{for } k > I-i, \end{cases}$

$$= \left(\mathbf{1}_{k=I-i} + \mathbf{1}_{k>I-i} w_{I-k,k}^{I+1}\right) \left(F_{I-k,k} - \widehat{f}_{k}^{I}\right).$$

we get the linear approximation of the CDR, i.e.

$$\hat{C}_{i,J}^{I+1} - \hat{C}_{i,J}^{I} \approx \frac{\hat{C}_{i,J}^{I}}{\hat{f}_{I-i}^{I}} \Big(F_{i,I-i} - \hat{f}_{I-i}^{I} \Big) + \sum_{k=I-i+1}^{J-1} \frac{\hat{C}_{i,J}^{I}}{\hat{f}_{k}^{I}} w_{I-k,k}^{I+1} \left(F_{I-k,k} - \hat{f}_{k}^{I} \right)$$

$$= \sum_{k=I-i}^{J-1} \frac{\hat{C}_{i,J}^{I}}{\hat{f}_{k}^{I}} \Big(\tilde{F}_{i,k}^{I} - \hat{f}_{k}^{I} \Big).$$

©R. Dahms (ETH Zurich, Spring 2021)

Stochastic Reserving Chain-Ladder-Method (CLM) Solvency uncertainty

The term $\widetilde{F}_{i,k}^{I} - \widetilde{\widetilde{f}}_{i,k}^{I}$ depends on the accident period *i* only via the indicator functions $\mathbf{1}_{k=I-i}$ and $\mathbf{1}_{k>I-i}$.

Estimator 2.20 (Solvency uncertainty of accident period *i*)

$$\begin{split} \mathsf{mse}_{0|\mathcal{D}^{I}} \Big[\widehat{\mathsf{CDR}}_{i} \Big] &= \mathsf{E} \Big[\left(\widehat{C}_{i,J}^{I+1} - \widehat{C}_{i,J}^{I} \right)^{2} \Big| \mathcal{D}^{I} \Big] \\ &\approx \mathsf{E} \Big[\left(\sum_{k=I-i}^{J-1} \frac{\widehat{C}_{i,J}^{I}}{\widehat{f}_{k}^{I}} \left(\widetilde{F}_{i,k}^{I} - \widetilde{f}_{i,k}^{I} \right) \right)^{2} \Big| \mathcal{D}^{I} \Big] \qquad \text{(Taylor approximation)} \\ &= \sum_{k_{1},k_{2}=I-i}^{J-1} \frac{\widehat{C}_{i,J}^{I}}{\widehat{f}_{k_{1}}^{I}} \frac{\widehat{C}_{i,J}^{I}}{\widehat{f}_{k_{2}}^{I}} \left(\mathbf{1}_{k_{1}=I-i} + \mathbf{1}_{k_{1}>I-i} w_{I-k_{1},k_{1}}^{I+1} \right) \left(\mathbf{1}_{k_{2}=I-i} + \mathbf{1}_{k_{2}>I-i} w_{I-k_{2},k_{2}}^{I+1} \right) \\ &= \mathbb{E} \Big[\Big(F_{I-k_{1},k_{1}} - \widehat{f}_{k_{1}}^{I} \Big) \left(F_{I-k_{2},k_{2}} - \widehat{f}_{k_{2}}^{I} \right) \Big| \mathcal{D}^{I} \Big] \\ &\approx \underbrace{\sum_{k=I-i}^{J-1} \frac{\widehat{\sigma}_{k}^{2}}{\left(\widehat{f}_{k}^{I} \right)^{2}} \left(\left(\mathbf{1}_{k=I-i} + \mathbf{1}_{k>I-i} w_{I-k,k}^{I+1} \right) \widehat{C}_{i,J}^{I} \right)^{2} \frac{1}{C_{I-k,k}}}{random error} \\ &+ \underbrace{\sum_{k=I-i}^{J-1} \frac{\widehat{\sigma}_{k}^{2}}{\left(\widehat{f}_{k}^{I} \right)^{2}} \left(\left(\mathbf{1}_{k=I-i} + \mathbf{1}_{k>I-i} w_{I-k,k}^{I+1} \right) \widehat{C}_{i,J}^{I} \right)^{2} \sum_{h=0}^{I-k-1} \frac{\left(w_{h,k}^{I} \right)^{2}}{C_{h,k}}}{parameter error} \\ \end{aligned}$$

From the derivation of the ultimate uncertainty we already know

$$\begin{split} \mathsf{E}\Big[\Big(F_{I-k_{1},k_{1}}-\hat{f}_{k_{1}}^{I}\Big)\Big(F_{I-k_{2},k_{2}}^{I}-\hat{f}_{k_{2}}^{I}\Big)\Big|\mathcal{D}^{I}\Big] &= \mathsf{Cov}\Big[F_{I-k_{1},k_{1}},F_{I-k_{2},k_{2}}\Big|\mathcal{D}^{I}\Big] + \left(\hat{f}_{k_{1}}^{I}-f_{k_{1}}\right)\left(\hat{f}_{k_{2}}^{I}-f_{k_{2}}\right) \\ &\approx \mathsf{Cov}\Big[F_{I-k_{1},k_{1}},F_{I-k_{2},k_{2}}\Big|\mathcal{D}^{I}\Big] + \mathsf{Cov}\Big[\hat{f}_{k_{1}}^{I},\hat{f}_{k_{2}}\Big|\mathcal{D}_{k_{1}\wedge k_{2}}\Big] \\ &\approx \mathbf{1}_{k_{1}=k_{2}}\left(\frac{\hat{\sigma}_{k_{1}}^{2}}{C_{I-k_{1},k_{1}}} + \sum_{h=0}^{I-k_{1}-1}\frac{\hat{\sigma}_{k_{1}}^{2}\left(w_{h,k}^{I}\right)^{2}}{C_{h,k_{1}}}\right). \end{split}$$

Therefore (the red terms are the differences to the ultimate uncertainty case),

Ultimate uncertainty for accident period i

$$\mathsf{mse}_{\mathcal{D}^{I}}\left[\widehat{C}_{i,J}^{I}\right] \approx \underbrace{\sum_{k=I-i}^{J-1} \frac{\widehat{\sigma}_{k}^{2}}{\left(\widehat{f}_{k}^{I}\right)^{2}} \left(\widehat{C}_{i,J}^{I}\right)^{2} \frac{1}{\widehat{C}_{i,k}^{I}}}_{\mathsf{random error}} + \underbrace{\sum_{k=I-i}^{J-1} \frac{\widehat{\sigma}_{k}^{2}}{\left(\widehat{f}_{k}^{I}\right)^{2}} \left(\widehat{C}_{i,J}^{I}\right)^{2} \sum_{h=0}^{I-k-1} \frac{\left(w_{h,k}^{I}\right)^{2}}{C_{h,k}}}_{\mathsf{parameter error}}$$

Solvency uncertainty for accident period \boldsymbol{i}

It almost looks like a simple multiplication by the factor

$$\left(\mathbf{1}_{k=I-i}+\mathbf{1}_{k>I-i}w_{I-k,k}^{I+1}\right),\,$$

except for the index replacement (i by I - k) in the random error part.

(7/7)

Corollary 2.21

If we use the variance minimizing weights

$$w_{i,k}^{I} = \frac{C_{i,k}}{\sum\limits_{h=0}^{I-k-1} C_{h,k}} \qquad \text{ and } \qquad$$

we get for the solvency uncertainty of accident period \boldsymbol{i}

$$\begin{split} & \mathsf{mse}_{0|\mathcal{D}^{I}} \left[\widehat{\mathsf{CDR}}_{i} \right] \\ & \approx \widehat{C}_{i,J}^{2} \sum_{k=I-i}^{J-1} \frac{\widehat{\sigma}_{k}^{2}}{\left(\widehat{f_{k}^{I}} \right)^{2}} \left(\mathbf{1}_{k=I-i} + \mathbf{1}_{k>I-i} \frac{C_{I-k,k}^{2}}{\left(\sum_{h=0}^{I-k} C_{h,k} \right)^{2}} \right) \left(\frac{1}{C_{I-k,k}} + \sum_{h=0}^{I-k-1} \frac{C_{h,k}^{2}}{C_{h,k} \left(\sum_{v=0}^{I-k-1} C_{v,k} \right)^{2}} \right) \\ & = \widehat{C}_{i,J}^{2} \sum_{k=I-i}^{J-1} \frac{\widehat{\sigma}_{k}^{2}}{\left(\widehat{f_{k}^{I}} \right)^{2}} \left(\mathbf{1}_{k=I-i} + \mathbf{1}_{k>I-i} \frac{C_{I-k,k}^{2}}{\left(\sum_{h=0}^{I-k} C_{h,k} \right)^{2}} \right) \left(\frac{1}{C_{I-k,k}} + \frac{1}{\sum_{h=0}^{I-k-1} C_{h,k}} \right), \end{split}$$

where the red terms indicate the differences to the ultimate uncertainty case.

 $w_{i,k}^{I+1} = \frac{C_{i,k}}{\sum\limits_{h=0}^{I-k} C_{h,k}}$

Stochastic Reserving

2021-04-26

- Chain-Ladder-Method (CLM)
 - -Solvency uncertainty

Dependent accident periods

Since $\widetilde{F}_{i,k}^{I}$ and $\widetilde{\widehat{f}}_{k}^{I}$ depend on $F_{I-k,k} = C_{I-k,k+1}/C_{I-k,k}$, for all i, the $\widehat{\mathsf{CDR}}_{i}^{I+1}$, $i \leq I$, are not independent. Therefore, we cannot simply take the sum over all accident periods in order to derive the solvency uncertainty of the aggregation of all accident periods.

But the Taylor approximation still works:

Stochastic Reserving

2021-04-26

- Chain-Ladder-Method (CLM)
 - -Solvency uncertainty

Dependent accident periods

Since $\tilde{F}_{i,k}^{j}$ and $\tilde{f}_{k}^{j,j}$ depend on $F_{l-k,k} - C_{l-k,k+1}C_{l-k,k+1}$ for all i, the $\widehat{CDR}_{l+1}^{l+1}$, $i \leq l$, are not independent. Therefore, we cannot simply take the sum over all accident periods in order to derive the solvency uncertainty of the aggregation of all accident periods. But the Tarlow approximation still works:

Estimator 2.22 (Solvency uncertainty of all accident periods) $\mathsf{mse}_{0|\mathcal{D}^{I}}\left[\sum_{i=0}^{I}\widehat{\mathsf{CDR}}_{i}\right] = \mathsf{E}\left[\left(\sum_{i=0}^{I}\left(\widehat{C}_{i,J}^{I+1} - \widehat{C}_{i,J}^{I}\right)\right)^{2}\right|\mathcal{D}^{I}\right]$ $\approx \mathsf{E}\left[\left(\sum_{i=0}^{I}\sum_{l=-I}^{J-1}\frac{\widehat{C}_{i_{1},J}^{I}}{\widehat{f}_{l_{i}}^{I}}\left(\widetilde{F}_{i,k}^{I}-\widetilde{f}_{i,k}^{I}\right)\right)^{2}\middle|\mathcal{D}^{I}\right]$ (Taylor approximation) $=\sum_{i_{1},i_{2}=0}^{I}\sum_{k_{1}=I-i_{1}}^{J-1}\sum_{k_{2}=I-i_{2}}^{J-1}\frac{\widehat{C}_{i_{1},J}^{I}}{\widehat{f}_{k_{1}}^{I}}\frac{\widehat{C}_{i_{2},J}^{I}}{\widehat{f}_{k_{2}}^{I}}\mathsf{E}\Big[\Big(F_{I-k_{1},k_{1}}-\widehat{f}_{k_{1}}^{I}\Big)\left(F_{I-k_{2},k_{2}}-\widehat{f}_{k_{2}}^{I}\right)\Big|\mathcal{D}^{I}\Big]$ $\left(\mathbf{1}_{k_{1}=I-i_{1}}+\mathbf{1}_{k_{1}>I-i_{1}}w_{I-k_{1},k_{1}}^{I+1}\right)\left(\mathbf{1}_{k_{2}=I-i_{2}}+\mathbf{1}_{k_{2}>I-i_{2}}w_{I-k_{2},k_{2}}^{I+1}\right)$ $\approx \sum_{k=0}^{s} \frac{\widehat{\sigma}_k^2}{\left(\widehat{f}_k^I\right)^2} \left(\sum_{i=I-k}^{i} \left(\mathbf{1}_{k=I-i} + \mathbf{1}_{k>I-i} w_{I-k,k}^{I+1}\right) \widehat{C}_{i,J}^I\right)^2 \frac{1}{C_{I-k}} \frac{1}{k}$ random error $+\sum_{k=0}^{J-1} \frac{\widehat{\sigma}_{k}^{2}}{\left(\widehat{f}_{L}^{I}\right)^{2}} \left(\sum_{i=I-k}^{I} \left(\mathbf{1}_{k=I-i} + \mathbf{1}_{k>I-i} w_{I-k,k}^{I+1}\right) \widehat{C}_{i,J}^{I}\right)^{2} \sum_{k=0}^{I-k-1} \frac{\left(w_{h,k}^{I}\right)^{2}}{C_{h,k}}$ parameter error

©R. Dahms (ETH Zurich, Spring 2021)

From the single accident period case we know

$$\mathbf{E}\Big[\!\Big(\!F_{I-k_1,k_1} - \hat{f}_{k_1}^I\Big)\Big(\!F_{I-k_2,k_2} - \hat{f}_{k_2}^I\Big)\!\Big|\mathcal{D}^I\Big] \approx \mathbf{1}_{k_1=k_2} \left(\frac{\widehat{\sigma}_{k_1}^2}{C_{I-k_1,k_1}} + \sum_{h=0}^{I-k_1-1} \frac{\widehat{\sigma}_{k_1}^2\left(w_{h,k_1}^I\right)^2}{C_{h,k_1}}\right).$$

Therefore, we get

$$\begin{split} \mathbf{mse}_{0|\mathcal{D}I} \begin{bmatrix} \sum_{i=0}^{I} \widehat{\mathbf{COR}}_i \end{bmatrix} \\ &\approx \sum_{i_1,i_2=0}^{I} \sum_{k_1=I-i_1}^{J-1} \sum_{k_2=I-i_2}^{J-1} \frac{\widehat{C}_{i_1,J}^{I}}{\widehat{f}_{k_1}^{I}} \frac{\widehat{C}_{i_2,J}^{I}}{\widehat{f}_{k_2}^{I}} \mathbf{1}_{k_1=k_2} \left(\frac{\widehat{\sigma}_{k_1}^2}{C_{I-k_1,k_1}} + \frac{I-k_1^{-1}}{h_1^{-1}} \frac{\widehat{\sigma}_{k_1}^2 \left(w_{h,k_1}^I \right)^2}{C_{h,k_1}} \right) \\ &\qquad \left(\mathbf{1}_{k_1=I-i_1} + \mathbf{1}_{k_1>I-i_1} w_{I-k_1,k_1}^{I+1} \right) \left(\mathbf{1}_{k_2=I-i_2} + \mathbf{1}_{k_2>I-i_2} w_{I-k_2,k_2}^{I+1} \right) \\ &= \sum_{k_1,k_2=0}^{J-1} \sum_{i_1=I-k_1}^{I} \sum_{i_2=I-k_2}^{I} \frac{\widehat{C}_{i_1,J}^{I}}{\widehat{f}_{k_1}^{I}} \frac{\widehat{C}_{i_2,J}^{I}}{\widehat{f}_{k_2}^{I}} \mathbf{1}_{k_1=k_2} \left(\frac{\widehat{\sigma}_{k_1}^2}{C_{I-k_1,k_1}} + \frac{I-k_1^{-1}}{h_1^{-1}} \frac{\widehat{\sigma}_{k_1}^2 \left(w_{h,k_1}^I \right)^2}{C_{h,k_1}} \right) \\ &\qquad \left(\mathbf{1}_{k_1=I-i_1} + \mathbf{1}_{k_1>I-i_1} w_{I-k_1,k_1}^{I+1} \right) \left(\mathbf{1}_{k_2=I-i_2} + \mathbf{1}_{k_2>I-i_2} w_{I-k_2,k_2}^I \right) \\ &= \sum_{k=0}^{J-1} \frac{\widehat{\sigma}_{k}^2}{\left(\widehat{f}_{k}^I\right)^2} \left(\sum_{i=I-k}^{I} \left(\mathbf{1}_{k=I-i} + \mathbf{1}_{k>I-i} w_{I-k,k}^{I+1} \right) \widehat{C}_{i,J}^I \right)^2 \left(\frac{1}{C_{I-k,k}} + \sum_{h=0}^{I-k-1} \frac{\left(w_{h,k}^I \right)^2}{C_{h,k}} \right) \end{aligned} \right) \end{split}$$

2 Chain-Ladder-Method (CLM)

2.6 Solvency uncertainty └ 2.6.2 Solvency uncertainty of all accident periods

©R. Dahms (ETH Zurich, Spring 2021)

Stochastic Reserving

2021-04-26

- Chain-Ladder-Method (CLM)
 - -Solvency uncertainty

(4/4)

Corollary 2.24

r

If we use the variance minimizing weights

$$w_{i,k}^{I} = \frac{C_{i,k}}{\sum\limits_{h=0}^{I-k-1} C_{h,k}} \qquad \text{ and } \qquad w_{i,k}^{I+1} = \frac{C_{i,k}}{\sum\limits_{h=0}^{I-k} C_{h,k}}$$

we get for the solvency uncertainty of all accident periods

$$\begin{split} \mathsf{nse}_{0|\mathcal{D}^{I}} \Big[\widehat{\mathsf{CDR}}_{i} \Big] \\ &\approx \left(\sum_{i=0}^{I} \widehat{C}_{i,J}^{I} \right)^{2} \sum_{k=0}^{J-1} \frac{\widehat{\sigma}_{k}^{2}}{\left(\widehat{f}_{k}^{I} \right)^{2}} \left(\frac{1}{\sum_{h=0}^{I-k-1} C_{h,k}} - \frac{1}{\sum_{h=0}^{I-k} C_{h,k}} \right), \end{split}$$

where the red term indicate the difference to the ultimate uncertainty case.

Stochastic Reserving Chain-Ladder-Method (CLM) Solvency uncertainty

$$\begin{split} \sum_{i=I-k}^{I} \left(\mathbf{1}_{k=I-i} + \mathbf{1}_{k>I-i} w_{I-k,k}^{I+1} \right) \hat{C}_{i,J}^{I} &= \hat{C}_{I-k,J}^{I} + \sum_{i=I-k+1}^{I} \frac{C_{I-k,k}}{\sum_{h=0}^{I-k} C_{h,k}} \hat{C}_{i,J}^{I} \\ &= \hat{C}_{I-k,J}^{I} + \sum_{i=I-k+1}^{I} \frac{\hat{C}_{I-k,J}^{I}}{\sum_{h=0}^{I-k} \hat{C}_{h,J}^{I}} \hat{C}_{i,J}^{I} \\ &= \hat{C}_{I-k,J}^{I} \left(1 + \frac{\sum_{i=I-k+1}^{I} \hat{C}_{i,J}^{I}}{\sum_{h=0}^{I-k} \hat{C}_{h,J}^{I}} \right) = \sum_{i=0}^{I} \hat{C}_{i,J}^{I} \frac{C_{I-k,k}}{\sum_{h=0}^{I-k} \hat{C}_{h,J}^{I}} \end{split}$$

Therefore, we get for the solvency uncertainty of all accident periods

$$\begin{split} \mathsf{mse}_{0|\mathcal{D}^{I}} \left[\widehat{\mathsf{CDR}}_{i} \right] &\approx \sum_{k=0}^{J-1} \frac{\widehat{\sigma}_{k}^{2}}{\left(\widehat{f}_{k}^{I} \right)^{2}} \left(\sum_{i=0}^{I} \widehat{C}_{i,J}^{I} \right)^{2} \left(\frac{C_{I-k,k}}{\sum_{h=0}^{I-k} C_{h,k}} \right)^{2} \left(\frac{1}{C_{I-k,k}} + \frac{1}{\sum_{h=0}^{I-k-1} C_{h,k}} \right) \\ &= \left(\sum_{i=0}^{I} \widehat{C}_{i,J}^{I} \right)^{2} \sum_{k=0}^{J-1} \frac{\widehat{\sigma}_{k}^{2}}{\left(\widehat{f}_{k}^{I} \right)^{2}} \left(\frac{C_{I-k,k}}{\sum_{h=0}^{I-k} C_{h,k}} \right)^{2} \frac{\sum_{h=0}^{I-k} C_{h,k}}{C_{I-k,k} \sum_{h=0}^{I-k-1} C_{h,k}} \\ &= \left(\sum_{i=0}^{I} \widehat{C}_{i,J}^{I} \right)^{2} \sum_{k=0}^{J-1} \frac{\widehat{\sigma}_{k}^{2}}{\left(\widehat{f}_{k}^{I} \right)^{2}} \frac{C_{I-k,k}}{\sum_{h=0}^{I-k-1} C_{h,k}} \sum_{h=0}^{I-k-1} C_{h,k}} \\ &= \left(\sum_{i=0}^{I} \widehat{C}_{i,J}^{I} \right)^{2} \sum_{k=0}^{J-1} \frac{\widehat{\sigma}_{k}^{2}}{\left(\widehat{f}_{k}^{I} \right)^{2}} \left(\frac{1}{\sum_{h=0}^{I-k-1} C_{h,k}} - \frac{1}{\sum_{h=0}^{I-k} C_{h,k}} \right) \end{split}$$

(1/4)

Estimation at time $n \ge I$

Analogously to the next years estimation we can look at the estimation of the ultimate at any time $n \geq I$

$$\widehat{C}_{i,J}^{n} := C_{i,n-i} \prod_{k=n-i}^{J-1} \widehat{f}_{k}^{n} = C_{i,I-i} \prod_{k=I-i}^{n-i-1} F_{i,k} \prod_{k=n-i}^{J-1} \widehat{f}_{k}^{n}.$$

The development factors are estimated by

$$\widehat{f}_k^n := \sum_{h=0}^{n-k-1} w_{h,k}^n F_{h,k}$$

with consistent future weights $w_{i,k}^n$. That means for $I - k \le i \le n - k - 1$, there exists \mathcal{D}_k^n -measurable weights $0 \le w_{i,k}^n \le 1$ with

•
$$C_{i,k} = 0$$
 implies $w_{i,k}^n = 0$,

•
$$w_{i,k}^n = (1 - w_{n-k,k}^n) w_{i,k}^{n-1}$$
, for $i + k < n$.

Stochastic Reserving

2021-04-26

- Chain-Ladder-Method (CLM)
 - -Solvency uncertainty

Estimation at time $n \ge I$

Analogously to the next years estimation we can look at the estimation of the ultimate at any time $n\geq I$

$$\hat{\widehat{f}}_{i,J}^n := C_{i,n-i} \prod_{k=n-i}^{J-1} \hat{f}_k^n = C_{i,I-i} \prod_{k=I-i}^{n-i-1} F_{i,k} \prod_{k=n-i}^{J-1} \hat{f}_k^n.$$

The development factors are estimated by

$$\hat{f}_{k}^{n} := \sum_{k=0}^{n-k-1} w_{h,k}^{n} F_{h,k}$$

with consistent future weights $w^n_{i,k}$. That means for $I - k \le i \le n - k - 1$, there exists \mathcal{D}^n_k -measurable weights $0 \le w^n_{i,k} \le 1$ with • $C_{i,k} = 0$ implies $w^n_{i,k} = 0$,

• $w_{i,k}^{n} = (1 - w_{n-k,k}^{n})w_{i,k}^{n-1}$, for i + k < n.

Claims development result between two estimation time $I \leq n_1 < n_2$

Since formulas will get very tedious (see for instance [12]), if one analyses the CDR with respect to two time periods $I \leq n_1 < n_2$ analogously to the next year claim development result, we will only consider the special case of variance minimizing weights

$$w_{i,k}^{n} := \frac{C_{i,k}}{\sum_{h=0}^{n-k-1} C_{h,k}},$$
(2.3)

which leads to the following estimates (at time n) of the development factors

$$\hat{f}_k^n := \sum_{i=0}^{n-k-1} w_{i,k}^n \frac{C_{i,k+1}}{C_{i,k}} = \frac{\sum_{i=0}^{n-k-1} C_{i,k+1}}{\sum_{i=0}^{n-k-1} C_{i,k}}.$$

In this case we have

$$\sum_{i=0}^{I} \widehat{C}_{i,J}^{n} = \sum_{i=0}^{I} C_{i,0} \prod_{k=0}^{J-1} \widehat{f}_{k}^{n}.$$
(2.4)

laims development result between two estimation time $I \leq n$

Since formulas will get very tedious (see for instance [12]), if one analyses the CDR with respect to two time periods $I \leq n_1 < n_2$ analogously to the next year claim development result, we will only consider the special case of variance minimizing weights.

$$w_{i,k}^{a} := \frac{C_{i,k}}{\sum_{k=0}^{a-1} C_{h,k}},$$
 (2.3)

which leads to the following estimates (at time n) of the development factors

$$\bar{f}_{k}^{n} := \sum_{i=0}^{n-k-1} w_{ik}^{n} \frac{C_{i,k+1}}{C_{i,k}} = \frac{\sum_{i=0}^{n-k-1} C_{i,k+1}}{\sum_{i=0}^{n-k-1} C_{i,k}}$$

this case we have
 $\sum_{i=0}^{I} \tilde{C}_{i,j}^{n} = \sum_{i=0}^{I} C_{i,k} \prod_{k=0}^{I-1} \tilde{R}^{i}.$ (2.4)

For each k > 0 we have

$$\begin{split} \sum_{i=0}^{I} \widehat{C}_{i,k+1}^{n} &= \sum_{i=0}^{n-k-1} C_{i,k+1} + \sum_{i=n-k}^{I} \widehat{f}_{k}^{n} \widehat{C}_{i,k}^{n} \\ &= \frac{\sum_{i=0}^{n-k-1} C_{i,k+1}}{\sum_{i=0}^{n-k-1} C_{i,k}} \sum_{i=0}^{n-k-1} C_{i,k} + \widehat{f}_{k}^{n} \sum_{i=n-k}^{I} \widehat{C}_{i,k}^{n} \\ &= \widehat{f}_{k}^{n} \sum_{i=0}^{n-k-1} C_{i,k} + \widehat{f}_{k}^{n} \sum_{i=n-k}^{I} \widehat{C}_{i,k}^{n} \\ &= \widehat{f}_{k}^{n} \sum_{i=0}^{I} \widehat{C}_{i,k}^{n}, \end{split}$$

which by induction proves (2.4).

2 Chain-Ladder-Method (CLM)

Estimator 2.25 (Uncertainty of the CDR^{n_1,n_2} with variance minimizing weights)

In the case of variance minimizing weights (2.3) the uncertainty of the claims development result $\sum_{i=0}^{I} (\hat{C}_{i,J}^{n_2} - \hat{C}_{i,J}^{n_1})$ between two time periods $I \leq n_1 < n_2$ can be estimated by

We will start with some very brave approximations

$$\begin{split} \mathbf{mse}_{0\mid\mathcal{D}^{I}}\left[\widehat{\mathbf{CDR}}^{n_{1},n_{2}}\right] &= \left(\sum_{i=0}^{I}C_{i,0}\right)^{2}\mathbf{E}\left[\left(\prod_{k=0}^{J-1}\widehat{f}_{k}^{n_{2}} - \prod_{k=0}^{J-1}\widehat{f}_{k}^{n_{1}}\right)^{2}\middle|\mathcal{D}^{I}\right] \\ &\approx \left(\sum_{i=0}^{I}C_{i,0}\right)^{2}\left(\prod_{k=0}^{J-1}\mathbf{E}\left[\left(\widehat{f}_{k}^{n_{2}}\right)^{2}\middle|\mathcal{D}^{n_{1}}\right] - \prod_{k=0}^{J-1}\mathbf{E}\left[\left(\widehat{f}_{k}^{n_{1}}\right)^{2}\middle|\mathcal{D}^{n_{1}}\right]\right) \\ &\approx \left(\sum_{i=0}^{I}C_{i,0}\right)^{2}\left(\prod_{k=0}^{J-1}\mathbf{E}\left[\left(\widehat{f}_{k}^{n_{2}}\right)^{2}\middle|\mathcal{D}^{n_{1}}\right] - \prod_{k=0}^{J-1}\mathbf{E}\left[\left(\widehat{f}_{k}^{I}\right)^{2}\right)\right) \end{split}$$

In order to estimate the remaining expectations of the square of $\hat{f}_{lk}^{n_2}$, we will look at the corresponding variance and expectation of $\hat{f}_{k}^{n_2}$ and always replace all future weights $w_{i,k}^{n_2}$ by their estimates at time I, i.e. by

$$\widehat{w}_{i,k}^{n_{2}} := \frac{C_{i,k}}{\sum_{h=0}^{n_{2}-k-1} \widehat{C}_{h,k}^{I}}$$

We get $\mathbf{E}\left[\hat{f}_{k}^{n_{2}} \middle| \mathcal{D}^{n_{1}}\right] = \mathbf{E}\left[\sum_{i=0}^{n_{2}-k-1} w_{i,k}^{n_{2}} \frac{C_{i,k+1}}{C_{i,k}} \middle| \mathcal{D}^{n_{1}}\right] \approx \mathbf{E}\left[\sum_{i=0}^{n_{2}-k-1} \hat{w}_{i,k}^{n_{2}} \frac{C_{i,k+1}}{C_{i,k}} \middle| \mathcal{D}^{n_{1}}\right] = \sum_{i=0}^{n_{1}-k-1} \hat{w}_{i,k}^{n_{2}} \frac{C_{i,k+1}}{C_{i,k}} + \sum_{i=n_{1}-k}^{n_{2}-k-1} \hat{w}_{i,k}^{n_{2}} f_{k}$ $\xrightarrow{n_{1}-k-1} \hat{C}_{i,k} - C_{i,k+1} - \sum_{i=n_{1}-k}^{n_{2}-k-1} \hat{C}_{k,k} - \sum_{i=n_{1}-k-1}^{n_{1}-k-1} \hat{C}_{k,k} - \sum_{i=n_{1}-k-1}^{n_{2}-k-1} \hat{$

$$= \sum_{i=0}^{n} \frac{\sum_{i,k=1}^{n-k-1} \widehat{C}_{i,k}I_{k}}{\sum_{h=0}^{n-k-1} \widehat{C}_{i,k}I_{h,k}} + \frac{\sum_{h=0}^{n-1-k-n,k} \widehat{C}_{i,k}I_{h}}{\sum_{h=0}^{n-k-1} \widehat{C}_{i,k}I_{h}} f_{k} \approx \frac{\sum_{h=0}^{n-1-k-1} \widehat{C}_{i,k}I_{h}}{\sum_{h=0}^{n-1-k-1} \widehat{C}_{i,k}I_{h}} f_{k} + \frac{\sum_{h=0}^{n-1-k-n,k} \widehat{C}_{i,k}I_{h}}{\sum_{h=0}^{n-1-k-1} \widehat{C}_{i,k}I_{h}} f_{k}$$

$$\approx \hat{f}_k^{n_1} + \frac{\sum_{h=n_1-k}^{n_2-k} C_{h,k}^{h,k}}{\sum_{h=0}^{n_2-k-1} \hat{C}_{I,k}^{1}} (f_k - \hat{f}_k^{n_1}) =: \hat{f}_k^{n_1} + \Omega_k^{n_1,n_2} (f_k - \hat{f}_k^{n_1})$$

This leads to

$$\begin{split} \left(\mathbf{E} \Big[\hat{f}_k^{n_2} \left| \mathcal{D}^{n_1} \right] \right)^2 &= \left(\hat{f}_k^{n_1} \right)^2 + 2\Omega_k^{n_1,n_2} \hat{f}_k^{n_1} (f_k - \hat{f}_k^{n_1}) + \left(\Omega_k^{n_1,n_2} \right)^2 (f_k - \hat{f}_k^{n_1})^2 \\ &\approx \left(\hat{f}_k^{n_1} \right)^2 + 0 + \left(\Omega_k^{n_1,n_2} \right)^2 \operatorname{Var} \Big[\hat{f}_k^{n_1} \left| \mathcal{D}_k \right] \approx \left(\hat{f}_k^I \right)^2 + \hat{\sigma}_k^2 \frac{\left(\sum_{i=n_1-k}^{n_2-k-1} \hat{C}_{i,k}^I \right)^2}{\sum_{i=0}^{n_1-k-1} \hat{C}_{i,k}^I \left(\sum_{i=0}^{n_2-k-1} \hat{C}_{i,k}^I \right)^2}, \end{split}$$

For the variance we get

$$\begin{split} & \operatorname{Var}\left[\hat{f}_{k}^{n_{2}}\left|\mathcal{D}^{n_{1}}\right] = \operatorname{Var}\left[\sum_{i=0}^{n_{2}-k-1} w_{i,k}^{n_{2}} \frac{C_{i,k+1}}{C_{i,k}} \left|\mathcal{D}^{n_{1}}\right] \approx \operatorname{Var}\left[\sum_{i=0}^{n_{2}-k-1} \hat{w}_{i,k}^{n_{2}} \frac{C_{i,k+1}}{C_{i,k}} \left|\mathcal{D}^{n_{1}}\right]\right] \\ &= \sum_{i=n_{1}-k}^{n_{2}-k-1} \left(\hat{w}_{i,k}^{n_{2}}\right)^{2} \operatorname{Var}\left[\frac{C_{i,k+1}}{C_{i,k}} \left|\mathcal{D}^{n_{1}}\right]\right] \\ &= \sum_{i=n_{1}-k}^{n_{2}-k-1} \left(\hat{w}_{i,k}^{n_{2}}\right)^{2} \left(\operatorname{Var}\left[\operatorname{E}\left[\frac{C_{i,k+1}}{C_{i,k}} \left|\mathcal{D}_{k}^{n_{1}}\right]\right] \mathcal{D}^{n_{1}}\right] + \operatorname{E}\left[\operatorname{Var}\left[\frac{C_{i,k+1}}{C_{i,k}} \left|\mathcal{D}_{k}^{n_{1}}\right]\right] \mathcal{D}^{n_{1}}\right] \right) \\ &= \sum_{i=n_{1}-k}^{n_{2}-k-1} \left(\hat{w}_{i,k}^{n_{2}}\right)^{2} \left(0 + \operatorname{E}\left[\frac{\sigma_{k}^{2}}{C_{i,k}} \left|\mathcal{D}^{n_{1}}\right]\right] \right) \approx \sum_{i=n_{1}-k}^{n_{2}-k-1} \left(\hat{w}_{i,k}^{n_{2}}\right)^{2} \frac{\hat{\sigma}_{k}^{2}}{\hat{C}_{i,k}^{1}} = \hat{\sigma}_{k}^{2} \frac{\sum_{i=n_{1}-k}^{n_{2}-k-1} \hat{C}_{i,k}^{I}}{\left(\sum_{i=0}^{n_{2}-k-1} \hat{C}_{i,k}^{I}\right)^{2}}. \end{split}$$

Both estimates together lead to

$$\begin{split} \mathbf{E}\Big[\left(\hat{f}_{k}^{n_{2}} \right)^{2} \Big| \mathcal{D}^{n_{1}} \Big] &\approx \left(\hat{f}_{k}^{I} \right)^{2} + \hat{\sigma}_{k}^{2} \left(\frac{\left(\sum_{i=n_{1}-k}^{n_{2}-k-1} \hat{C}_{i,k}^{I} \right)^{2}}{\sum_{i=0}^{n_{1}-k-1} \hat{C}_{i,k}^{I} \left(\sum_{i=0}^{n_{2}-k-1} \hat{C}_{i,k}^{I} \right)^{2}} + \frac{\sum_{i=n_{1}-k}^{n_{2}-k-1} \hat{C}_{i,k}^{I}}{\left(\sum_{i=0}^{n_{2}-k-1} \hat{C}_{i,k}^{I} \right)^{2}} \right) \\ &= \left(\hat{f}_{k}^{I} \right)^{2} + \hat{\sigma}_{k}^{2} \frac{\sum_{i=n_{1}-k}^{n_{2}-k-1} \hat{C}_{i,k}^{I}}{\sum_{i=0}^{n_{1}-k-1} \hat{C}_{i,k}^{I} \sum_{i=0}^{n_{2}-k-1} \hat{C}_{i,k}^{I}} \\ &= \left(\hat{f}_{k}^{I} \right)^{2} + \hat{\sigma}_{k}^{2} \left(\frac{1}{\sum_{i=0}^{n_{1}-k-1} \hat{C}_{i,k}^{I}} - \frac{1}{\sum_{i=0}^{n_{2}-k-1} \hat{C}_{i,k}^{I}} \right) \end{split}$$

Combining all we get

$$\begin{split} \mathrm{mse}_{0|\mathcal{D}^{I}}\left[\widehat{\mathrm{CDR}}^{n_{1},n_{2}}\right] &\approx \left(\sum_{i=0}^{I} C_{i,0}\right)^{2} \left(\prod_{k=0}^{J-1} \left(\left(\hat{f}_{k}^{I}\right)^{2} + \hat{\sigma}_{k}^{2} \left(\frac{1}{\sum_{i=0}^{n_{1}-k-1} \hat{C}_{i,k}^{I}} - \frac{1}{\sum_{i=0}^{n_{2}-k-1} \hat{C}_{i,k}^{I}}\right)\right) - \prod_{k=0}^{J-1} \left(\hat{f}_{k}^{I}\right)^{2}\right) \\ &= \left(\sum_{i=0}^{I} C_{i,J}\right)^{2} \left(\prod_{k=0}^{J-1} \left(1 + \frac{\hat{\sigma}_{k}^{2}}{\left(\hat{f}_{k}^{I}\right)^{2}} \left(\frac{1}{\sum_{i=0}^{n_{1}-k-1} \hat{C}_{i,k}^{I}} - \frac{1}{\sum_{i=0}^{n_{2}-k-1} \hat{C}_{i,k}^{I}}\right)\right) - 1\right) \\ &\approx \left(\sum_{i=0}^{I} \hat{C}_{i,J}^{I}\right)^{2} \sum_{k=0}^{J-1} \frac{\hat{\sigma}_{k}^{2}}{\hat{f}_{k}^{I}} \left(\frac{1}{\sum_{i=0}^{n_{1}-k-1} \hat{C}_{i,k}^{I}} - \frac{1}{\sum_{i=0}^{n_{2}-k-1} \hat{C}_{i,k}^{I}}\right), \end{split}$$

where we used in the last step a Taylor approximation in $\hat{\sigma}_k^2$ at zero.

Remark 2.26

- All summation over accident periods stop at I, but we skipped $\wedge I$ in order to keep the formulas a bit simpler.
- the red parts are the differences to our estimators for the solvency and ultimate uncertainty, i.e.
 - * If we take $n_2 = I + 1$ and $n_1 = I$ Estimator 2.25 leads to the same formulas as in the solvency uncertainty case, see Corollary 2.24.
 - * If we take $n_2 = \infty$ and $n_1 = I$ Estimator 2.25 leads to the same formulas as in the ultimate uncertainty case, see Corollary 2.14.
- The derivation of Estimator 2.25 is based on the article [12] by Ancus Röhr and discussion with Alois Gisler.
- In practise the differences between the last two lines of Estimator 2.25 are usually very very small.

Stochastic Reserving

2021-04-26

- Chain-Ladder-Method (CLM)
 - -Solvency uncertainty

Remark 2.26

- All summation over accident periods stop at I, but we skipped ∧I in order to keep the formulas a bit simpler.
- the red parts are the differences to our estimators for the solvency and ultimate uncertainty, i.e.
- If we take n₂ = I + 1 and n₁ = I Estimator 2.25 leads to the same formulas as in the solvency uncertainty case, see Corollary 2.24.
- If we take $n_2=\infty$ and $n_1=I$ Estimator 2.25 leads to the same formulas as in the ultimate uncertainty case, see Corollary 2.14.
- The derivation of Estimator 2.25 is based on the article [12] by Ancus Röhr and discussion with Alois Gisler.
- In practise the differences between the last two lines of Estimator 2.25 are usually very very small.

(1/4)

Solvency uncertainties for Examples 2.7 and 2.8

- We used the standard estimators for the variance parameters, see Estimator 2.12.
- Since the incurred values are a bit more stable, in particular for later development periods, the corresponding uncertainties are lower.
- The linear approximation for the (parameter estimation) uncertainty results in almost the same values like without approximation.

	Solvency u	ncertainty fo	r payments	Solvency u	incertainty fo	or incurred	Credibility like weighting			
AP	Proc Var	Para Err	Total	Proc Var	Para Err	Total	Proc Var	Para Err	Total	
0										
1	68'914	56'985	89'423	1'935	1'665	2'553	32'813	27'101	42'558	
2	171'037	126'690	212'847	3'741	2'610	4'561	79'147	58'707	98'543	
3	109'318	73'276	131'605	6'748	3'961	7'825	47'066	31'872	56'842	
4	143'337	73'807	161'223	5'929	3'045	6'666	63'039	32'229	70'800	
5	126'341	73'120	145'975	28'448	13'115	31'325	46'567	27'713	54'189	
6	92'633	49'013	104'800	42'423	17'435	45'866	33'101	18'187	37'768	
7	212'791	89'328	230'780	144'761	55'891	155'175	144'968	56'753	155'681	
8	261'148	111'014	283'765	143'548	46'460	150'879	159'362	59'347	170'054	
9	215'464	78'066	229'170	211'338	71'652	223'154	171'916	58'364	181'553	
Total	847'287	539'524	1'004'481	327'445	116'968	347'709	415'961	231'429	476'008	

We always show the square root of uncertainties.

1	We used t Since the the corres The linear same valu	the standa incurred v ponding u approxim es like wit	nd estima alues are ncertainti ation for hout appr	tors for the a bit more es are lowe the (param oximation	e stable, in stable, in st. seter estin	paramete particula nation) un	n, see Ext r for later certainty	imator 2. developm results in :	12. ant park almost t	
	Solvency ancestainty for power			Selvence a	ncetainty fo	r incurred	Credibility like weighting			
~	Prec Ver	Pers Dr.	Total	Proc Ver	Pers Dr.	Telef	Proc Var	Pere Dr.	Telal	
- 0										
1	68'914	201202	89/423	1935	7065	2553	32313	27101	4200	
2	171027	126/680	212147	2741	2932	4041	29/147	58702	9054	
- 2	109/315	73276	121 805	6748	7964	7625	47955	31872	05'04	
4	143337	737607	161 223	\$929	2045	61665	\$3739	32229	7280	
	128'041	73'120	145975	201448	17115	21/225	40'507	27713	5418	
	07633	49013	104/800	47/423	17435	45'885	33'301	18187	37.76	
- 6		82/100	220780	100701	55'091	155175	144'900	56753	15510	
ţ	212794					1000000	100000	00347	17700	
-	212754	1117014	283255	100044	44 461					
	212754 267145 212464	111014	283765	211238	71962	2231154	171916	58,264	161755	

The uncertainty of the weighing has been calculated using a LSRM coupling of both CLM via the exposure $R_{i,k}^{0,1} = R_{i,k}^{1,0} := R_{i,k}^{0,0} + R_{i,k}^{1,1}$, see Section 4.

One can derive estimators for uncertainties without a first order Taylor approximation, see [21]. In practice, the resulting figures are almost alike.

©R. Dahms (ETH Zurich, Spring 2021)

The incurred projection results in a very symmetric and tight distribution of the CDR. Therefore, if we believe in it we would expect only very small amounts for the CDR.

The uncertainty of the weighing has been calculated using a LSRM coupling of both CLM via the exposure $R_{i,k}^{0,1} = R_{i,k}^{1,0} := R_{i,k}^{0,0} + R_{i,k}^{1,1}$, see Section 4.

2 Chain-Ladder-Method (CLM)

Ultimate vs. solvency uncertainties for Examples 2.7 and 2.8

- We used the standard estimators for the variance parameters, see Estimator 2.12.
- In total the square root of the solvency uncertainty is about 70% of the square root of the ultimate uncertainty, whereas it is higher in older and lesser in recent accident periods. That means during one business period we gain information that is worth about 30% of the uncertainty.
- For standard business one usually expects that the square root of the solvency uncertainty lies between 50 % and 90 % of the square root of the ultimate uncertainty.

ΔΡ	Uncert	ainty for pay	/ments	Uncer	tainty for inc	urred	Credibility like weighting			
AP	Ultimate	Solvency	%	Ultimate	Solvency	%	Ultimate	Solvency	%	
0										
1	89'423	89'423	100%	2'553	2'553	100%	42'558	42'558	100%	
2	234'666	212'847	91%	5'186	4'561	88%	108'568	98'543	91%	
3	255'612	131'605	51%	9'264	7'825	84%	113'373	56'842	50%	
4	261'298	161'223	62%	10'874	6'666	61%	111'770	70'800	63%	
5	323'899	145'975	45%	33'243	31'325	94%	127'689	54'189	42%	
6	274'942	104'800	38%	55'884	45'866	82%	99'953	37'768	38%	
7	373'634	230'780	62%	165'086	155'175	94%	187'520	155'681	83%	
8	492'894	283'765	58%	209'163	150'879	72%	249'205	170'054	68%	
9	468'137	229'170	49%	321'566	223'154	69%	292'340	181'553	62%	
Total	1'517'861	1'004'481	66%	455'802	347'709	76%	671'926	476'008	71%	

We always show the square root of uncertainties.

:	• We sale the an induced individuals for the valuable plantheast, who chains 2.1. It is total the spaces rate of the subsets powershaps it should be the subsets of the									
	Uncart	anny for paye	ana .	Utical	Tanky for inc.	aneo .	Lillingia	No way	nong .	
1	67422	87423	100%	2 5 5 2	2003	100%	42355	47,958	100	
2	210169	212167	975	\$166	4041	10.5	120/568	98543	81	
- 2	255'612	121/005	51N	9264	7625	64%	115273	56542	50	
4	267288	161'223	62%	10874	6166	61%	111770	70'800	43	
5	322'099	145'975	45%	03/243	317325	94%	127/609	54109	42	
	274942	104/800	38%	55/354	45'585	82%	99353	37768	35	
- 7	372634	230780	62%	102/004	152175	94%	187'520	152901	42	
	402054	283785	28%	209163	107/072	72%	249/205	170054	50	
	4681132	229/170	48%	221566	222154	49%	282340	181 553	42	
- 1										

The uncertainty of the weighing has been calculated using a LSRM coupling of both CLM via the exposure $R_{i,k}^{0,1} = R_{i,k}^{1,0} = R_{i,k}^{0,0} + R_{i,k}^{1,1}$, see Section 4.

©R. Dahms (ETH Zurich, Spring 2021)

Stochastic Reserving: Lecture 4 17 Mar 2021 76 / 240

Note, distributions of the estimated reserves have been obtained by fitting the Lognormal distribution to the estimated reserves as mean and the corresponding uncertainty as variance. Like expected, the densities of the solvency uncertainty are much tighter than the one of the ultimate uncertainty.

The uncertainty of the weighing has been calculated using a LSRM coupling of both CLM via the exposure $R_{i,k}^{0,1} = R_{i,k}^{1,0} := R_{i,k}^{0,0} + R_{i,k}^{1,1}$, see Section 4.
2 Chain-Ladder-Method (CLM)

Literature

[7] Christian Braun.

The prediction error of the chain ladder method applied to correlated run-off triangles. *Astin Bull.*, 34(2):399–423, 2004.

- [8] René Dahms. Linear stochastic reserving methods. Astin Bull., 42(1):1–34, 2012.
- [9] Thomas Mack.

Distribution-free calculation of the standard error of chain ladder reserving estimates.

Astin Bull., 23:213-115, 1991.

[10] Markus Buchwalder; Hans Bühlmann; Michael Merz and Mario V. Wütrich.

The mean square error of prediction in the chain ladder reserving method (Mack and Murphy revisited). *Astin Bull.*, 36(2):521–542, 2006.

 A.E. Renshaw and R.J. Verrall.
 A stochastic model underlying the chain-ladder technique. British Actuarial Journal, 14:903–923, 1998.

[12] Ancus Röhr.

Chain Ladder and Error Propagation. *Astin Bull.*, 46(2):293–330, 2016.

Mario V. Wüthrich and Michael Merz.
 Stochastic claims reserving methods in insurance.
 Hoboken, NJ: John Wiley & Sons, 2008.

2021-04-26

Chain-Ladder-Method (CLM)

-Literature

The prediction error of the chain ladder method applied to correlated sun-off biangles. Acros Bull. 2477:200-422, 2004.

[8] Real Dahme. Linear etochaetic reserving methods. Actin Bull. 42(1):1-34. 2012.

Distribution-free calculation of the standard even of chain ladder reserving estimates

[10] Markus Bachwalder, Hans Bibleaner, Michael Mesz and Mario V. Wilsch. The mass space ever of prediction in the chain ladder searcing method (Mack and Marphy resisted). Actin Bull, 20(2):512–64, 2005.

[13] A.E. Reeshaw and R.J. Vevall. A stackastic model underlying the chain-ladder technique. Bittels Actuarial Januari, 14:803–923, 1988.

[13] Ancus Rills. Chain Ladder and Erver Prospection.

Stochastic Reserving Lecture 5 Other Reserving Methods

René Dahms

ETH Zurich, Spring 2021

24 March 2021 (Last update: 26 April 2021)

Stochastic Reserving Lecture 5 Other Reserving Methods

René Dahms

ETH Zurich, Spring 2021

24 March 2021 (Last update: 26 April 2021)

3 Other classical reserving methods

3.1 Complementary-Loss-Ration method (CLRM)

3.1.1 CLRM without stochastic

3.1.2 Stochastic behind CLRM

3.2 Bornhuetter-Ferguson method (BFM)

3.2.1 BFM without stocastics

3.2.2 Stochastic behind BFM

3.3 Benktander-Hovinen method (BHM)

3.4 Cape-Cod method

3.5 Extended-Complementary-Loss-Ration method (ECLRM)

3.5.1 ECLRM without stochastic

3.5.2 Stochastic behind ECLRM

3.6 Other methods

3.7 Literature

Lecture 5: Table of contents

Other classical reserving methods
 Other classical reserving m

Basic idea behind the Complementary-Loss-Ration method

The Complementary-Loss-Ration method is based on a single triangle and a exposure P_i depending on accident periods *i*. Often pricing information like the risk premium is taken as exposure.

The Complementary-Loss-Ration method is based on the idea that:

• The payments of the next development period are proportional to the given exposure, i.e.

$$S_{i,k+1} \approx f_k P_i.$$

• Accident period are independent.

In particular, that means that all accident periods are comparable with respect to their development.

Other classical reserving methods

-Complementary-Loss-Ration method (CLRM)

Basic idea behind the Complementary-Loss-Ration method

The Complementary-Loss-Ration method is based on a single triangle and a exposure P_i depending on accident periods *i*. Often pricing information like the risk premium is taken as exposure. The Complementary-Loss-Ration method is based on the idea that:

- The payments of the next development period are proportional to the
- given exposure, i.e.

 $S_{i,k+1} \approx f_k P_1$

· Accident period are independent.

In particular, that means that all accident periods are comparable with respect to their development. 3.1 Complementary-Loss-Ration method (CLRM)

└─ 3.1.1 CLRM without stochastic

Simple example

i∖k	0	1	2	3	4	exposure	ultimate	reserves		
0	100 з.8	380	2.8280) 1.010	0 0.00	100	860	0 = 860 - 860		
1	120 з.6	360	2.6260) 1.212	0 0.00	100	860	0 = 860 - 860		
2	200 з.9	780	2.3460) 1.122	0 0.0 0	200	1660	220 = 1660 - 1440		
3	140 з.8	570	2.5375	5 1.1 16	5 0.00	150	1250	540 = 1250 - 710		
4	200 3.8	836	2.5550) 1.124	2 0.00	220	1828	1628 = 1828 - 200		
\widehat{f}_k	3.8	3	2.5	1.1	0.0	770	6458	2388		
$\widehat{f}_{0} = \frac{380+360+780+570}{100+100+200+150} = 3.8 = \sum_{i=0}^{I-1} \frac{P_{i}}{\underbrace{\sum_{h=0}^{I-1} P_{h}}} \qquad \qquad \underbrace{\frac{S_{i,1}}{P_{i}}}$										
\widehat{f}_1	$=\frac{280+}{100+}$	$\frac{260+}{100+}$	$\frac{-460}{2000} =$	-2.5		weight	observed d	evelopment factor		

$$f_1 = \frac{280+260+460}{100+100+200} = 2.5$$
$$\hat{f}_2 = \frac{100+120}{100+100} = 1.1$$
$$\hat{f}_3 = \frac{0}{100} = 0.0$$

2021-04-26

- Other classical reserving methods
 - -Complementary-Loss-Ration method (CLRM)

Assumption 3.A (CLRM)

There exist exposures $P_i,$ development factors f_k and variance parameters σ_k^2 such that

i)^{CLRM}
$$E[S_{i,k+1} | B_{i,k}] = f_k P_i,$$

ii)^{CLRM} $Var[S_{i,k+1} | B_{i,k}] = \sigma_k^2 P_i$ and
ii)^{CLRM} accident periods are independent.

Remark 3.1

- Since accident periods are independent, $\mathcal{B}_{i,k}$ could be replaced by \mathcal{D}_k or by \mathcal{D}_k^{i+k} .
- Often the assumptions are formulated without conditioning. The difference between both ways are:
 - * In taking unconditional expectations we take the average over all possible triangles and therefore ignore the observed past $\mathcal{B}_{i,k}$ completely.
 - * In taking conditional expectations we explicitly assume that the observed past $\mathcal{B}_{i,k}$ has no influence on the expected future development.

Other classical reserving methods

-Complementary-Loss-Ration method (CLRM)

Assumption 3.A (CLRM)

There exist exposures P_k , development factors f_k and variance parameters σ_k^2 such that $i)^{\text{CLRM}} E[S_{i,k+1}|B_{i,k}] = f_k P_i$.

i) CLAW $E[S_{i,k+1}|B_{i,k}] = f_k P_i,$ ii) CLAM $Var[S_{i,k+1}|B_{i,k}] = \sigma_k^2 P_i$ and iii) CLAM accident periods are independent.

imark 3.1

• Since accident periods are independent, $\mathcal{B}_{i,k}$ could be replaced by \mathcal{D}_k or by \mathcal{D}_k^{i+} • Often the assumptions are formulated without conditioning. The difference

between both ways are:

- In taking unconditional expectations we take the average over all possible triangless and therefore ignore the observed past $R_{i,k}$ completely. In taking conditional expectations we explicitly assume that the observed past $R_{i,k}$
- In taking conditional expectations we explicitly assume that the observed past B_{1,1} has no influence on the expected future development.

Estimator 3.2 (Future development for CLRM)

Let Assumption 3.A be fulfilled. Then for every set of \mathcal{D}_k -conditionally unbiased estimators \hat{f}_k of f_k the estimator

$$\widehat{C}_{i,J}^{\mathsf{CLRM}} := C_{i,(I-i)\wedge J} + \sum_{k=I-i}^{J-1} \widehat{f}_k P_i$$

is a \mathcal{D}_{I-i} -conditionally unbiased estimator for the ultimate outcome $C_{i,J}$.

Remark 3.3

• Usually one takes

$$\widehat{f}_k := \sum_{i=0}^{I-k-1} \frac{P_i}{\sum_{h=0}^{I-k-1} P_h} \frac{S_{i,k+1}}{P_i}.$$

• Because of the additive structure of Estimator 3.2, the Complementary- Loss-Ratio method is often called additive method.

(2/3)

Other classical reserving methods

-Complementary-Loss-Ration method (CLRM)

$$\begin{split} \mathsf{E}\Big[\widehat{C}_{i,J}^{\mathsf{CLRM}}\Big|\mathcal{D}_{I-i}\Big] &= C_{i,(I-i)\wedge J} + \sum_{k=I-i}^{J-1} \mathsf{E}\Big[\widehat{f}_k\Big|\mathcal{D}_{I-i}\Big]P_i \\ &= C_{i,(I-i)\wedge J} + \sum_{k=I-i}^{J-1} \mathsf{E}\Big[\mathsf{E}\Big[\widehat{f}_k\Big|\mathcal{D}_k\Big]\Big|\mathcal{D}_{I-i}\Big]P_i \\ &= C_{i,(I-i)\wedge J} + \sum_{k=I-i}^{J-1} f_kP_i \\ &= C_{i,(I-i)\wedge J} + \sum_{k=I-i}^{J-1} \underbrace{\mathsf{E}\Big[\mathsf{E}\Big[S_{i,k+1}\Big|\mathcal{D}_k\Big]\Big|\mathcal{D}_{I-i}\Big]}_{i)^{\mathsf{CLRM}}} \\ &= \mathsf{E}\big[C_{i,J}\big|\mathcal{D}_{I-i}\big] \end{split}$$

2021-04-26

(3/3)

Remark 3.4

- The method itself is well known and often used. But, because of its simplicity, corresponding stochastic models haven't been studied so much as for the Chain-Ladder method.
- From a statistical point of view the estimation of the development factors and the variance parameters is critical since we have to estimate 2J parameters based on $J(I \frac{J-1}{2})$ observed development factors. Therefore, in practise the reserving actuary has to include other information in order to overcome the lack of observed data (over parametrised model).
- The method can deal with some kind of incomplete triangle, where some upper left sub-triangle is missing.
- Since the exposures P_i are given and fixed over (development) time, the method cannot really react on observed changes in the data. For instance, assume we take the risk premium as exposure and observe at time k = 1, that the frequency of claims has doubled. Therefore, we would expect twice the payments compared to those that have been projected with CLRM.
- Often the CLRM is used for the early development periods, where we do not have so much information within the observed data. And for later development periods other methods like CLM are used in order to take the information contained in $\mathcal{B}_{i,k}$ into account.
- Because of part iii)^{CLRM} of Assumption 3.A, CLRM cannot deal with diagonal effects like inflation.
- Analogously to what we have done for the Chain-Ladder method, see Section 2, we could derive formulas for the ultimate uncertainty as well as for the solvency uncertainty.

We will analyse uncertainties in the more general setup of Linear Stochastic Reserving methods later in section 4.

Problem 3.5 (How to include an experts opinion about the ultimate?)

We have often repeated that an actuary has to use all available information in order to determine a Best Estimate. But how to combine an experts opinion U_i^{pri} about the ultimate $C_{i,J}$ with the observed data.

Bornhuetter-Ferguson method

One solution is to used the Bornhuetter-Ferguson method, introduced by Bornhuetter and Ferguson in [15]. The basic idea is that we take the last observed data $C_{i,I-i}$ and add a fraction $1 - l_i$ of the external given a priori ultimate U_i^{pri} , i.e.

$$\widehat{C}_{i,J}^{\mathsf{BFM}} := C_{i,I-i} + (1 - \widehat{l}_i)U_i^{pri}, \tag{3.1}$$

where the factors l_i are called link ratios and should represent the proportion of the ultimate that has already developed.

Problem 3.6 (Where to get the link ratios?)

Possible answers:

- Experts opinion.
- Use a reserving method and take $\hat{l}_i := \frac{C_{i,I-i}}{\hat{C}_{i,I}}$. In the case of CLM we would get
 - $\hat{l}_i = \prod_{k=I-i}^{J-1} (\hat{f}_k^{\mathsf{CLM}})^{-1}$, which was the original idea behind BFM.
- Use a stochastic model that leads to estimators which have the same shape like (3.1).

Roughly spoken, we take the a priori ultimate and replace the already developed part by the observated data.

Remark 3.7

- Since the link ratios l_i should represent the proportion of the ultimate that has already developed, we expect that $l_{I-J} = 1$, provided we have no tail development.
- As actuaries we have to be very careful in using experts opinions, in particular, if we take the a priori ultimate and the link ratios from the same expert. The reason is that those experts often have own interests in a profitable (or sometimes non profitable) outcome of the portfolio.

BFM as credibility weighted average

If we take a reserving method in order to determine the link ratios $l_i := \frac{C_{i,I-i}}{\widehat{C}_{i,J}}$ and if all link ratios $0 \le l_i \le 1$ then $C_{i,J}^{\text{BFM}}$ could be looked at as credibility like weighted average of the a priori ultimate U_i^{pri} and the estimated ultimate $\widehat{C}_{i,J}$ with credibility weights $(1 - l_i)$ and l_i , respectively:

$$C_{i,J}^{\mathsf{BFM}} = C_{i,I-i} + (1-l_i)U_i^{pri} = \frac{C_{i,I-i}}{\widehat{C}_{i,J}}\widehat{C}_{i,J} + (1-l_i)U_i^{pri} = l_i\widehat{C}_{i,J} + (1-l_i)U_i^{pri}.$$

Note, this formula is similar to the credibility like weighting of ultimates proposed in Estimator 2.15.

©R. Dahms (ETH Zurich, Spring 2021)

—Other classical reserving methods

Bornhuetter-Ferguson method (BFM)

Remark 3.7

- Since the link ratios $l_{\rm c}$ should represent the proportion of the ultimate that has
- already developed, we respect that $l_{j-,j} \equiv 1$, provided we have no tail development. • An actuaries we have to be very careful in using separts options, is particular, if we take the a provi ultimate and the link raise from the same oppert. The reason is that those operts often have own interacts in a profitable (or acreatives non monthable) sources of the portfolio.

BFM as credibility weighted averag

If we take a reserving method is order to determine the link ratios $l_i := \frac{C_{i+1}}{C_{i+1}}$ and if all link ratios $0 \le l_i \le 1$ then C_{i+1}^{det} could be looked at as consibility like weighted average of the a priori ultimate U_i^{pri} and the estimated ultimate $\widehat{C}_{i,J}$ with condulity weights $(1-l_i)$ and l_i , respectively:

 $C_{i,J}^{\mathsf{RPM}} = C_{i,l-i} + (1-l_i)U_i^{pri} = \frac{C_{i,l-i}}{\hat{C}_{i,J}}\hat{C}_{i,J} + (1-l_i)U_i^{pri} = l_i\hat{C}_{i,J} + (1-l_i)U_i^{pri}$

Note, this formula is similar to the credibility like weighting of ultimates proposed in Estimator 2.15.

Remark 3.8 (BFM as Complementary-Loss-Ratio method)

If we take the Complementary-Loss-Ratio method with exposure $P_i := U_i^{pri}$ we get the estimate (see 3.2)

$$\widehat{C}_{i,J}^{\mathsf{CLRM}} = C_{i,(I-i)\wedge J} + \sum_{k=I-i}^{J-1} \widehat{f}_k P_i.$$

Defining the link ratios via

$$\widehat{l}_i := 1 - \sum_{k=I-i}^{J-1} \widehat{f}_k$$

we get the same form as in (3.1). Therefore, the Bornhuetter-Ferguson method can be looked at as Complementary-Loss-Ratio method with exposures U_i^{pri} .

Remark 3.9

There are other stochastic models that lead to estimators of the form (3.1), see for instance [18, Section 6.6].

—Other classical reserving methods

Bornhuetter-Ferguson method (BFM)

If we take the Complementary-Loss-Ratio method with exposure $P_i := U_i^{pri}$ we get the estimate (see 3.2)

$$\widehat{C}_{i,J}^{\text{CLBM}} = C_{i,|I-i| + J} + \sum_{k=I-i}^{J-1} \widehat{f}_k P_i$$

Defining the link ratios via

ratios via
$$\hat{l}_i := 1 - \sum_{k=l^{-1}}^{J^{-1}} \hat{f}_k$$

we get the same form as in (3.1). Therefore, the Bornhustter-Ferguson method can be looked at as Complementary-Loss-Ratio method with exposures $U_i^{\rm pri}$.

Remark 3.9

There are other stochastic models that lead to estimators of the form (3.1), see for instance [18, Section 6.6].

Basic idea behind the Benktander-Hovinen method

The basic idea of BHM is to apply the Bornhuetter-Ferguson method on the Chain-Ladder method estimation with the weighted a priory ultimate

$$U_i^{\mathsf{BHM}\,pri} := \widehat{l}_i \widehat{C}_{i,J}^{\mathsf{CLM}} + (1 - \widehat{l}_i) U_i^{pri} = C_{i,I-i} + (1 - \widehat{l}_i) U_i^{pri} = \widehat{C}_{i,J}^{\mathsf{BFM}},$$

and the link ratios \hat{l}_i of the Chain-Ladder method. Therefore, we assume that $0<\hat{l}_i\leq 1.$

Then we get the estimate

$$\widehat{C}_{i,J}^{\mathsf{BHM}} := C_{i,I-i} + (1 - \widehat{l_i}) \widehat{C}_{i,J}^{\mathsf{BFM}}.$$

Remark 3.10

Connection between BHM, BFM and CLM

- BHM was independently developed by Benktander, see [14], and Hovinen, see [16].
- The BHM is a twice iterated BFM with Chain-Ladder link ratios.
- Iterating BFM further will finally lead to the CLM Best Estimate, see [17].

Other classical reserving methods

Benktander-Hovinen method (BHM)

The basic idea of BHM is to apply the Bornhuetter-Ferguson method on the Chain Ladder method estimation with the weighted a priory ultimate

 $U_i^{\mathsf{BHM}_{\mathsf{P}^{\mathsf{F}^{\mathsf{I}}}}} := \widehat{l}_i \widehat{C}_{i,l}^{\mathsf{CLM}} + (1-\widehat{l}_i) U_i^{\mathsf{P}^{\mathsf{F}^{\mathsf{I}}}} = C_{i,l-i} + (1-\widehat{l}_i) U_i^{\mathsf{P}^{\mathsf{F}^{\mathsf{I}}}} = \widehat{C}_{i,l}^{\mathsf{BFM}},$

and the link ratios \hat{l}_i of the Chain-Ladder method. Therefore, we assume that

Then we get the estimate

 $\tilde{C}_{i,I}^{\text{QSM}} := C_{i,I-i} + (1 - \tilde{l}_i)\tilde{C}_{i,J}^{\text{QFM}}$

- Connection between BHM, BFM and CLM
- · BHM was independently developed by Benktander, see [14], and Hovinen see [16].
- The BHM is a twice iterated BFM with Chain-Ladder link ratios.
- . Iterating BFM further will finally lead to the CLM Best Estimate, see [17]

Basic idea behind the Cape-Cod method (CCM)

We have seen that the Best Estimate reserves of the Chain-Ladder method depend heavily on the last known diagonal, which makes this method vulnerable to outliers of $C_{i,I-i}$. The Cape-Cod method uses an external given exposure P_i to smooth the last diagonal. Therefore,

1. We assume that there exists a κ with

$$C_{i,I-i} \approx \kappa \widehat{l}_i P_i$$
,

where $\hat{l}_i := \prod_{k=I-i}^{J-1} (\hat{f}_k^{\mathsf{CLM}})^{-1}$ are the link ratios of the CLM.

2. Then we estimate κ by

$$\widehat{\kappa} := \frac{\sum_{i=I-J}^{I} C_{i,I-i}}{\sum_{i=I-J} \widehat{l}_i P_i}.$$

3. Finally, we calculate the reserves with CLM where the values $C_{i,I-i}$ are replaced by

$$\widehat{C}_{i,I-i}^{\mathsf{CCM}} := \widehat{\kappa} \widehat{l}_i P_i$$

Then we get

$$\widehat{C}_{i,J}^{\mathsf{CCM}} := C_{i,I-i} + \left(\prod_{k=I-i}^{J-1} \widehat{f}_k^{\mathsf{CLM}} \widehat{C}_{i,I-i}^{\mathsf{CCM}} - \widehat{C}_{i,I-i}^{\mathsf{CCM}}\right) = C_{i,I-i} + (1 - \widehat{l}_i)\widehat{\kappa}P_i.$$
(3.2)

2021-04-26

—Other classical reserving methods

-Cape-Cod method

We have seen that the Best Estimate reserves of the Chain-Ladder method depend heavily on the last known diagonal, which makes this method vulnerable to outliers of C_{LI-1} The Cape-Cod method uses an external given exposure P₁ to smooth the last diagonal. Therefore, 1. We assume that there exists a κ with $C_{i,l-i} = \kappa \hat{l}_i P_i$, where $\hat{l}_i := \prod_{k=l-i}^{J-1} (\hat{J}_k^{CLM})^{-1}$ are the link ratios of the CLM. 2. Then we estimate κ by $\sqrt{2} - d$ $\hat{\kappa} := \frac{\sum_{i=I-J}^{I} C_{i,I-i}}{\sum_{i=I-J} \hat{l}_i P_i}$ 1. Finally, we calculate the reserves with CLM where the values $C_{i,l-i}$ are replaced by $\widehat{C}_{1}^{CCM} := \widehat{\kappa}_{1}^{\widehat{L}} P_{i}$ Then we get an use get $\widehat{C}_{i,j}^{CM} := C_{i,j-i} + \left(\prod_{j=1}^{j-1} \widehat{j}_{i}^{CMM} \widehat{C}_{i,j-i}^{CM} - \widehat{C}_{i,j-i}^{CM}\right) = C_{i,j-i} + (1 - \widehat{l}_i)\widehat{\alpha}P_i.$ (3.2)

Remark 3.11

- The name Cape-Cod refers to the place where this method has been introduced for the first time.
- Because of (3.2), CCM can also be seen as a BFM with (by $\hat{\kappa}$) modified a priory ultimate $\hat{\kappa}P_i$.

2021-04-26

Other classical reserving methods

Remark 3.11

- . The name Cape-Cod refers to the place where this method has been introduced for the first time.
- Because of (3.2), CCM can also be seen as a BFM with (by κ̂) modified a priory ultimate $\hat{\kappa}P_i$.

Basic idea behind the Extended-Complementary-Loss-Ration method

The Extended-Complementary-Loss-Ration method is based on a triangle of payments $S_{i,k}^1$ and a triangle of the corresponding (changes of the) incurred losses $S_{i,k}^0$. The Extended-Complementary-Loss-Ration method is based on the idea that:

• The payments of the next development period are proportional to the case reserves at the end of the current development period, i.e.

$$S_{i,k+1}^1 \approx f_k^1 \sum_{j=0}^k \left(S_{i,j}^0 - S_{i,j}^1 \right) =: f_k^1 R_{i,k}.$$

• The changes of the incurred losses during the next development period $k \ge 1$ are proportional to the case reserves at the end of the current development period, i.e.

$$S_{i,k+1}^0 \approx f_k^0 R_{i,k}.$$

• Accident period are independent.

In particular, that means that all accident periods are comparable with respect to their development.

(1/2)

Other classical reserving methods

Extended-Complementary-Loss-Ration method (ECLRM)

Basic idea behind the Extended-Complementary-Loss-Ration method The Extended-Complementary-Loss-Ration method is based on a triangle of payments S?

and a triangle of the composeding (changes of the) incurred loss $S^0_{0,L}$. The Extended Complementary-Loss-Ration method is based on the idea that:

 The payments of the next development period are proportional to the case reserves at the end of the current development period, i.e.

$$S_{i,k+1}^{\pm} \approx f_k^{\pm} \sum_{j=0}^{k} (S_{i,j}^0 - S_{i,j}^{\pm}) =: f_k^{\pm} R_{i,k}.$$

The changes of the incurred losses during the next development period k ≥ 1 are
proportional to the case reserves at the end of the current development period, i.e.

 $S_{i,k+1}^0 \approx f_k^0 R_{i,k}$

· Accident period are independent.

In particular, that means that all accident periods are comparable with respect to their development.

└─ 3.5.1 ECLRM without stochastic

Simple example

Chang	ges	of incurre	s $S_{i,k}^0$	Payments $S^1_{i,k}$					Ca	Case reserves $R_{i,k}$						
i∖k	() 1	2	3	i∖k	0	1	2	3	i∖	k ()	1	2	3	
0	50)0 o.5 <mark>200</mark> -	0.4 -160	0.00	0	100	0.5200	0.520	0 1.040		0 40)0 <u>1.0</u> 4	$000 \xrightarrow{0.1}$	40 <u>0</u>	<u>.0</u> 0	
1	70)0 0.4 160 -	0.4 -160	0.00	1 300 0.4 160 0.5 200 1.0 40						$1 400^{1.0} 400^{0.1} 40^{0.0} 0$					
2	90)0 о.з 120 -	0.4 -112	0.00	2	500	0.6 <mark>240</mark>	0.514	0 1.028		2 4)0 <u>0.7</u> 2	280 <u>0.1</u>	<u>28</u>	. <u>0</u> 0	
3	3 550 0.4 120 -0.4 -108 0.00					250 0.5 150 0.5 135 1.0 27					$3 300 \xrightarrow{0.9} 270 \xrightarrow{0.1} 27 \xrightarrow{0.0} 0$					
\widehat{f}_k^0		0.4 -0	.4 (0.0	\widehat{f}_k^1		0.5	0.5	1.0	\hat{f}	k	0.9	0.1	0	.0	
\widehat{f}_0^0)) =	$\frac{200+160+}{400+400+}$).4	$\widehat{f}_0^1 = \frac{200+160+240}{400+400+400} = 0.5$						$\widehat{f}_0 = 1 + 0.4 - 0.5 = 0.9$						
\widehat{f}_1^0) =	$\frac{-160-160}{400+400}$	4	$\widehat{f}_1^1 = \frac{200 + 200}{400 + 400} = 0.5$						$\hat{f}_1 = 1 - 0.4 - 0.5 = 0.1$						
\widehat{f}_2^0	2) =	$\frac{0}{40} = 0.0$		$\hat{f}_2^1 = \frac{40}{40} = 1.0$						$\widehat{f}_2 = 1 + 0.0 - 1.0 = 0.0$						
	i	Ultimate	Rese	rves	IBNR		T 1					Ŀ.				
	0	540		0	0	• The case reserves develop according to the Chain-Ladder method with $\widehat{f}_k = 1 + \widehat{f}_k^0 - \widehat{f}_k^1$.										
	1	700		40	0											
	2	908		168	-112	•	If we i	use C	LM we	would	get					
	3	562		212	12				CLM o	on Pay	ments	CL	.M on	Inc	urred	
Σ	2	2710		520	-100	_	Rese	rves			969				398	

Other classical reserving methods

-Extended-Complementary-Loss-Ration method (ECLRM)

Change	s of in	Curres.	losses.	5%	Payme	ints Sile			Case	reser	VE Ria	
I k	0	1	2	3	$l \mid k$	0 1	2	3	ī/k	0	1	2 3
0	500 + +	200	360	-0	0	100 ++ 200 ++	200	40	0	400	40011	40.+0
1	700	160	-160	••	1	300 ++ 050 ++	200	40	1	400	400	400
2	200	120	-112	••	2	500 ++ 040	140		2	400	280	20110
3	520	20 .		.0	3	250 ++ 150 ++	135		3	333	270	27++0
\widehat{f}_{k}^{0}	0.4	-0.	4 0.0	2	\hat{f}^{1}_{k}	0.5 0.5	1	.0	\widehat{f}_k		0.9 0.3	0.0
f_0^n	-	-	- 0.4		ß		-	0.5	Î,	= 1	+ 0.4 -	0.5 = 0
R	- 140	- 160	= -0.4		ŝ	= 200+200 =		$\hat{f}_1 = 1 - 0.4 - 0.5 = 0.$				
\hat{R}	÷	0.0			Ĥ	$=\frac{20}{20}=1.0$			\hat{f}_2	= 1	+ 0.0 -	1.0 = 0
	Ubir	nate	Reserv	45	BNR							
0		540		0	0	 The case 	1000	irves de	velop a	cond	ling to th	*
1		700		40	0	Chain-Ca	0061	metro	a wen ,	r_ =	1+12-	· J _b .
2		905	3	68	-112	 If we use 	cu	d we w	ould get			
3		562	2	22	12		11	CLM on	Payme	nts	CLM or	n Incure
- 20		1710	5	20	-100	Reserve	6		-	60		,

(1/3)

Assumption 3.B (ECLRM)

There exist development factors f_k^m , $m \in \{0, 1\}$, and covariance parameters $\sigma_k^{m_1,m_2}$, $m_1, m_2 \in \{0, 1\}$, such that i)^{ECLRM} $\mathsf{E}\left[S_{i,k+1}^m \middle| \mathcal{B}_{i,k}\right] = f_k^m \sum_{j=0}^k \left(S_{i,j}^0 - S_{i,j}^1\right) =: f_k^m R_{i,k}$, ii)^{ECLRM} $\mathsf{Cov}\left[S_{i,k+1}^{m_1}, S_{i,k+1}^{m_2} \middle| \mathcal{B}_{i,k}\right] = \sigma_k^{m_1,m_2} R_{i,k}$ and iii)^{ECLRM} accident periods are independent.

Remark 3.12

- Since accident periods are independent, $\mathcal{B}_{i,k}$ could be replaced by \mathcal{D}_k or by \mathcal{D}_k^{i+k} .
- Usually, $S_{i,k}^0$ and $S_{i,k}^1$ representing changes of incurred losses and payments during development period k for claims of accident period i, respectively. Then $R_{i,k}$ are the case reserves at the end of development period k for claims of accident period i.

Other classical reserving methods

-Extended-Complementary-Loss-Ration method (ECLRM)

Assumption 3.B (ECLRM) There exist development factors f_k^m , $m \in \{0, 1\}$, and covariance parameters $\sigma_k^{m_1,m_2}$, $m_1, m_2 \in \{0, 1\}$, such that i) ECLRM $E[S_{l,k+1}^{n}|B_{l,k}] = f_{k}^{n} \sum_{j=0}^{k} (S_{l,j}^{0} - S_{l,j}^{1}) =: f_{k}^{n} R_{l,k}.$ ii) CLRM $Cov[S_{i,k+1}^{m_1}, S_{i,k+1}^{m_2} | B_{i,k}] = \sigma_k^{m_1, m_2} R_{i,k}$ and IL) ECLRM accident periods are independent.

Remark 3.12

- Since accident periods are independent, B_{i,k} could be replaced by D_k or by D_k^{i+k}.
- Usually, S¹_{i,k} and S¹_{i,k} representing changes of incurred losses and payments during development period k for claims of accident period i, respectively. Then R_{i,k} are the case reserves at the end of development period k for claims of accident period i.

Estimator 3.13 (Future development for ECLRM)

Assume Assumption 3.B is fulfilled. Then for every set of \mathcal{D}_k -conditionally unbiased estimators \widehat{f}_k^m of f_k^m the estimators

$$\widehat{C}_{i,J}^{m,\mathsf{ECLRM}} := C_{i,(I-i)\wedge J}^m + \sum_{k=I-i}^{J-1} \widehat{f}_k^m \prod_{j=I-i}^{k-1} (1 + \widehat{f}_j^0 - \widehat{f}_j^1) R_{i,I-i}$$

are \mathcal{D}_{I-i} -conditionally unbiased estimators for the ultimate outcome $C_{i,J}^m$.

Remark 3.14

Usually one takes

$$\widehat{f}_k^m := \sum_{i=0}^{I-k-1} \frac{R_{i,k}}{\sum_{h=0}^{I-k-1} R_{i,k}} \frac{S_{i,k+1}^m}{R_{i,k}}.$$

Stochastic Reserving 2021-04-26 Other classical reserving methods Assume Assumption 3.B is fulfilled. Then for every set of D_k-conditionally unbiased estimators \hat{f}_{i}^{m} of f_{i}^{m} the estimators Extended-Complementary-Loss-Ration method (ECLRM) are D1-1-conditionally unbiased estimators for the ultimate outcome C2 Remark 3.14 Usually one takes

From Assumption 3.B.i) **ECLRM** it follows that $E[R_{i,k+1} | D_k] = (1 + f_k^0 - f_k^1)R_{i,k}$. Therefore, we get

 $\hat{C}_{i,I}^{m,ECLRM}$

 $:= C_{i(I-i)\wedge J}^{m} + \sum_{k=I-i}^{J-1} \hat{f}_{k}^{m} \prod_{j=I-i}^{n-1} (1 + \hat{f}_{j}^{0} - \hat{f}_{j}^{1}) R_{i,I-i}$

 $\hat{f}_{k}^{ik} := \sum_{l=0}^{l-k-1} \frac{R_{l,k}}{\sum_{l=0}^{l-k-1} R_{l,k}}$

$$\begin{split} \mathsf{E}\Big[\hat{C}_{i,J}^{m,\mathsf{ECLRM}}\Big|\mathcal{D}_{I-i}\Big] &= C_{i,(I-i)\wedge J}^{m} + \sum_{k=I-i}^{J-1} \mathsf{E}\Big[\hat{f}_{k}^{m} \prod_{j=I-i}^{k-1} (1+\hat{f}_{j}^{0}-\hat{f}_{j}^{1})\Big|\mathcal{D}_{I-i}\Big]R_{i,I-i} \\ &= C_{i,(I-i)\wedge J}^{m} + \sum_{k=I-i}^{J-1} \mathsf{E}\Big[\mathsf{E}\Big[\hat{f}_{k}^{m}\Big|\mathcal{D}_{k}\Big]\prod_{j=I-i}^{k-1} (1+\hat{f}_{j}^{0}-\hat{f}_{j}^{1})\Big|\mathcal{D}_{I-i}\Big]R_{i,I-i} \\ &= C_{i,(I-i)\wedge J}^{m} + \sum_{k=I-i}^{J-1} f_{k}^{m} \mathsf{E}\Big[\prod_{j=I-i}^{k-1} (1+\hat{f}_{j}^{0}-\hat{f}_{j}^{1})\Big|\mathcal{D}_{I-i}\Big]R_{i,I-i} \\ &= \dots = C_{i,(I-i)\wedge J}^{m} + \sum_{k=I-i}^{J-1} f_{k}^{m} \prod_{j=I-i}^{k-1} (1+f_{j}^{0}-f_{j}^{1})\mathsf{R}_{i,I-i} \\ &= C_{i,(I-i)\wedge J}^{m} + \sum_{k=I-i}^{J-1} f_{k}^{m} \prod_{j=I-i+1}^{k-1} (1+f_{j}^{0}-f_{j}^{1})\mathsf{E}[R_{i,I-i+1}|\mathcal{D}_{I-i}] \\ &= \dots = C_{i,(I-i)\wedge J}^{m} + \sum_{k=I-i}^{J-1} f_{k}^{m} \mathsf{E}[R_{i,k}|\mathcal{D}_{I-i}] \\ &= \dots = C_{i,(I-i)\wedge J}^{m} + \sum_{k=I-i}^{J-1} \mathsf{E}\Big[S_{i,k+1}^{m}\Big|\mathcal{D}_{I-i}\Big] = \mathsf{E}\Big[C_{i,J}^{m}\Big|\mathcal{D}_{I-i}\Big] \end{split}$$
Remark 3.15

- ECLRM couples payments and incurred losses in a natural way via the case reserves such that the projections of both triangles lead to the same ultimate, provided we don't have any tail development. But we will still get two estimates for the ultimate uncertainty as well as for the solvency uncertainty.
- The method can deal with incomplete triangles, where some upper left sub-triangles are missing, as long as case reserves are available for all recent calendar periods.
- It depends heavily on the case reserves. In particular, it may have problems dealing with portfolios with a high reopening rate, because in such situation the case reserves may be very small or even equal to zero.
- The method itself is not so well known, in particular under the name ECLRM.
- From a statistical point of view the estimation of the development factors and the variance parameters is critical since we have to estimate 5J parameters based on $2J(I \frac{J-1}{2})$ observed development factors. Therefore, in practise the reserving actuary has to include other information in order to overcome the lack of observed data (over parametrised model).
- Because of part iii)^{ECLRM} of Assumption 3.B, ECLRM cannot deal with diagonal effects like inflation.
- Analogously to what we have done for the Chain-Ladder method, see Section 2, we could derive formulas for the ultimate uncertainty as well as for the solvency uncertainty.

We will analyse uncertainties in the more general case of Linear Stochastic Reserving methods, see section 4.

Other methods

There are many more methods used for reserving. Some of them are based on a stochastic model and some not. For instance:

- Frequency severity models, which model the claim frequency and the severity separately.
- Generalised linear models (GLMs) are sometimes used for reserving.
- Munich-Chain-Ladder method, which tries to project payments and incurred losses simultaneously.
- Bayesian models, which model development factors as random variables.
- Distribution based models, which assume some kind of distribution and fit the corresponding parameters based on the observed data.
- The over-dispersed Poisson model, which leads to the same estimates for the reserves like the Chain-Ladder method we have discussed. But the estimates for the corresponding ultimate (or solvency) uncertainties are different.

• . . .

—Other classical reserving methods

-Other methods

Other methods

- There are many more methods used for reserving. Some of them are based on a stochastic model and some not. For instance:
- Frequency severity models, which model the claim frequency and the severity separately.
- Generalised linear models (GLMs) are sometimes used for reserving.
 Munich-Chain-Ladder method, which tries to project payments and
- Munch-Lhan-Ladder method, which tries to project payments and incurred losses simultaneously.
 Bavesian models. which model development factors as random variables.
- Bayesian models, which model development factors as random variables
 Distribution based models, which assume some kind of distribution and
- fit the corresponding parameters based on the observed data. • The over-dispersed Poisson model, which leads to the same estimates
- for the reserves like the Chain-Ladder method we have discussed. But the estimates for the corresponding ultimate (or solvency) uncertainties are different.

Literature

[14] G. Benktander.

An approach to credibility in calculating IBNR for causalty excess reinsurance. *The Actuarial Review*, 312:7, 1976.

- [15] R.L. Bornhuetter and R.E. Ferguson. The actuary and IBNR. *Proc. CAS*, LIX:181–195, 1972.
- [16] E. Hovinen. Additive and continuous IBNR. Astin Colloquium 1981, Loen, Norway, 1981.

 Thomas Mack.
 Credible claims reserves: the Benktander method. CAS Forum (Fall), pages 141–157, 2000.

[18] Mario V. Wüthrich and Michael Merz. Stochastic claims reserving methods in insurance. Hoboken, NJ: John Wiley & Sons, 2008.

2021-04-26

Other classical reserving methods

-Literature

[14] G. Berktander

An approach to credibility in calculating IBNR for causalty excess minuarance The device of Review 3327, 3328

[15] R.L. Bornhaetter and R.E. Ferguson. The actuary and IBNR.

Vec. CAS, L0C181-195, 1972.

Additive and continuous IBNR. Astin Colleguium 1981, Lore, Norway, 198

[17] Thomas Mack. Credible claims reserves: the Benktander method. CAS Forum (Fall), pages 141–137, 2000.

[18] Mario V. Withrich and Michael Merz. Stochastic claims reserving methods in insurance. Inductors N1: John Wiley & Source 2008.

Stochastic Reserving Lecture 6 Linear-Stochastic-Reserving methods

René Dahms

ETH Zurich, Spring 2021

31 March 2021 (Last update: 26 April 2021)

Stochastic Reserving Lecture 6 Linear-Stochastic-Reserving methods

René Dahms

ETH Zurich, Spring 2021

31 March 2021 (Last update: 26 April 2021)

4 Linear-Stochastic-Reserving methods

4.1 How do Linear-Stochastic-Reserving methods (LSRM) work

- 4.1.1 LSRM without stochastic
- 4.1.2 Stochastic behind LSRMs

4.2 Future development

- 4.2.1 Projection of the future development
- 4.2.2 Examples

4.3 Ultimate uncertainty

- 4.3.1 Mixing of claim properties
- 4.3.2 Ultimate uncertainty
- 4.3.3 Estimation of the covariance parameters
- 4.3.4 Examples

4.4 Solvency uncertainty

- 4.4.1 Estimation at time I + 1
- 4.4.2 Solvency uncertainty
- 4.4.3 Uncertainties of further CDR's

4.5 Examples

4.6 Estimation of correlation of reserving Risks

- 4.6.1 Avoiding correlation matrices for the reserving risks
- 4.6.2 Using LSRMs to estimate a correlation matrix

4.7 Literature

Lecture 6: Table of contents

4 Linear-Stochastic-Reserving methods 4.1 New of Linear Stochastic-Reverging methods (LSRM) work 4.11 LSRM without motivatic 4.12 Sociater Linear Stochastic 4.21 Pojectica Urb Istrate development 4.22 Examples 4.3 Utilizate accentrately 4.13 Internation of the covariance part 4.34 Examples 4.4 Solvency uncertainty 4.4.1 Estimation at time J + 1 4.4.2 Solvency uncertainty 4.4.3 Uncertainties of further CDR's

4.4.3 Examples
 4.5 Examples
 4.6 Estimation of correlation of reserving Risks
 4.6 Latimation of correlation matrices for the reserving risks
 4.6.2 Using LSRMs to estimate a correlation matrix
 4.7 Literatum

Motivation for LSRMs

All the methods we have seen up to now can only handle one or at most two triangles. In order to estimate Best Estimate reserves we could simply add the estimates of all portfolios, but how to deal with the uncertainties? Depending of the portfolios we would expect some diversification effects, caused by the law of large numbers, and some dependencies, caused for instance by:

- same underlying risk (hail storms for property and motor hull)
- monetary and superimposed inflation
- changes in insurance contracts (deductibles)

• . . .

In practice one often takes a covariance matrix to couple the uncertainties of portfolios, but how to estimate such covariance matrices?

Moreover, there are simple dependencies, which cannot be modelled even for the ultimate outcome. For instance, it is intuitive that future subrogation (regress) may be approximately proportional to the sum of all payments up to know.

Linear-Stochastic-Reserving methods

-How do Linear-Stochastic-Reserving methods (LSRM) work

Motivation for LSRMs

All the methods we have sees up to now can only handli one or at most too triangles. In order to estimate Bestreve we could simply add the estimates of all portfolios, but how to deal with the uncertainties? Depending of the portfolios, but how to deal with the uncertainties? Depending of the portfolios would expect round devine filters caused by the law of large numbers, and some dependencies, caused for instance by: - same underlying risk (hal storms for property and mote hull)

- monetary and superimposed inflation
- · changes in insurance contracts (deductibles)
- ·

In practice one often takes a covariance matrix to couple the uncertainties of portfolios, but how to estimate such covariance matrices?

Moreover, there are simple dependencies, which cannot be modelled even for the ultimate outcome. For instance, it is intuitive that future subrogation (regress) may be approximately proportional to the sum of all payments up to know.

Basic idea behind Linear-Stochastic-Reserving methods

Linear-Stochastic-Reserving methods are reserving methods for a whole collection of claim properties $S_{i,k}^m$ (triangles), which may be

- payments
- incurred losses
- number of reported claims
- small or large claims

• ...

of the same or different portfolios.

The basic assumption behind LSRMs is that the changes of each claim property $S^m_{i,k}$ are approximately proportional to an exposure $R^m_{i,k}$, which is a linear combination of claim properties of the past.

For instance, denote subrogation by $S^0_{i,k}$ and other payments by $S^1_{i,k}.$ Then we could take

$$S^1_{i,k+1} \approx f^1_k \sum_{j=0}^k S^1_{i,j} \qquad \text{and} \qquad S^0_{i,k+1} \approx f^0_k \sum_{j=0}^k (S^0_{i,j} + S^1_{i,j}).$$

Linear-Stochastic-Reserving methods

-How do Linear-Stochastic-Reserving methods (LSRM) work

of claim properties $S_{1,k}^{m}$ (triangles), which may be payments incurred losses · number of reported claims · small or large claims of the same or different portfolios. The basic assumption behind LSRMs is that the changes of each claim property $S^{\alpha}_{i,k}$ are approximately proportional to an exposure $R^{\alpha}_{i,k}$, which is a linear combination of claim properties of the past. For instance, denote subrogation by $S_{i,k}^0$ and other payments by $S_{i,k}^1$. Then we could take $S^1_{i,k+1}\approx f^1_k\sum_{i}^kS^1_{i,j}\qquad\text{and}\qquad S^0_{i,k+1}\approx f^0_k\sum_{i=i}^k(S^0_{i,j}+S^1_{i,j}).$

Linear-Stochastic-Reserving methods are reserving methods for a whole collection

 σ -algebras (repetition)

• $\mathcal{B}_{i,k}$ is the σ -algebra of all information of accident period i up to development period k:

$$\begin{aligned} \mathcal{B}_{i,k} &:= \sigma \left(S_{i,j}^m \colon 0 \le j \le k, \ 0 \le m \le M \right) \\ &= \sigma \left(C_{i,j}^m \colon 0 \le j \le k, \ 0 \le m \le M \right) \end{aligned}$$

• $\mathcal{D}_{i,k}$ is the σ -algebra containing all information up to accident period i and development period k:

$$\begin{split} \mathcal{D}_{i,k} :=& \sigma \left(S_{i,j} \colon 0 \leq h \leq i, \ 0 \leq j \leq k, 0 \leq m \leq M \right) \\ =& \sigma \left(\mathcal{B}_{h,k} \colon 0 \leq h \leq i \right) \end{split}$$

• \mathcal{D}^n is the σ -algebra of all information up to calender period n:

$$\begin{split} \mathcal{D}^{n} &:= \sigma \left(S_{i,k} \colon 0 \leq i \leq I, \ 0 \leq k \leq J \land (n-i), \ 0 \leq m \leq M \right) \\ &= \sigma \left(\bigcup_{i=0}^{I} \bigcup_{k=0}^{J \land (n-i)} \mathcal{B}_{i,k} \right) \end{split}$$

• \mathcal{D}_k is the σ -algebra of all information up to development period k:

$$\mathcal{D}_{k} := \sigma \left(S_{i,j} \colon 0 \le i \le I, \ 0 \le j \le k, \ 0 \le m \le M \right)$$
$$= \sigma \left(\bigcup_{i=0}^{I} \mathcal{B}_{i,k} \right)$$
$$\bullet \mathcal{D}_{k}^{n} := \sigma \left(\mathcal{D}^{n} \cup \mathcal{D}_{k} \right)$$

Stochastic Reserving Linear-Stochastic-Reserving methods How do Linear-Stochastic-Reserving methods (LSRM) work

The σ -algebra \mathcal{D}_k^n is used in order to separate two arbitrary payments $S_{i_1,k_1}^{m_1}$ and $S_{i_2,k_2}^{m_2}$ with $(i_1,k_1) \neq (i_2,k_2)$. That means, for all $(i_1,k_1) \neq (i_2,k_2)$ there exists n and k such that

 $\left(S_{i_1,k_1}^{m_1} \in \mathcal{D}_k^n \quad \text{ and } \quad S_{i_2,k_2}^{m_2} \notin \mathcal{D}_k^n\right) \quad \text{ or } \quad \left(S_{i_1,k_1}^{m_1} \notin \mathcal{D}_k^n \quad \text{ and } \quad S_{i_2,k_2}^{m_2} \in \mathcal{D}_k^n\right).$

(2/8)

Assumption 4.A (Linear-Stochastic-Reserving method)

We call the stochastic model of the increments $S^m_{i,k}$ a Linear-Stochastic-Reserving method (LSRM) with

- development exposures $R^m_{i,k} \in \mathcal{D}_{i,k}$, which depend linearly on the claim properties, and
- covariance exposures $R_{i,k}^{m_1,m_2} \in \mathcal{D}_{i,k}$,

if there exist constants f_k^m and $\sigma_k^{m_1,m_2}$ such that

i)^{LSRM} for all m, i and k, the expectation of the claim property $S^m_{i,k+1}$ under the condition of all information of its past \mathcal{D}^{i+k}_k is proportional to $R^m_{i,k}$, i.e.

$$\mathsf{E}\Big[S^m_{i,k+1}\big|\mathcal{D}^{i+k}_k\Big] = f^m_k R^m_{i,k}.$$

ii)^{LSRM} for all m_1 , m_2 , i and k, the covariance of the claim properties $S_{i,k+1}^{m_1}$ and $S_{i,k+1}^{m_2}$ under the condition of all information of their past \mathcal{D}_k^{i+k} is proportional to $R_{i,k}^{m_1,m_2}$, i.e.

$$\mathsf{Cov}\Big[S_{i,k+1}^{m_1}, S_{i,k+1}^{m_2} \Big| \mathcal{D}_k^{i+k}\Big] = \sigma_k^{m_1,m_2} R_{i,k}^{m_1,m_2}.$$

Linear-Stochastic-Reserving methods

-How do Linear-Stochastic-Reserving methods (LSRM) work

- We will call the parameters f_k^m and $\sigma_k^{m_1,m_2}$ development factors and covariance parameters, respectively.
- The stochastic model of LSRMs was introduced in [21]. Unfortunately, this article contains some typing errors, which make the implementation very hard. Therefore, a corrected version can be obtained by the lecturer. However, in the next lectures we will use a different approach to derive estimators of the uncertainties.
- A GPL-licensed implementation of LSRMs (ActiveX component and a corresponding Excel interface) can be obtained from http://sourceforge.net/projects/lsrmtools/.
- The choice of the exposures $R_{i,k}^m$ and $R_{i,k}^{m_1,m_2}$ is of great importance. Unfortunately, we neither can provide a statistical nor a general heuristic concept for this choice. In some cases there is portfolio based information that may help with the choice of exposures, for instance for subrogation. Another useful technique is back-testing, that means to look for exposures for which we see now that the corresponding projections would have been reliable in the past.

- 4.1 How do Linear-Stochastic-Reserving methods (LSRM) work
- └ 4.1.2 Stochastic behind LSRMs

©R. Dahms (ETH Zurich, Spring 2021)

 $\Gamma^m_{i,k}$ denotes the linear operator that generates $R^m_{i,k}$.

Remark 4.1 (Dependencies of accident periods)

- There is no additional assumption about independent accident periods necessary!
- Roughly spoken, part ii)^{LSRM} means something like: 'accident periods are uncorrelated up to the first column'. This means LSRMs are affected by (changes in) inflation, too!
- But known diagonal effects can be easily compensated by changing the exposures. 😳
- The choice of the exposures $R_{i,k}^{m_1,m_2}$ is not completely free. They have to fulfil the covariance assumption ii)^{LSRM}, which means that all resulting corresponding covariance matrices have to be positive semi-definite.

Linear-Stochastic-Reserving methods

-How do Linear-Stochastic-Reserving methods (LSRM) work

Assume
$$S_{i,k}^{m}$$
 satisfy Assumption 4.A. Then
a) $E\left[S_{i,k+1}^{m} | \mathcal{D}^{i+k}\right] = E\left[S_{i,k+1}^{m} | \mathcal{D}_{k}\right] = E\left[S_{i,k+1}^{m} | \mathcal{D}_{i,k}\right]$
 $= E\left[S_{i,k+1}^{m} | \mathcal{D}^{i+k} \cap \mathcal{D}_{k}\right] = f_{k}^{m} R_{i,k}^{m}.$
b) $Cov\left[S_{i,k+1}^{m_{1}}, S_{i,k+1}^{m_{2}} | \mathcal{D}^{i+k}\right] = Cov\left[S_{i,k+1}^{m_{1}}, S_{i,k+1}^{m_{2}} | \mathcal{D}_{k}\right] = Cov\left[S_{i,k+1}^{m_{1}}, S_{i,k+1}^{m_{2}} | \mathcal{D}_{i,k}\right]$
 $= Cov\left[S_{i,k+1}^{m_{1}}, S_{i,k+1}^{m_{2}} | \mathcal{D}^{i+k} \cap \mathcal{D}_{k}\right] = \sigma_{k}^{m_{1},m_{2}} R_{i,k}^{m_{1},m_{2}}.$

c)
$$\operatorname{Cov}\left[S_{n+1-j_1,j_1}^{m_1}, S_{n+1-j_2,j_2}^{m_2} \middle| \mathcal{D}^n\right] = 0, \text{ for } j_1 \neq j_2.$$

d) provided that all exposures $R^m_{i,k}$ depend only on the i-th accident period, all accident periods will be uncorrelated under the knowledge of some past, i.e. for all σ -algebras \mathcal{D}^n_k , all $i_1 \neq i_2$ and arbitrary k_1 , k_2 , m_1 and m_2 we have

$$\mathsf{Cov}\Big[S_{i_1,k_1}^{m_1},S_{i_2,k_2}^{m_2}\Big|\mathcal{D}_k^n\Big] = 0.$$

e) If we have independent accident periods the conditioning on \mathcal{D}_k^{i+k} could be replaced by conditioning on $\mathcal{B}_{i,k}$.

Stochastic Reserving
Linear-Stochastic-Reserving methods
How do Linear-Stochastic-Reserving methods (LSRM) work

$$U = H_{0} = \frac{1}{2} \int_{0}^{1} \int_{0}^{1}$$

a),b) Follows from the measurability of $R_{i,k}^{m}$ and $R_{i,k}^{m_{1},m_{2}}$ with respect to $\mathcal{D}_{i,k}$. c) Assume that $j_{1} > j_{2}$. Then $S_{n+1-j_{2},j_{2}}^{m_{1}}$ is $\mathcal{D}_{j_{1}-1}^{n}$ -measurable and we get $\operatorname{Cov}\left[S_{n+1-j_{1},j_{1}}^{m_{1}}, S_{n+1-j_{2},j_{2}}^{m_{2}} \middle| \mathcal{D}^{n} \right]$ = $\underbrace{\operatorname{Cov}\left[\mathbb{E}\left[S_{n+1-j_{1},j_{1}}^{m_{1}} \middle| \mathcal{D}_{j_{1}-1}^{n} \right], \mathbb{E}\left[S_{n+1-j_{2},j_{2}}^{m_{2}} \middle| \mathcal{D}_{j_{1}-1}^{n} \right] \middle| \mathcal{D}^{n} \right] + \underbrace{\mathbb{E}\left[\operatorname{Cov}\left[S_{n+1-j_{1},j_{1}}^{m_{1}}, S_{n+1-j_{2},j_{2}}^{m_{2}} \middle| \mathcal{D}_{j_{1}-1}^{n} \right] \middle| \mathcal{D}^{n} \right]}_{S_{n+1-j_{1},j_{1}}^{m_{1}}} = 0$

 $\begin{aligned} & \text{d) If } S_{i_{1},k_{1}}^{m_{1}} \text{ or } S_{i_{2},k_{2}}^{m_{2}} \text{ is measurable with respect to } \mathcal{D}_{k}^{n} \text{ we are done. Otherwise, } \mathcal{D}_{k}^{n} \text{ is a subset of } \\ & \mathcal{D}_{k_{1}-1}^{i_{1}+k_{1}-1} \text{ and } \mathcal{D}_{k_{2}-1}^{i_{2}+k_{2}-1} \text{ and } S_{i_{1},k_{1}}^{m_{1}} \text{ is measurable with respect to the past of } S_{i_{2},k_{2}}^{m_{2}} \text{ or vice versa.} \\ & \text{Without loss of generality assume that } S_{i_{1},k_{1}}^{m_{1}} \text{ is } \mathcal{D}_{k_{2}-1}^{i_{2}+k_{2}-1} \text{ -measurable. Then we get} \\ & \text{Cov} \Big[S_{i_{1},k_{1}}^{m_{1}}, S_{i_{2},k_{2}}^{m_{2}} \Big| \mathcal{D}_{k}^{n} \Big] = \text{E} \Big[\text{Cov} \Big[S_{i_{1},k_{1}}^{m_{1}}, S_{i_{2},k_{2}}^{m_{2}} \Big| \mathcal{D}_{k_{2}-1}^{i_{2}+k_{2}-1} \Big] \Big| \mathcal{D}_{k}^{n} \Big] \\ & \quad + \text{Cov} \Big[\text{E} \Big[S_{i_{1},k_{1}}^{m_{1}} \Big| \mathcal{D}_{k_{2}-1}^{i_{2}+k_{2}-1} \Big], \text{E} \Big[S_{i_{2},k_{2}}^{m_{2}} \Big| \mathcal{D}_{k_{2}-1}^{i_{2}+k_{2}-1} \Big] \Big| \mathcal{D}_{k}^{n} \Big] \\ & = 0 + \text{Cov} \Big[S_{i_{1},k_{1}}^{m_{1}}, f_{k_{2}-1}^{m_{2}}, R_{i_{2},k_{2}-1}^{m_{2}} \Big| \mathcal{D}_{k}^{n} \Big]. \end{aligned}$

Since $R_{i_2,k_2-1}^{m_2} \in \mathcal{B}_{i_2,k_2-1}$ and depends linearly on S it is enough to show that $S_{i_1,k_1}^{m_1}$ and $S_{i_2,k_2-1}^{m_2}$ are \mathcal{D}_k^n -conditional uncorrelated. Iteration until $S_{i_1,k_1-j}^{m_1}$ or $S_{i_2,k_2-j}^{m_2}$ is \mathcal{D}_k^n -measurable proves part d). Because of independent accident periods.

Remark 4.3 (CLM as LSRM)

Because of Corollary 2.3, i.e.

$$\begin{split} \mathsf{E} \Big[S^0_{i,k+1} \big| \mathcal{D}^{i+k}_k \Big] &= (f_k - 1) \sum_{j=0}^k S^0_{i,j} = (f_k - 1) C_{i,k}, \\ \mathsf{Cov} \Big[S^0_{i,k+1}, S^0_{i,k+1} \big| \mathcal{D}^{i+k}_k \Big] &= \sigma_k^2 \sum_{j=0}^k S^0_{i,j} = \sigma_k^2 C_{i,k}, \end{split}$$

the Chain-Ladder method is a LSRM with exposures

$$R_{i,k}^0 = R_{i,k}^{0,0} = C_{i,k}$$

and parameters

$$f_k^0 = f_k - 1$$

$$\sigma_k^{0,0} = \sigma_k^2.$$

©R. Dahms (ETH Zurich, Spring 2021)

2021-04-26

- Linear-Stochastic-Reserving methods
 - -How do Linear-Stochastic-Reserving methods (LSRM) work

Because of Corollary 2.3, i.e. $\mathbb{E}\left[S_{i,k+1}^{0}|D_{k}^{i+k}\right] = (f_{k}-1)\sum_{i=0}^{k}S_{i,i}^{0} = (f_{k}-1)C_{i,k},$ $Cov[S_{i,k+1}^{0}, S_{i,k+1}^{0} | D_{k}^{i+k}]$ the Chain-Ladder method is a LSRM with exposures $R_{i,k}^0 = R_{i,k}^{0,0} = C_{i,k}$ and parameters $f_k^0 = f_k - 1$, $\sigma_{k}^{0,0} = \sigma_{k}^{2}$.

Remark 4.4 (CLRM as LSRM)

If we set
$$S^1_{i,k} := \left\{ \begin{array}{ll} P_i, & \mbox{for } k=0, \\ 0, & \mbox{otherwise}, \end{array} \right.$$

then the Complementary-Loss-Ratio method can be rewritten as

$$\begin{split} \mathsf{E} \Big[S^m_{i,k+1} \big| \mathcal{D}^{i+k}_k \Big] &= f^m_k P_i \\ \mathsf{E} \Big[S^{m_1}_{i,k+1}, S^{m_2}_{i,k+1} \Big| \mathcal{D}^{i+k}_k \Big] &= \sigma^{m_1,m_2}_k P_i \end{split}$$

with parameters

$$\begin{split} f_k^0 &= f_k & \mbox{ and } & f_k^1 &= 0, \\ \sigma_k^{0,0} &= \sigma_k^2 & \mbox{ and } & \sigma_k^{0,1} &= \sigma_k^{1,0} &= \sigma_k^{1,1} &= 0. \end{split}$$

Therefore, it is a LSRM with exposures

$$R_{i,k}^0 = R_{i,k}^1 = R_{i,k}^{0,0} = R_{i,k}^{0,1} = R_{i,k}^{1,0} = R_{i,k}^{1,1} = P_i.$$

©R. Dahms (ETH Zurich, Spring 2021)

- Linear-Stochastic-Reserving methods
 - -How do Linear-Stochastic-Reserving methods (LSRM) work

Remark 4.5 (BFM as LSRM)

Since we can look at BFM as a Complementary-Loss-Ratio method (see Remark 3.8), it can also be interpreted as LSRM.

Remark 4.6 (ECLRM as LSRM)

By definition the Extended-Complementary-Loss-Ratio method is a LSRM with exposures

$$R_{i,k}^{0,0} = R_{i,k}^{0,1} = R_{i,k}^{1,0} = R_{i,k}^{1,1} = \sum_{j=0}^{k} (S_{i,k}^{1} - S_{i,k}^{0})$$

and parameters f_k^m and $\sigma_k^{m_1,m_2}$.

Linear-Stochastic-Reserving methods

-How do Linear-Stochastic-Reserving methods (LSRM) work

Remark 4.5 (BFM as LSRM)

Since we can look at BFM as a Complementary-Loss-Ratio method (see Remark 3.8), it can also be interpreted as LSRM.

Remark 4.6 (ECLRM as LSRM)

By definition the Extended-Complementary-Loss-Ratio method is a LSRM with exposures

$$R_{i,k}^{0,0} = R_{i,k}^{0,1} = R_{i,k}^{1,0} = R_{i,k}^{1,1} = \sum_{i=0}^{k} (S_{i,k}^{1} - S_{i,k}^{0})$$

and parameters f_k^m and $\sigma_k^{m_1,m_2}$.

Estimator 4.7 (of the development parameter f_k^m)

Let $S_{i,k}^m$ satisfy Assumption 4.A. Then for each set of $\mathcal{D}^I \cap \mathcal{D}_k$ -measurable weights $w_{i,k}^m$ with

• $w_{i,k}^m \ge 0$ and $R_{i,k}^m = 0$ implies $w_{i,k}^m = 0$, • $\sum_{i=0}^{I-1-k} w_{i,k}^m = 1$ if at least one $R_{i,k}^m \ne 0$

we get that

$$\widehat{f}_{k}^{m} := \sum_{i=0}^{I-1-k} w_{i,k}^{m} \frac{S_{i,k+1}^{m}}{R_{i,k}^{m}}$$
(4.1)

is a \mathcal{D}_k -conditionally unbiased estimator of the development factor f_k^m and the weights

$$w_{i,k}^{m} := \frac{\left(R_{i,k}^{m}\right)^{2}}{R_{i,k}^{m,m}} \left(\sum_{h=0}^{I-1-k} \frac{\left(R_{h,k}^{m}\right)^{2}}{R_{h,k}^{m,m}}\right)^{-1},$$
(4.2)

result in estimators \hat{f}_k^m with minimal (\mathcal{D}_k -conditional) variance of all estimators of the form (4.1).

• For every tuple $\widehat{f}_{k_1}^{m_1}, \ldots, \widehat{f}_{k_r}^{m_r}$ with $k_1 < k_2 < \cdots < k_r$ we get

$$\mathsf{E}\Big[\widehat{f}_{k_1}^{m_1}\cdots \widehat{f}_{k_r}^{m_r}\Big|\mathcal{D}_{k_1}\Big] = f_{k_1}^{m_1}\cdots f_{k_r}^{m_r} = \mathsf{E}\Big[\widehat{f}_{k_1}^{m_1}\Big|\mathcal{D}_{k_1}\Big]\cdots \mathsf{E}\Big[\widehat{f}_{k_r}^{m_r}\Big|\mathcal{D}_{k_r}\Big]$$

which implies that the estimators are pairwise \mathcal{D}_{k_1} -conditionally uncorrelated.

Stochastic Reserving
Linear-Stochastic-Reserving methods
Future development
• unbiased:

$$E\left[f_{k}^{m} | \mathcal{D}_{k}\right] = \sum_{i=0}^{I-1-k} w_{i,k}^{m} \frac{E\left[E\left[S_{i,k}^{m}+1 \left|\mathcal{D}_{k}^{i+k}\right]\right]\mathcal{D}_{k}\right]}{R_{i,k}^{m}} = \sum_{i=0}^{I-1-k} w_{i,k}^{m} \frac{f_{k}^{m} R_{i,k}^{m}}{R_{i,k}^{m}} = f_{k}^{m}$$
• minimal variance:

$$Var\left[f_{k}^{m} | \mathcal{D}_{k}\right] = E\left[Var\left[f_{k}^{m} \left|\mathcal{D}_{k}\right]\right] = E\left[Var\left[f_{k}^{m} \left|\mathcal{D}_{k}\right]\right] = E\left[Var\left[f_{k}^{m} \left|\mathcal{D}_{k}\right]\right] = e\left[Var\left[f_{k}^{m} \left|\mathcal{D}_{k}\right]\right] = 0\right] = \sum_{i=0}^{I-1-k} w_{i,k}^{m} \frac{f_{k}^{m} R_{i,k}^{m}}{R_{i,k}^{m}} = f_{k}^{m}$$
• minimal variance:

$$Var\left[f_{k}^{m} \right] = E\left[Var\left[f_{k}^{m} \left|\mathcal{D}_{k}\right]\right] = \sum_{i=0}^{I-1-k} (w_{i,k}^{m})^{2} \frac{Var\left[S_{i,k+1}^{m} \left|\mathcal{D}_{k}\right]\right]}{(R_{i,k}^{m})^{2}} = \frac{\sum_{i=0}^{I-1-k} (w_{i,k}^{m})^{2} \frac{Var\left[S_{i,k+1}^{m} \left|\mathcal{D}_{k}\right]}{(R_{i,k}^{m})^{2}} = \frac{\sigma_{k}^{m,m} \sum_{i=0}^{I-1-k} (w_{i,k}^{m})^{2} \frac{R_{i,k}^{m,m}}{(R_{i,k}^{m})^{2}}}{(R_{i,k}^{m})^{2}} + \lambda \left(1 - \sum_{i=0}^{I-1-k} w_{i,k}^{m}\right)$$

$$\frac{\partial}{\partial w_{i,k}^{m}}} = 2w_{i,k}^{m} \frac{R_{i,k}^{m,m}}{(R_{i,k}^{m,m})^{2}} - \lambda \qquad w_{i,k}^{m} = \frac{\lambda}{2} \frac{(R_{i,k}^{m,m})^{2}}{(R_{i,k}^{m,m})^{2}} \text{ and } \lambda = 2 \left(\sum_{i=0}^{I-1-k} (R_{i,k}^{m,k})^{2}\right)^{-1} \implies (4.2)$$

$$\frac{\sum_{i=0}^{I-1-k} w_{i,k}^{m}}{(R_{i,k}^{m,m})^{2}} - \lambda \qquad w_{i,k}^{m} = \frac{\lambda}{2} \frac{(R_{i,k}^{m,m})^{2}}{(R_{i,k}^{m,m})^{2}} \text{ and } \lambda = 2 \left(\sum_{i=0}^{I-1-k} (R_{i,k}^{m,k})^{2}\right)^{-1} \implies (4.2)$$

$$\frac{\sum_{i=0}^{I-1-k} w_{i,k}^{m}}{(R_{i,k}^{m,m})^{2}} - \lambda \qquad w_{i,k}^{m} = \frac{\lambda}{2} \frac{(R_{i,k}^{m,m})^{2}}{(R_{i,k}^{m,m})^{2}} + \lambda \left(1 - \sum_{i=0}^{I-1-k} w_{i,k}^{m,m}\right)$$

$$\frac{\partial}{\sum_{i=0}^{I-1-k} (R_{i,k}^{m,m})^{2}}{(R_{i,k}^{m,m})^{2}} - \lambda \qquad w_{i,k}^{m} = \frac{\lambda}{2} \frac{(R_{i,k}^{m,m})^{2}}{(R_{i,k}^{m,m})^{2}} + \lambda \left(1 - \sum_{i=0}^{I-1-k} w_{i,k}^{m,m}\right)$$

$$\frac{\partial}{\sum_{i=0}^{I-1-k} w_{i,k}^{m,m}}{(R_{i,k}^{m,m})^{2}} - \lambda \qquad w_{i,k}^{m} = \frac{\lambda}{2} \frac{(R_{i,k}^{m,m}}{(R_{i,k}^{m,m})^{2}}} = A\left[\sum_{i=0}^{I-1-k} (R_{i,k}^{m,m}\right] + A\left[\sum_{i=0}^{I-1-k} (R_{i,k}^{m,m}\right] + A\left[\sum_{i=0}^{I-1-k} (R_{i,k}^{m,m}\right] + A\left[\sum_{i=0}^{I-1-k} (R_{i,k}^{m,m}\right] + A\left[\sum_{i=0}^{I-1-k} (R_{i,k}^$$

Definition 4.8 (Diagonal by diagonal projection)

Since the exposures $R_{i,k}^m$ depend linearly on claim properties, there exist linear operators $\Gamma_{i,k}^m$, which generate these exposures. We now want to formalise the diagonal by diagonal projection. Therefore, we denote by

$$\#^{n} := \#\{(m, i, k) \colon 0 \le m \le M, \ 0 \le i \le I, \ 0 \le k \le J - 1, \ 0 \le i + k \le n\}$$

the number of claim properties below or on the diagonal n and define

$$\begin{split} \mathcal{F}_{i,k}^{m}(\mathbf{g}) &: \mathbb{R}^{\#^{i+k}} \to \mathbb{R} : \qquad \mathcal{F}_{i,k}^{m}(\mathbf{g}) := g_{i,k}^{m} \Gamma_{i,k}^{m}, \\ \mathcal{F}^{n}(\mathbf{g}) &: \mathbb{R}^{\#^{n}} \to \mathbb{R}^{\#^{n+1}} : \qquad (\mathcal{F}^{n}(\mathbf{g}) \mathbf{x})_{i,k}^{m} := \begin{cases} x_{i,k}^{m}, & \text{if } i+k \leq n, \\ \mathcal{F}_{i,k-1}^{m}(\mathbf{g}) \mathbf{x}, & \text{otherwise}, \end{cases} \\ \mathcal{F}^{n_{2} \leftarrow n_{1}}(\mathbf{g}) :: \mathbb{R}^{\#^{n_{1}}} \to \mathbb{R}^{\#^{n_{2}+1}} : \qquad \mathcal{F}^{n_{2} \leftarrow n_{1}}(\mathbf{g}) := \begin{cases} \mathcal{F}^{n_{2}}(\mathbf{g}) \circ \cdots \circ \mathcal{F}^{n_{1}}(\mathbf{g}), & \text{if } n_{2} \geq n_{1}, \\ \Pi^{\#^{n_{2}+1}}, & \text{otherwise}, \end{cases} \\ \mathcal{F}_{i,k}^{m,n}(\mathbf{g}) :: \mathbb{R}^{\#^{n}} \to \mathbb{R} : \qquad \mathcal{F}_{i,k}^{m,n}(\mathbf{g}) \mathbf{x} := \left(\mathcal{F}^{i+k \leftarrow n}(\mathbf{g}) \mathbf{x} \right)_{i,k+1}^{m}, \end{split}$$

where $\Pi^{\#^n}$ denotes the projection onto $\mathbb{R}^{\#^n}$ and ${\bf g}$ is any large enough vector with coordinates $g^m_{i,k}.$


```
Choice set (4) (Capacitor by degreed probability of the set (4) (Capacitor by the set (4)) (Capacitor
```

• Since the operators $\Gamma^m_{i,k}$ and $\mathcal{F}^m_{i,k}(\mathbf{g})$ only depend on coordinates (l,h,j) with

```
0\leq m\leq M,\ 0\leq h\leq i,\ 0\leq j\leq k
```

they could be defined on a smaller domain, but than concatenation would not be possible.

- We added the parameter g in order to denote which development factors are used, for instance the real, but unknown, development vectors f_k^m or their estimates \hat{f}_k^m .
- Often we will use parameters g, which do not depend on the accident period i. Then we will skip the index i in $g_{i,k}^m$.

For all $i + k \ge n$ and for all $\mathbf{Y} \in \mathcal{D}^n$ there exist random variables $X_{i,k,h_1,\ldots,h_r,j_1,\ldots,j_r}^{n,m,l_1,\ldots,l_r} \in \mathcal{D}_{i,k} \cap \mathcal{D}^n$, which depend linearly on the coordinates of \mathbf{Y} , such that for all \mathbf{g}

$$\mathcal{F}_{i,k}^{m,n}(\mathbf{g}) \mathbf{Y} = \sum_{r=1}^{k+i+1-n} \sum_{\substack{0 \le l_1, \dots, l_r \le M \\ 0 \le h_1, \dots, h_r \le i \\ n-i \le j_1 < \dots < j_r \le k}} \mathbf{g}_{h_1, j_1}^{l_1} \cdots \mathbf{g}_{h_r, j_r}^{l_r} X_{i,k,h_1, \dots, h_r, j_1, \dots, j_r}^{n, m, l_1, \dots, l_r}.$$

Remark 4.10

That means we have a multi-linear structure in the development factors as well as in the claims properties, like in the Chain-Ladder case.

 $\begin{array}{l} \label{eq:constraints} (Impact (Impact$

well as in the claims properties, like in the Chain-Ladder case

If i + k < n then

$$\mathcal{F}_{i,k}^{m,n}(\mathbf{g}) \mathbf{Y} = Y_{i,k} \in \mathcal{D}_{i,k} \cap \mathcal{D}^n.$$

If i + k = n we get

$$\mathcal{F}_{i,k}^{m,n}(\mathbf{g}) \, \mathbf{Y} = \mathbf{g}_{i,k}^m \underbrace{\mathbf{\Gamma}_{i,k}^m \mathbf{Y}}_{\in \mathcal{D}_{i,k} \cap \mathcal{D}^{i+k}},$$

because $\Gamma_{i,k}^m \mathbf{Y}$ depends only on coordinates of \mathbf{Y} which are $\mathcal{D}_{i,k} \cap \mathcal{D}^{i+k}$ measurable. Now assume that the statement is fulfilled for all n, h, j with $n \leq h + j < i + k$. Then we get

$$\mathcal{F}_{i,k}^{m,n}(\mathbf{g}) \mathbf{Y} = \mathcal{F}_{i,k}^m(\mathbf{g}) \circ \boldsymbol{\mathcal{F}}^{i+k-1\leftarrow n}(\mathbf{g}) \mathbf{Y} = \mathbf{g}_{i,k}^m \Gamma_{i,k}^m \circ \boldsymbol{\mathcal{F}}^{i+k-1\leftarrow n}(\mathbf{g}) \mathbf{Y}$$

By assumption the statement is fulfilled for each coordinate of $(\mathcal{F}^{i+k-1\leftarrow n}(\mathbf{g}) \mathbf{Y})_{h,j}^{l}$ and since $\Gamma_{i,k}^{m}$ depends only on coordinates $h \leq i$ and $j \leq k$, only development factors $\mathbf{g}_{h,j}^{l}$ with $n-i \leq j < k$ are involved, which by induction proves our statement.
Remark 4.11

- The mapping $\mathcal{F}^n(\mathbf{g})$ fills the (n+1)-th diagonal of all claim property triangles based on all diagonals up to the *n*-th diagonal.
- The functional $\mathcal{F}^m_{i,k}(\mathbf{g})$ does depend on coordinates up to accident period i and development period k_i only.
- $\mathcal{F}_{i,k}^m(\mathbf{g}) \mathbf{x} = \left(\mathcal{F}^{i+k}(\mathbf{g}) \mathbf{x} \right)_{i,k+1}^m$

•
$$R_{i,k}^m = \Gamma_{i,k}^m \mathbf{S}^{i+k}$$
,
• $\mathbf{E} \begin{bmatrix} S_{i,k+1}^m | \mathcal{D}_k^{i+k} \end{bmatrix} = \mathcal{F}_{i,k}^m (\mathbf{f}) \mathbf{S}^{i+k}$,
• $\mathbf{E} \begin{bmatrix} S_{i,k+1}^m | \mathcal{D}_k^{i+k} \end{bmatrix} = \mathcal{F}_{i,k}^m (\mathbf{f}) \mathbf{S}^{i+k}$,

•
$$\mathsf{E}\left[S^{m}_{i,k+n+1}\middle|\mathcal{D}^{i+k}\cap\mathcal{D}_{k}\right] = \mathsf{E}\left[S^{m}_{i,k+n+1}\middle|\mathcal{D}^{i+k}_{k}\right] = \mathcal{F}^{m,i+k}_{i,k+n}(\mathbf{f}) \mathbf{S}^{i+k}$$

where ${\bf f}:=(f_k^m)_{0\leq k< J}^{0\leq m\leq M}$ denotes the vector of the real (but unknown) development factors and

$$\mathbf{S}^{n} := \left(S_{i,k}^{m}\right)_{0 \le i \le I, \ 0 \le k < J, \ 0 \le i + k \le n}^{0 \le m \le M}$$

is the vector of all claim properties below or on the diagonal n.

$$\mathsf{E}[\mathbf{S}^{n_1+n_2+1}|\mathcal{D}^{n_1}] = \mathsf{E}[\mathsf{E}[\mathbf{S}^{n_1+n_2+1}|\mathcal{D}^{n_1+n_2}]|\mathcal{D}^{n_1}] = \mathsf{E}[\mathcal{F}^{n_1+n_2}(\mathbf{f}) \, \mathbf{S}^{n_1+n_2}|\mathcal{D}^{n_1}] \\ = \mathcal{F}^{n_1+n_2}(\mathbf{f}) \, \mathsf{E}[\mathbf{S}^{n_1+n_2}|\mathcal{D}^{n_1}] = \dots = \mathcal{F}^{n_1+n_2\leftarrow n_1}(\mathbf{f}) \, \mathbf{S}^{n_1}$$

$$\mathsf{E}\Big[S_{i,k+n+1}^{m}\Big|\mathcal{D}_{k}^{i+k}\Big] = \left(\boldsymbol{\mathcal{F}}^{i+k+n\leftarrow i+k}(\mathbf{f})\,\mathbf{S}^{i+k}\right)_{i,k+n+1}^{m} = \mathcal{F}_{i,k+n}^{m,i+k}(\mathbf{f})\,\mathbf{S}^{i+k}$$

Estimator 4.12 (of the future development) Let $S_{i,k}^m$ satisfy Assumption 4.A. Then

$$\widehat{S}_{i,k+1}^m := \mathcal{F}_{i,k}^{m,I}\left(\widehat{\mathbf{f}}\right) \mathbf{S}^I, \qquad I - i \le k < J,$$

are \mathcal{D}_{I-i} -conditional unbiased estimators of $\mathsf{E}\left[S^m_{i,k+1} \middle| \mathcal{D}^I\right]$. Moreover, we define $\widehat{S}^m_{i,k} := S^m_{i,k}$, for $i + k \leq I$, and

$$\widehat{R}^m_{i,k} := \Gamma^m_{i,k} \widehat{\mathbf{S}}^{i+k} \qquad \text{and} \qquad \widehat{R}^{m_1,m_2}_{i,k} =: \Gamma^{m_1,m_2}_{i,k} \widehat{\mathbf{S}}^{i+k},$$

where $\Gamma_{i,k}^{m_1,m_2}$ denotes the operator that generates $R_{i,k}^{m_1,m_2}$ based on \mathbf{S}^{i+k} .

Stochastic Reserving Linear-Stochastic-Reserving methods

$$\begin{split} & \text{Extinction } A + 12 \left(c \text{If the future development} \right) \\ & \text{Let } S_{in}^{m} \text{ anticly denotes } A A. Then \\ & \quad \\$$

We will even prove that $\hat{S}_{i,k+1}^m$ is an \mathcal{D}_{I-h} -conditionally unbiased estimator of $\mathsf{E}\left[S_{i,k+1}^m | \mathcal{D}^I\right]$ for all $h \ge i$. We will do that by induction. If i + k = I we get for all $h \ge i$

Now assume that the statement is fulfilled for all i + k < n. Then we get for i + k = n and all $h \ge i$

$$\begin{split} \mathsf{E}\Big[\widehat{S}_{i,k+1}^{m}\Big|\mathcal{D}_{I-h}\Big] &= \mathsf{E}\Big[\mathcal{F}_{i,k}^{m}\left(\widehat{\mathbf{f}}\right)\widehat{\mathbf{S}}^{i+k}\Big|\mathcal{D}_{I-h}\Big] = \mathsf{E}\Big[\mathsf{E}\Big[\mathcal{F}_{i,k}^{m}\left(\widehat{\mathbf{f}}\right)\Big|\mathcal{D}_{k}\Big]\widehat{\mathbf{S}}^{i+k}\Big|\mathcal{D}_{I-h}\Big] \\ &= \mathsf{E}\Big[\mathcal{F}_{i,k}^{m}\left(\mathbf{f}\right)\widehat{\mathbf{S}}^{i+k}\Big|\mathcal{D}_{I-h}\Big] = \mathcal{F}_{i,k}^{m}\left(\mathbf{f}\right)\mathsf{E}\Big[\widehat{\mathbf{S}}^{i+k}\Big|\mathcal{D}_{I-h}\Big]. \end{split}$$

Since $\mathcal{F}_{i,k}^m(\mathbf{f})$ depends only on accident periods $h_1 \leq i$, all coordinates $\mathbb{E}\left[\widehat{S}_{h_1,j}^l \middle| \mathcal{D}_{I-h}\right]$ of $\mathbb{E}\left[\widehat{\mathbf{S}}^{i+k} \middle| \mathcal{D}_{I-h}\right]$ with $h_1 > i$ will not be taken into account. For all others we can apply the induction hypotheses and proceed with

$$=\underbrace{\mathcal{F}_{i,k}^{m}(\mathbf{f}) \, \mathsf{E}\left[\mathbf{S}^{i+k} \middle| \mathcal{D}_{I-h}\right]}_{\text{induction hypothesis}} = \underbrace{\mathsf{E}\left[\mathsf{E}\left[S_{i,k+1}^{m} \middle| \mathcal{D}_{k}^{I}\right] \middle| \mathcal{D}_{I-h}\right]}_{\text{Remark 4.11}} = \mathsf{E}\left[\mathsf{E}\left[S_{i,k+1}^{m} \middle| \mathcal{D}^{I}\right] \middle| \mathcal{D}_{I-h}\right].$$

Note, since $R_{i,k}^{m_1,m_2}$ is \mathcal{D}^{i+k} measureable, there always extists an operator $\Gamma_{i,k}^{m_1,m_2}$ such that $R_{i,k}^{m_1,m_2} = \Gamma_{i,k}^{m_1,m_2} \mathbf{S}^{i+k}$.

(1/4)

Example 4.13 (Swiss mandatory accident portfolio: part 1 of 3, see LSRM_Accident_ActiveX.xlsx)

We have the following three main types of (non annuity) payments:

- Medical expenses (ME) will be estimated by CLM, because it worked fine in the past.
- Payments for incapacitation for work (IW) are by law proportional to the insured salary P_i , which is limited to a maximum amount. Moreover, during accident period 7 the maximum insured salary has been increased by about 20%, valid for all claims happening afterwards. Therefore, we would like to take CLRM with the insured salary as external exposure.

On the other side, we know from the past that the claim frequency is influenced by the economic situation, which is better reflected by CLM than by CLRM. Combining both we take a mixture of the exposures of both methods, whereas the

weight of the insured salary is κ^{k+1} .

• Subrogation (Sub) possibilities are huge, because many claims are caused by car accidents and by law the accident insurer of the insured persons has to pay first and may take subrogation against the motor liability insurer afterwards. Therefore, we assume that the amount of possible subrogation is proportional to the total amount that already has been paid, i.e. to ME+IW+Sub.

Stochastic Reserving

2021-04-26

-Linear-Stochastic-Reserving methods

-Future development

Example 4.13 (Swiss mandatory accident portfolio: part 1 of 3, see LSRM_Accident_ActiveX.xbx)

We have the following three main types of (non annuity) payments:

- Medical expenses (ME) will be estimated by CLM, because it worked fine in the past.
- Payments for incapacitation for work (W) are by law proportional to the insured salary P_i, which is limited to a maximum amount. Moreover, during accident protect 1 the maximum issued salary has been increased by about 20%, valid for all claims happening aflowards. Therefore, we would like to take CLBM with the insured salary as external septeme.
- On the other side, we know from the past that the claim frequency is influenced by the economic situation, which is better reflected by CLM than by CLRM. Combining both we take a mixture of the exposures of both methods, whereas the weight of the insured salary is κ^{n+1} .
- Subrogation (Sub) possibilities are huge, because many claims are caused by car accidents and by low the accident insurer of the insured persons has to pay first and my take subregation against the moor lability insure afformator. Therefore, we assume that the arecourt of possible subregation is proportional to the total arecourt that aready has been paid, i.e. to ME-TRV-Sub.

Mathematical that means:

We have four claim properties with exposures

$$\begin{split} \mathsf{ME:} \ \ & R_{i,k}^0 = R_{i,k}^{0,0} = \sum_{j=0}^k S_{i,j}^0 \\ \mathsf{IW:} \ \ & R_{i,k}^1 = R_{i,k}^{1,1} = \sum_{j=0}^k \left(\kappa^{j+1} S_{i,j}^3 + (1-\kappa^{j+1}) S_{i,j}^1 \right) \\ \mathsf{Sub:} \ \ & R_{i,k}^2 = R_{i,k}^{2,2} = \sum_{j=0}^k \left(S_{i,j}^0 + S_{i,j}^1 + S_{i,j}^2 \right) \\ \mathsf{Salary:} \ \ & S_{i,0}^3 = P_i, \ S_{i,j}^3 = 0, \text{ for } j > 0, \text{ and} \\ & R_{i,k}^3 = R_{i,k}^{3,0} = R_{i,k}^{0,3} = R_{i,k}^{3,1} = R_{i,k}^{1,3} = R_{i,k}^{3,2} = R_{i,k}^{2,3} = R_{i,k}^{3,3} = 0 \\ \mathsf{For the not yet defined exposures we take the total payments up to now, i.e. } \end{split}$$

 $R_{i,k}^{0,1} = R_{i,k}^{1,0} = R_{i,k}^{0,2} = R_{i,k}^{2,0} = R_{i,k}^{1,2} = R_{i,k}^{2,1} = \sum_{j=0}^{k} \left(S_{i,j}^{0} + S_{i,j}^{1} + S_{i,j}^{2} \right).$

Resulting Best Estimate reserves

- Depend almost linear on κ , because it practically influences only the first development period, that means the most recent accident period i = 8.
- Are much higher than the CLM on total payments (small circle on the left), if $\kappa = 1$. The main difference is in the most recent accident period i = 8.
- Are slightly smaller than CLM, if $\kappa=0.$ This may be a consequence of the more detailed modelling of subrogation.

Stochastic Reserving

2021-04-26

-Linear-Stochastic-Reserving methods

-Future development

Example 4.13: Best Estimate reserves in dependence of κ

(3/4)

Stochastic Reserving Chinear-Stochastic-Reserving methods Future development

• The estimated covariance parameters $\widehat{\sigma}_{k}^{m_{1},m_{2}}$ together with the estimated exposures $\widehat{R}_{i,k}^{m_{1},m_{2}}$ lead to covariance matrices which are slightly non-positive definite for development periods $k \in \{5, 6, 7\}$. Since the corresponding negative eigenvalues are almost zero, we believe that it is not a model but an estimation problem. We could change the estimated covariance parameters slightly in order to get non-negative covariance matrices without changing uncertainties a lot.

Example 4.14 (ECLRM vs. CLM, see Examples 2.7 and 2.8: part 1 of 3, see LSRM Examples ActiveX.xlsx)

We have seen that the Chain-Ladder method leaves a gap between the Best Estimate reserves based on payments and the one based on incurred losses. Moreover, we have closed this gap by a credibility like weighting.

Now we want to look at the corresponding results, if we take the case reserves as exposure (ECLRM):

	Best Estimate reserves				
AP	CLM paid	CLM incurred	CLM weighting	ECLRM	Case Reserve
0					
1	114086	337984	228182	314902	352899
2	394121	31884	203653	66994	75316
3	608749	331436	458946	359384	410496
4	697742	1018350	877247	981883	1148647
5	1234157	1103928	1157520	1115768	1317088
6	1138623	1868664	1587838	1786947	2216536
7	1638793	1997651	1862844	1942518	2923692
8	2359939	1418779	1750635	1569657	2756633
9	1979401	2556612	2412410	2590718	2203446
Total	10165612	10665287	10539276	10728771	13404753

- CLM on incurred, CLM weighting and ECLRM lead to similar results, whereas the later reflects the information contained in the case reserves at best (see third accident period *i* = 2).
- In total the results of CLM on payments are in the same range like the others, but the estimated reserves for individual accident periods are quit different.

Stochastic Reserving Lecture 7 (Continuation of Lecture 6) Linear-Stochastic-Reserving methods

René Dahms

ETH Zurich, Spring 2021

14 April 2021 (Last update: 26 April 2021) Stochastic Reserving

2021-04-26

Linear-Stochastic-Reserving methods

Stochastic Reserving Lecture 7 (Continuation of Lecture 6) Linear-Stochastic-Reserving methods

René Dahms

ETH Zurich. Series 2021

14 April 2021 (Last update: 26 April 2021)

4 Linear-Stochastic-Reserving methods

4.1 How do Linear-Stochastic-Reserving methods (LSRM) work

- 4.1.1 LSRM without stochastic
- 4.1.2 Stochastic behind LSRMs

4.2 Future development

- 4.2.1 Projection of the future development
- 4.2.2 Examples

4.3 Ultimate uncertainty

- 4.3.1 Mixing of claim properties
- 4.3.2 Ultimate uncertainty
- 4.3.3 Estimation of the covariance parameters
- 4.3.4 Examples

4.4 Solvency uncertainty

- 4.4.1 Estimation at time I + 1
- 4.4.2 Solvency uncertainty
- 4.4.3 Uncertainties of further CDR's

4.5 Examples

4.6 Estimation of correlation of reserving Risks

- 4.6.1 Avoiding correlation matrices for the reserving risks
- 4.6.2 Using LSRMs to estimate a correlation matrix

4.7 Literature

Stochastic Reserving

2021-04-26

Linear-Stochastic-Reserving methods

Future development

-Lecture 7: Table of contents

4 Linear-Stochastic-Reserving methods

4.1 How do Unard Schutzerving (MUDODS 4.1 LSRM without machanic 4.1.1 LSRM without machanic 4.1.2 Stochastic bahind LSRMs 4.2 Future development 4.21 Projection of the future development 4.22 Examples 4.3 Ultimate uncertainty 4.14 Examples 4.4 Solvency uncertainty 4.4.1 Estimation at time *I* + 1 4.4.2 Solvency uncertainty 4.4.3 Uncertainties of further CDR's 64.3 Uncertainties of further CDR's 4.5 Examples 4.6 Estimation of correlation of reserving Risks 4.6 1 Avoiding correlation matrices for the reserving risks 4.6 2 Using LSRMs to estimate a correlation matrix 4.7 Ulterature

Mixing weights

In the last lecture we derived unbiased estimators for the future development of Linear-Stochastic-Reserving methods. Now we want to look at the corresponding ultimate uncertainty.

We have seen in Estimator 2.15 and Examples 4.13 that we are often interested in a linear combination of claim properties. Since claim reserves are expectations such mixing can be transferred to the corresponding Best Estimate reserves. But, because of diversification and dependencies, the mixing of claim properties has an influence on the estimated uncertainties. Therefore, we will look at the ultimate uncertainty of

$$\sum_{m=0}^M \alpha_i^m \sum_{k=I-i}^{J-1} \widehat{S}_{i,k+1}^m \qquad \text{and} \qquad \sum_{m=0}^M \sum_{i=0}^I \alpha_i^m \sum_{k=I-i}^{J-1} \widehat{S}_{i,k+1}^m$$

where α_i^m are $\mathcal{D}^I\text{-measurable}$ real numbers. That means we want to estimate

$$\mathsf{mse}_{\mathcal{D}^{I}}\left[\sum_{m=0}^{M} \alpha_{i}^{m} \sum_{k=I-i}^{J-1} \widehat{S}_{i,k+1}^{m}\right] \qquad \mathsf{and} \qquad \mathsf{mse}_{\mathcal{D}^{I}}\left[\sum_{m=0}^{M} \sum_{i=0}^{I} \alpha_{i}^{m} \sum_{k=I-i}^{J-1} \widehat{S}_{i,k+1}^{m}\right].$$

©R. Dahms (ETH Zurich, Spring 2021)

$$\begin{split} & \text{Dots} \text{matrix} \\ & \text{Bis the strength matrix and the strength matrix the first distribution of the strength matrix for the strength matrix for the strength matrix for the strength matrix and the strength matrix and the strength matrix for the strength matrix fo$$

Exapmles for mixing:

- Combination of two portfolios (weights are equal to one).
- Combination of two Chain-Ladder projections, one for payments and one for incurred losses (weights sum up to one for each *i*).
- Adding dependent payments, for instance subrogation and normal payments, which are projected separately (weights are equal to one).

Decomposition of the ultimate uncertainty

Remark 4.15

The ultimate uncertainty of a single accident period or a single claim property can easily be obtained from the general formula by setting some of the α_i^m to zero.

Stochastic Reserving

2021-04-26

- Linear-Stochastic-Reserving methods
 - Ultimate uncertainty

The dummate uncertainty or a single account period or a single caim property can easily be obtained from the general formula by setting some of the α_i^{re} to zero.

4.3 Ultimate uncertainty ▲ 4.3.2 Ultimate uncertainty

Taylor approximation

Like in the Chain-Ladder case we will look at the functional

$$U(\mathbf{g})\mathbf{x} := \sum_{m=0}^{M} \sum_{i=0}^{I} \alpha_{i}^{m} \left(\sum_{k=0}^{I-i} x_{i,k}^{m} + \sum_{k=I-i}^{J-1} \mathcal{F}_{i,k}^{m,I}(\mathbf{g}) \mathbf{x} \right).$$

Then we get:

$$\partial_{h,j}^{l} U(\bar{\mathbf{g}}) \mathbf{x} := \left. \frac{\partial U(\mathbf{g}) \mathbf{x}}{\partial g_{h,j}^{l}} \right|_{\mathbf{g} = \bar{\mathbf{g}}} = \frac{U(\bar{\mathbf{g}}) \mathbf{x} - U(\bar{\mathbf{g}}_{h,j}^{l}|_{0}) \mathbf{x}}{\bar{g}_{h,j}^{l}} = U(\bar{\mathbf{g}}_{h,j}^{l}|_{1}) \mathbf{x} - U(\bar{\mathbf{g}}_{h,j}^{l}|_{0}) \mathbf{x},$$

where $\bar{\mathbf{g}}_{h,j}^{l}|_{a}$ denotes the vector $\bar{\mathbf{g}}$ with exchanged coordinate $\bar{g}_{h,j}^{l}=a$. Moreover, we have

$$\begin{split} U(\mathbf{f})\mathbf{S}^{I} &= \sum_{m=0}^{M} \sum_{i=0}^{I} \alpha_{i}^{m} \sum_{k=0}^{J} \mathsf{E}[S_{i,k}^{m} | \mathcal{D}^{I}], \\ U(\widehat{\mathbf{f}})\mathbf{S}^{I} &= \sum_{m=0}^{M} \sum_{i=0}^{I} \alpha_{i}^{m} \sum_{k=0}^{J} \widehat{S}_{i,k}^{m}, \qquad U(\mathbf{F})\mathbf{S}^{I} = \sum_{m=0}^{M} \sum_{i=0}^{I} \alpha_{i}^{m} \sum_{k=0}^{J} S_{i,k}^{m}, \\ \sum_{m=0}^{M} \sum_{i=0}^{I} \alpha_{i}^{m} \sum_{k=0}^{J} \left(\widehat{S}_{i,k}^{m} - S_{i,k}^{m}\right) \approx \sum_{l=0}^{M} \sum_{h=0}^{I} \sum_{j=l-h}^{J-1} \partial_{h,j}^{l} U(\widehat{\mathbf{f}}) \mathbf{S}^{I} \left(F_{h,j}^{l} - \widehat{f}_{j}^{l}\right) \end{split}$$

where we used a first order Taylor approximation and \mathbf{F} and $\hat{\mathbf{f}}$ denote the vector of all link ratios $F_{i,k}^m := S_{i,k+1}^m / R_{i,k}^m$ and the vector of all estimated development factors \hat{f}_k^m , respectively.

Because of Lemma 4.9 $U(\mathbf{g})$ is an afine operator in each coordinate $g_{i,k}^m$ of \mathbf{g} . This implies the formula for its partial derivative.

Moreover, the representations of the expected, estimated and real ultimate are a direct consequence of the definitions of U and \mathcal{F} .

Comparison with Chain-Ladder

Except for some additional summations (and the mixing parameters α_i^m) we have the same form like in the Chain-Ladder case:

$$\sum_{i=0}^{I} \sum_{k=0}^{J} \left(\widehat{S}_{i,k}^m - S_{i,k}^m \right) = \sum_{i=0}^{I} \left(\widehat{C}_{i,J} - C_{i,J} \right)$$
$$\approx \sum_{h=0}^{I} \sum_{j=I-i}^{J-1} \underbrace{\frac{\widehat{C}_{h,J}}{\widehat{f}_j}}_{=\partial_{h,j} U(\widehat{f}) \mathbf{S}^I} \left(F_{h,j} - \widehat{f}_j \right).$$

LSRM case:

$$\sum_{m=0}^{M} \sum_{i=0}^{I} \alpha_i^m \sum_{k=0}^{J} \left(\widehat{S}_{i,k}^m - S_{i,k}^m \right) \approx \sum_{l=0}^{M} \sum_{h=0}^{I} \sum_{j=I-h}^{J-1} \partial_{h,j}^l U\left(\widehat{\mathbf{f}}\right) \mathbf{S}^I \left(F_{h,j}^l - \widehat{f}_j^l \right).$$

The partial derivative of the ultimate is a bit simpler in the Chain-Ladder case, because if we set some development factor f_j to zero we get $U(\hat{\mathbf{f}}_j|_0) = 0$.

Preparation for the derivation of the ultimate uncertainty

Like in the Chain-Ladder case we need some expectations and covariances of \hat{f}_k^m and $F_{i,k}^m$:

$$\begin{split} \mathsf{E}\big[F_{i,k}^{m} \mid \mathcal{D}^{I}\big] &= \mathsf{E}\Big[\widehat{f}_{k}^{m} \mid \mathcal{D}_{k}\Big] = f_{k}^{m} \qquad i+k \geq I \\ \mathsf{Cov}\Big[F_{i,k}^{m_{1}}, F_{i,k}^{m_{2}} \mid \mathcal{D}^{I}\Big] &= \mathsf{E}\bigg[\frac{\sigma_{k}^{m_{1},m_{2}}R_{i,k}^{m_{1},m_{2}}}{R_{i,k}^{m_{1}}R_{i,k}^{m_{2}}} \mid \mathcal{D}^{I}\bigg] \approx \frac{\widehat{\sigma}_{k}^{m_{1},m_{2}}\widehat{R}_{i,k}^{m_{1},m_{2}}}{\widehat{R}_{i,k}^{m_{1}}\widehat{R}_{i,k}^{m_{2}}} \quad i+k \geq I \\ \mathsf{Cov}\Big[\widehat{f}_{k}^{m_{1}}, \widehat{f}_{k}^{m_{2}} \mid \mathcal{D}_{k}\Big] &= \sigma_{k}^{m_{1},m_{2}}\sum_{i=0}^{I-1-k} w_{i,k}^{m_{1}}w_{i,k}^{m_{2}}\frac{R_{i,k}^{m_{1},m_{2}}}{R_{i,k}^{m_{1}}R_{i,k}^{m_{2}}} \\ \mathsf{Cov}\Big[F_{i_{1},k_{1}}^{m_{1}}, F_{i_{2},k_{2}}^{m_{2}} \mid \mathcal{D}^{I}\Big] &= 0 \qquad (i_{1},k_{1}) \neq (i_{2},k_{2}) \\ \mathsf{Cov}\Big[\widehat{f}_{k_{1}}^{m_{1}}, \widehat{f}_{k_{2}}^{m_{2}} \mid \mathcal{D}_{k}\Big] &= 0 \qquad k_{1} < k_{2} \\ \mathsf{E}\Big[\Big(F_{i_{1},k_{1}}^{m_{1}} - \widehat{f}_{k_{1}}^{m_{1}}\Big)\Big(F_{i_{2},k_{2}}^{m_{2}} - \widehat{f}_{k_{2}}^{m_{2}}\Big) \mid \mathcal{D}^{I}\Big] \\ &= \mathsf{Cov}\Big[F_{i_{1},k_{1}}^{m_{1}}, F_{i_{2},k_{2}}^{m_{2}} \mid \mathcal{D}^{I}\Big] + \Big(\widehat{f}_{k_{1}}^{m_{1}} - f_{k_{1}}^{m_{1}}\Big)\Big(\widehat{f}_{k_{2}}^{m_{2}} - f_{k_{2}}^{m_{2}}\Big) \end{aligned}$$

Stochastic Reserving Linear-Stochastic-Reserving methods Ultimate uncertainty

$$\begin{split} & \text{Proposition for the denotion of the administration constrainty} \\ & \text{Let } is the Obstack crass are affered reconstrained and constraints of the denotion of the deno$$

$$\begin{split} & \mathsf{E}\Big[F_{i,k}^{m}\Big|\mathcal{D}^{I}\Big] = \mathsf{E}\Big[\mathsf{E}\Big[F_{i,k}^{m}\Big|\mathcal{D}_{k}^{i+k}\Big]\Big|\mathcal{D}^{I}\Big] = \mathsf{E}\Big[f_{k}^{m}\big|\mathcal{D}^{I}\Big] = \mathsf{f}_{k}^{m} = \mathsf{E}\Big[\widehat{f}_{k}^{m}\Big|\mathcal{D}_{k}\Big] \qquad \text{because } \widehat{f}_{k}^{m} \text{ is } \mathcal{D}_{k}\text{-unbiased} \\ & \mathsf{Cov}\Big[F_{i,k}^{m1}, F_{i,k}^{m2}\Big|\mathcal{D}^{I}\Big] = \mathsf{Cov}\Big[\mathsf{E}\Big[F_{i,k}^{m1}\Big|\mathcal{D}_{k}^{i+k}\Big], \mathsf{E}\Big[F_{i,k}^{m2}\Big|\mathcal{D}_{k}^{i+k}\Big]\Big|\mathcal{D}^{I}\Big] + \mathsf{E}\Big[\mathsf{Cov}\Big[F_{i,k}^{m1}, F_{i,k}^{m2}\Big|\mathcal{D}_{k}^{i+k}\Big]\Big|\mathcal{D}^{I}\Big] \\ & = \mathsf{Cov}\Big[f_{k}^{m1}, f_{k}^{m2}\Big|\mathcal{D}^{I}\Big] + \mathsf{E}\bigg[\frac{\sigma_{k}^{m1,m2}R_{i,k}^{m1,m2}}{R_{i,k}^{m1}R_{i,k}^{m2}}\Big|\mathcal{D}^{I}\bigg] = 0 + \mathsf{E}\bigg[\frac{\sigma_{k}^{m1,m2}R_{i,k}^{m1,m2}}{R_{i,k}^{m1}R_{i,k}^{m2}}\Big|\mathcal{D}^{I}\Big] \\ & = \mathsf{Cov}\Big[f_{k1}^{m1}, f_{k2}^{m2}\Big|\mathcal{D}_{k1}\Big] = \mathsf{Cov}\Big[\mathsf{E}\Big[\widehat{f}_{k1}^{m1}\Big|\mathcal{D}_{k2}\Big], \mathsf{E}\Big[\widehat{f}_{k2}^{m2}\Big|\mathcal{D}_{k2}\Big]\Big|\mathcal{D}_{k1}\Big] + \mathsf{E}\Big[\mathsf{Cov}\Big[\widehat{f}_{k1}^{m1}, \widehat{f}_{k2}^{m2}\Big|\mathcal{D}_{k2}\Big]\Big|\mathcal{D}_{k1}\Big] = 0 \\ & \mathsf{E}\Big[\Big(F_{i,k1}^{m1} - \widehat{f}_{k1}^{m1}\Big)\Big(F_{i,k2}^{m2} - \widehat{f}_{k2}^{m2}\Big)\Big|\mathcal{D}^{I}\Big] \\ & = \mathsf{E}\Big[\Big(\big(F_{i,k1}^{m1} - f_{k1}^{m1}\big)\Big)\Big(F_{i,k2}^{m2} - f_{k2}^{m2}\Big)\Big|\mathcal{D}^{I}\Big] \\ & = \mathsf{E}\Big[\Big(\big(F_{i,k1}^{m1} - f_{k1}^{m1}\big)\Big)\Big(F_{i,k2}^{m2} - f_{k2}^{m2}\Big)\Big|\mathcal{D}^{I}\Big] - \mathsf{E}\Big[\Big(\widehat{f}_{k1}^{m1} - f_{k1}^{m1}\Big)\Big(\widehat{f}_{i,k2}^{m2} - f_{k2}^{m2}\Big)\Big|\mathcal{D}^{I}\Big] \\ & - \mathsf{E}\Big[\Big(\widehat{f}_{k1}^{m1} - f_{k1}^{m1}\Big)\Big(F_{i,k2}^{m2} - f_{k2}^{m2}\Big)\Big|\mathcal{D}^{I}\Big] + \mathsf{E}\Big[\Big(\widehat{f}_{k1}^{m1} - f_{k1}^{m1}\Big)\Big(\widehat{f}_{k2}^{m2} - f_{k2}^{m2}\Big)\Big|\mathcal{D}^{I}\Big] \\ & - \mathsf{E}\Big[\Big(\widehat{f}_{k1}^{m1} - f_{k1}^{m1}\Big)\Big(F_{i,k2}^{m2} - f_{k2}^{m2}\Big)\Big|\mathcal{D}^{I}\Big] + \mathsf{E}\Big[\Big(\widehat{f}_{k1}^{m1} - f_{k1}^{m1}\Big)\Big(\widehat{f}_{k2}^{m2} - f_{k2}^{m2}\Big)\Big|\mathcal{D}^{I}\Big] \\ & - \mathsf{E}\Big[\Big(\widehat{f}_{k1}^{m1} - f_{k1}^{m1}\Big)\Big(F_{i,k2}^{m2} - f_{k2}^{m2}\Big)\Big|\mathcal{D}^{I}\Big] + \mathsf{E}\Big[\Big(\widehat{f}_{k1}^{m1} - f_{k1}^{m1}\Big)\Big(\widehat{f}_{k2}^{m2} - f_{k2}^{m2}\Big)\Big|\mathcal{D}^{I}\Big] \\ & = \mathsf{Cov}\Big[F_{i,k1}^{m1}, F_{i,k2}^{m2}\Big|\mathcal{D}^{I}\Big] - 0 - 0 + \Big(\widehat{f}_{k1}^{m1} - f_{k1}^{m1}\Big)\Big(\widehat{f}_{k2}^{m2} - f_{k2}^{m2}\Big)\Big|\mathcal{D}^{I}\Big] \\ & = \mathsf{Cov}\Big[F_{i,k1}^{m1}, F_{i,k2}^{m2}\Big|\mathcal{D}^{I}\Big] - 0 - 0 + \Big(\widehat{f}_{k1}^{m1} - f_{k1}^{m1}\Big)\Big(\widehat{f}_{k2}^{m2} - f_{k2}^{m2}\Big)\Big|\mathcal{D}^{I}\Big] \\ & =$$

$$\begin{split} & \text{If } i_1 + k_1 < I \text{ or } i_2 + k_2 < I \text{ then } F_{i_1,k_1}^{m_1} \in \mathcal{D}^I \text{ or } F_{i_2,k_2}^{m_2} \in \mathcal{D}^I \text{ and we are done. Otherwise, since} \\ & (i_1,k_1) \neq (i_2,k_2), \text{ either } F_{i_1,k_1}^{m_1} \in \mathcal{D}_{k_2}^{i_2+k_2} \text{ or } F_{i_2,k_2}^{m_2} \in \mathcal{D}_{k_1}^{i_1+k_1}. \text{ Lets assume the first:} \\ & \text{Cov}\Big[F_{i,k_1}^{m_1},F_{i,k_2}^{m_2} \middle| \mathcal{D}^I\Big] = \mathsf{E}\Big[\text{Cov}\Big[F_{i,k_1}^{m_1},F_{i,k_2}^{m_2} \middle| \mathcal{D}_{k_2}^I\Big] \Big| \mathcal{D}^I\Big] + \text{Cov}\Big[\mathsf{E}\Big[F_{i,k_1}^{m_1} \middle| \mathcal{D}_{k_2}^I\Big],\mathsf{E}\Big[F_{i,k_2}^{m_2} \middle| \mathcal{D}_{k_2}^I\Big] \Big| \mathcal{D}^I\Big] \\ & = 0 + \mathsf{Cov}\Big[F_{i,k_1}^{m_1},f_{k_2}^{m_2} \middle| \mathcal{D}^I\Big] = 0 \end{split}$$

Estimator 4.16 (Linear approximation of the ultimate uncertainty)

$$\begin{split} \mathrm{mse}_{\mathcal{D}^{I}}\left[U(\widehat{\mathbf{f}})\mathbf{S}^{I}\right] &= \mathsf{E}\left[\left(\sum_{m=0}^{M}\sum_{i=0}^{I}\alpha_{i}^{m}\sum_{k=0}^{J}\left(\widehat{S}_{i,k}^{m}-S_{i,k}^{m}\right)\right)^{2}\middle|\mathcal{D}^{I}\right] = \mathsf{E}\left[U(\mathbf{F})\mathbf{S}^{I}-U(\widehat{\mathbf{f}})\mathbf{S}^{I}\middle|\mathcal{D}^{I}\right] \\ &\approx \mathsf{E}\left[\left(\sum_{l=0}^{M}\sum_{h=0}^{I}\sum_{j=l-h}^{J-1}\partial_{h,j}^{l}U(\widehat{\mathbf{f}})\mathbf{S}^{I}\left(F_{h,j}^{l}-\widehat{f}_{j}^{l}\right)\right)^{2}\middle|\mathcal{D}^{I}\right] \qquad (\text{Taylor approximation}) \\ &\approx \sum_{l_{1},l_{2}=0}^{M}\sum_{j=1}^{J-1}\sum_{h_{1}=I-j_{1}}^{I}\sum_{h_{2}=I-j_{2}}^{I}\partial_{h_{1,j}1}^{l_{1}}U(\widehat{\mathbf{f}})\mathbf{S}^{I}\partial_{h_{2,j}2}^{l_{2}}U(\widehat{\mathbf{f}})\mathbf{S}^{I} \\ &\left(\underbrace{\mathsf{Cov}\left[F_{h_{1,j_{1}}}^{l_{1}},F_{h_{2,j_{2}}}^{l_{2}}\middle|\mathcal{D}^{I}\right]}_{\mathsf{random error}} +\underbrace{\mathsf{Cov}\left[\widehat{f}_{j_{1}}^{l_{1}},\widehat{f}_{j_{2}}^{l_{2}}\middle|\mathcal{D}_{j_{1}\wedge j_{2}}\right]}_{\mathsf{parameter error}}\right) \\ &\approx \sum_{l_{1,l_{2}=0}}^{M}\sum_{j=0}^{J-1}\sum_{h=I-j}^{I}\partial_{h,j}^{l_{1}}U(\widehat{\mathbf{f}})\mathbf{S}^{I}\partial_{h_{2}j}^{l_{2}}U(\widehat{\mathbf{f}})\mathbf{S}^{I}\widehat{\sigma}_{j}^{l_{1,l_{2}}}\frac{\widehat{R}_{h,j}^{l_{1}}}{\widehat{R}_{h,j}^{l_{1}}\widehat{R}_{h,j}^{l_{2}}} \\ &+\underbrace{\sum_{l_{1,l_{2}=0}}^{M}\sum_{j=0}^{J-1}\sum_{h_{1},h_{2}=I-j}^{I}\partial_{h_{1,j}}^{l_{1}}U(\widehat{\mathbf{f}})\mathbf{S}^{I}\partial_{h_{2}j}^{l_{2}}U(\widehat{\mathbf{f}})\mathbf{S}^{I}\widehat{\sigma}_{j}^{l_{1,l_{2}}}\frac{\widehat{R}_{h,j}^{l_{1}}}{\widehat{R}_{h,j}^{l_{1}}\widehat{R}_{h,j}^{l_{2}}} \\ &+\underbrace{\sum_{l_{1,l_{2}=0}}^{M}\sum_{j=0}^{J-1}\sum_{h_{1},h_{2}=I-j}^{I}\partial_{h_{1,j}}^{l_{1}}U(\widehat{\mathbf{f}})\mathbf{S}^{I}\partial_{h_{2}j}^{l_{2}}U(\widehat{\mathbf{f}})\mathbf{S}^{I}\widehat{\sigma}_{j}^{l_{1,l_{2}}}\sum_{h=0}^{I-j-1}w_{h,j}^{l_{1}}w_{h,j}^{l_{2}}\frac{\widehat{R}_{h,j}^{l_{1}}l_{2}}{\widehat{R}_{h,j}^{l_{1}}\widehat{R}_{h,j}^{l_{2}}}. \end{aligned}$$

(5/7)

In the second approximation we used

$$\begin{split} \mathsf{E}\Big[\Big(F_{h_{1},j_{1}}^{l_{1}} - \hat{f}_{j_{1}}^{l_{1}}\Big) \left(F_{h_{2},j_{2}}^{l_{2}} - \hat{f}_{j_{2}}^{l_{2}}\Big) \Big| \mathcal{D}^{I} \Big] &= \mathsf{Cov}\Big[F_{h_{1},j_{1}}^{l_{1}}, F_{h_{2},j_{2}}^{l_{2}}\Big| \mathcal{D}^{I} \Big] + \Big(\hat{f}_{j_{1}}^{l_{1}} - f_{j_{1}}^{l_{1}}\Big) \Big(\hat{f}_{j_{2}}^{l_{1}} - f_{j_{2}}^{l_{2}}\Big) \\ &\approx \mathsf{Cov}\Big[F_{h_{1},j_{1}}^{l_{1}}, F_{h_{2},j_{2}}^{l_{2}}\Big| \mathcal{D}^{I} \Big] + \mathsf{Cov}\Big[\hat{f}_{j_{1}}^{l_{1}}, \hat{f}_{j_{2}}^{l_{2}}\Big| \mathcal{D}_{j_{1}\wedge j_{2}}\Big] \end{split}$$

and from the preparations above we know

$$\begin{split} & \operatorname{Cov} \Big[F_{h_1,j_1}^{l_1}, F_{h_2,j_2}^{l_2} \Big| \mathcal{D}^I \Big] \approx \mathbf{1}_{j_1 = j_2} \mathbf{1}_{h_1 = h_2} \widehat{\sigma}_{j_1}^{l_1,l_2} \frac{\widehat{R}_{h_1,j_1}^{l_1,l_2}}{\widehat{R}_{h_1,j_1}^{l_1} \widehat{R}_{h_2,j_2}^{l_2}} \\ & \operatorname{Cov} \Big[\widehat{f}_{j_1}^{l_1}, \widehat{f}_{j_2}^{l_2} \Big| \mathcal{D}_{j_1 \wedge j_2} \Big] \approx \mathbf{1}_{j_1 = j_2} \widehat{\sigma}_{j_1}^{l_1,l_2} \sum_{h=0}^{I-j_1-1} w_{h,j_1}^{l_1} w_{h,j_2}^{l_2} \frac{\widehat{R}_{h,j_1}^{l_1,l_2}}{\widehat{R}_{h,j_1}^{l_1} \widehat{R}_{h,j_2}^{l_2}}. \end{split}$$

This leads directly to the stated estimator.

(6/7)

Chain-Ladder estimator for the ultimate uncertainty

$$\mathsf{mse}_{\mathcal{D}^{I}}\Big[\widehat{C}_{i,J}\Big] \approx \sum_{k=0}^{J-1} \frac{\widehat{\sigma}_{k}^{2}}{\widehat{f}_{k}^{2}} \sum_{i=I-k}^{I} \widehat{C}_{i,J}^{2} \frac{1}{\widehat{C}_{i,k}} + \sum_{k=0}^{J-1} \frac{\widehat{\sigma}_{k}^{2}}{\widehat{f}_{k}^{2}} \left(\sum_{i=I-k}^{I} \widehat{C}_{i,J}\right)^{2} \sum_{h=0}^{I-k-1} \frac{w_{h,k}^{2}}{C_{h,k}}$$

LSRM estimator for the ultimate uncertainty

$$\begin{split} \mathsf{mse}_{\mathcal{D}^{I}} \Big[U(\widehat{\mathbf{f}}) \mathbf{S}^{I} \Big] \\ &\approx \sum_{l_{1}, l_{2}=0}^{M} \sum_{j=0}^{J-1} \sum_{h=I-j}^{I} \partial_{h,j}^{l_{1}} U(\widehat{\mathbf{f}}) \mathbf{S}^{I} \partial_{h,j}^{l_{2}} U(\widehat{\mathbf{f}}) \mathbf{S}^{I} \widehat{\sigma}_{j}^{l_{1},l_{2}} \ \frac{\widehat{R}_{h,j}^{l_{1},l_{2}}}{\widehat{R}_{h,j}^{l_{1}} \widehat{R}_{h,j}^{l_{2}}} \\ &+ \sum_{l_{1}, l_{2}=0}^{M} \sum_{j=0}^{J-1} \sum_{h_{1}, h_{2}=I-j}^{I} \partial_{h_{1},j}^{l_{1}} U(\widehat{\mathbf{f}}) \mathbf{S}^{I} \partial_{h_{2},j}^{l_{2}} U(\widehat{\mathbf{f}}) \mathbf{S}^{I} \widehat{\sigma}_{j}^{l_{1},l_{2}} \sum_{h=0}^{I-j-1} w_{h,j}^{l_{1}} w_{h,j}^{l_{2}} \frac{\widehat{R}_{h,j}^{l_{1},l_{2}}}{\widehat{R}_{h,j}^{l_{1}} \widehat{R}_{h,j}^{l_{2}}} \end{split}$$

©R. Dahms (ETH Zurich, Spring 2021)

Because we have several claim properties, squared terms for Chain-Ladder are replaced by products of claim properties and the corresponding double sum.

Change of the variance exposures in Chain-Ladder

The Chain-Ladder method assumes variances to be proportional to the cumulative payments, i.e.

$$\operatorname{Var}\left[C_{i,k+1} \middle| \mathcal{D}_k^{i+k}\right] = \sigma_k^2 C_{i,k},$$

which leads to vanishing coefficient of variation of (ultimate) uncertainties with increasing volume, see Corollary 2.10. This is one of many arguments against Chain-Ladder. One way to solve this is to change the variance exposure, for instance to $C_{i,k}^2$. Then we get

$$\begin{split} \left(\widehat{\mathsf{VaC}}\left(\sum_{i=0}^{I} C_{i,J}\right)\right)^2 \approx & \frac{\sum_{i=0}^{I} \widehat{C}_{i,J}^2}{\left(\sum_{i=0}^{I} \widehat{C}_{i,J}\right)^2} \sum_{k=I-i}^{J-1} \frac{\widehat{\sigma}_k^2}{\widehat{f}_k^2} \\ &+ \sum_{k=0}^{J-1} \frac{\widehat{\sigma}_k^2}{\widehat{f}_k^2} \frac{\left(\sum_{i=I-k}^{I} \widehat{C}_{i,J}\right)^2 \sum_{h=0}^{I-k-1} w_{i,k}^2}{\left(\sum_{i=0}^{I} \widehat{C}_{i,J}\right)^2}, \end{split}$$

which does not decrease with increasing volume. Nevertheless, you should always add some **model error**.

©R. Dahms (ETH Zurich, Spring 2021)

In practice, the choice of the variance exposure does not matter so much, because the estimation of the variance parameters σ_k^2 will change, too, which compensates some effects.

Estimator 4.17 (of covariance parameter $\sigma_k^{m_1,m_2}$)

If the normalizing constant

$$Z_k^{m_1,m_2} := \sum_{i=0}^{I-1-k} \frac{w_{i,k}^{m_1} w_{i,k}^{m_2}}{R_{i,k}^{m_1} R_{i,k}^{m_2}} \left(1 - w_{i,k}^{m_1} - w_{i,k}^{m_2} + R_{i,k}^{m_1,m_2} \sum_{h=0}^{I-1-k} \frac{w_{h,k}^{m_1} w_{h,k}^{m_2}}{R_{h,k}^{m_1,m_2}} \right) > 0$$

then the covariance parameter $\sigma_k^{m_1,m_2}$ can be estimated by the following \mathcal{D}_k -unbiased estimator $1 \qquad I^{-1-k} w^{m_1} w^{m_2} \left(S^{m_1} \dots S^{m_1} \right) \left(S^{m_2} \dots S^{m_2} \right)$

$$\widehat{\sigma}_{k}^{m_{1},m_{2}} := \frac{1}{Z_{k}^{m_{1},m_{2}}} \sum_{i=0}^{k-1} \frac{w_{i,k}^{i} w_{i,k}^{i}}{R_{i,k}^{m_{1},m_{2}}} \left(\frac{S_{i,k+1}}{R_{i,k}^{m_{1}}} - \widehat{f}_{k}^{m_{1}}\right) \left(\frac{S_{i,k+1}}{R_{i,k}^{m_{2}}} - \widehat{f}_{k}^{m_{2}}\right)$$

For $Z_k^{m_1,m_2} = 0$ and in particular for k = I - 1 one could take the following extrapolations, $(c_{i}^{m,m_1})^2$

$$\widehat{\sigma}_{k}^{m,m} := \min\left(\frac{(\sigma_{k-1}^{m,m})^{2}}{\widehat{\sigma}_{k-2}^{m,m}}, \widehat{\sigma}_{k-2}^{m,m}, \widehat{\sigma}_{k-1}^{m,m}\right),$$

$$\widehat{\sigma}_{k}^{m_{1},m_{2}} := \widehat{\sigma}_{k-1}^{m_{1},m_{2}} \left(\frac{\widehat{\sigma}_{k}^{m_{1},m_{1}} \widehat{\sigma}_{k}^{m_{2},m_{2}}}{\widehat{\sigma}_{k-1}^{m_{1},m_{1}} \widehat{\sigma}_{k-1}^{m_{2},m_{2}}}\right)^{\frac{1}{2}}, \quad \text{for } m_{1} \neq m_{2}.$$

$$\begin{split} & \text{Dimits the starting parameters $p_{i}^{-m}(m) \\ & H^{-m}(m) \leq \frac{1}{m} \sum_{i=1}^{m} \frac{Q_{i}^{-1}Q_{i}^{-1}}{Q_{i}^{-1}} \sum_{i=1}^{m} \frac{Q_{i}^{-1}Q_{i}^{-1}}{Q_{i}^{-1}} \sum_{i=1}^{m} \frac{Q_{i}^{-1}Q_{i}^{-1}}{Q_{i}^{-1}Q_{i}^{-1}} \sum_{i=1}^{m} \frac{Q_{i}^{-1}Q_{i}^{-1}}{Q_{i}^{-1}Q_{i}^{-1}Q_{i}^{-1}} \sum_{i=1}^{m} \frac{Q_{i}^{-1}Q_{i}^{-1}}{Q_{i}^{-1}Q_{i}^{-1}Q_{i}^{-1}} \sum_{i=1}^{m} \frac{Q_{i}^{-1}Q_{i}^{-1}}{Q_{i}^{-1}Q_{i}^{-1}Q_{i}^{-1}} \sum_{i=1}^{m} \frac{Q_{i}^{-1}Q_{i}^{-1}}{Q_{i}^{-1}Q_{i}^{-1}Q_{i}^{-1}} \sum_{i=1}^{m} \frac{Q_{i}^{-1}Q_{i}^{-1}}{Q_{i}^{-1}Q_{i}^{-1}Q_{i}^{-1}} \sum_{i=1}^{m} \frac{Q_{i}^{-1}Q_{i}^{-1}}{Q_{i}^{-1}Q_{i}^{-1}Q_{i}^{-1}} \sum_{i=1}^{m} \frac{Q_{i}^{-1}Q_{i}^{-1}}{Q_{i}^{-1}Q_{i}^{-1}Q_{i}^{-1}}} \sum_{i=1}^{m} \frac{Q_{i}^{-1}Q_{i}^{-1}Q_{i}^{-1}}{Q_{i}^{-1}Q_{i}^{-1}Q_{i}^{-1}} \sum_{i=1}^{m} \frac{Q_{i}^{-1}Q_{i}^{-1}Q_{i}^{-1}}{Q_{i}^{-1}Q_{i}^{-1}Q_{i}^{-1}Q_{i}^{-1}} \sum_{i=1}^{m} \frac{Q_{i}^{-1}Q_{i}^{-1}Q_{i}^{-1}}{Q_{i}^{-1}Q_{i}^{-1}Q_{i}^{-1}}} \sum_{i=1}^{m} \frac{Q_{i}^{-1}Q_{i}^{-1}Q_{i}^{-1}}{Q_{i}^{-1}Q_{i}^{-1}Q_{i}^{-1}}} \sum_{i=1}^{m} \frac{Q_{i}^{-1}Q_{i}^{-1}Q_{i}^{-1}Q_{i}^{-1}}{Q_{i}^{-1}Q_{i}^{-1}Q_{i}^{-1}}} \sum_{i=1}^{m} \frac{Q_{i}^{-1}Q_{i}^{-1}Q_{i}^{-1}}{Q_{i}^{-1}Q_{i}^{-1}Q_{i}^{-1}}} \sum_{i=1}^{m} \frac{Q_{i}^{-1}Q_{i}^{-1}Q_{i}^{-1}Q_{i}^{-1}}{Q_{i}^{-1}Q_{i}^{-1}Q_{i}^{-1}}} \sum_{i=1}^{m} \frac{Q_{i}^{-1}Q_{i}^{-1}Q_{i}^{-1}}{Q_{i}^{-1}Q_{i}^{-1}Q_{i}^{-1}}} \sum_{i=1}^{m} \frac{Q_{i}^{-1}Q_{i}^{-1}Q_{i}^{-1}}{Q_{i}^{-1}Q_{i}^{-1}}} \sum_{i=1}^{m} \frac{Q_{i}^{-1}Q_{i}^{-1}Q_{i}^{-1}}{Q_{i}^{-1}Q_{i}^{-1}}} \sum_{i=1}^{m} \frac{Q_{i}^{-1}Q_{i}^{-1}Q_{i}^{-1}}{Q_{i}^{-1}Q_{i}^{-1}}} \sum_{i=1}^{m} \frac{Q_{i}^{-1}Q_{i}^{-1}Q_{i}^{-1}}{Q_{i}^{-1}Q_{i}^{-$$$

$$\mathbf{E}\left[\left(\frac{S_{i,k+1}^{m_1}}{R_{i,k}^{m_1}} - \hat{f}_k^{m_1}\right) \left(\frac{S_{i,k+1}^{m_2}}{R_{i,k}^{m_2}} - \hat{f}_k^{m_2}\right) \middle| \mathcal{D}_k\right] = \underbrace{\mathbf{Cov}\left[\left(\frac{S_{i,k+1}^{m_1}}{R_{i,k}^{m_1}} - \hat{f}_k^{m_1}\right), \left(\frac{S_{i,k+1}^{m_2}}{R_{i,k}^{m_2}} - \hat{f}_k^{m_2}\right) \middle| \mathcal{D}_k\right]}_{\mathbf{Cov}}$$

$$\begin{split} &= \operatorname{Cov}\left[\frac{S_{i,k+1}^{m_1}}{R_{i,k}^{m_1}}, \frac{S_{i,k+1}^{m_2}}{R_{i,k}^{m_2}} \middle| \mathcal{D}_k\right] - \sum_{h=0}^{I-k-1} \operatorname{Cov}\left[w_{h,k}^m \frac{S_{h,k+1}^m}{R_{h,k}^m}, \frac{S_{i,k+1}^m}{R_{i,k}^m} \middle| \mathcal{D}_k\right] \\ &- \sum_{h=0}^{I-k-1} \operatorname{Cov}\left[\frac{S_{i,k+1}^m}{R_{i,k}^m}, w_{h,k}^m \frac{S_{h,k+1}^m}{R_{h,k}^m} \middle| \mathcal{D}_k\right] + \sum_{h_1,h_2=0}^{I-k-1} \operatorname{Cov}\left[w_{h_1,k}^m \frac{S_{h_1,k+1}^m}{R_{h_1,k}^m}, w_{h_2,k}^m \frac{S_{h_2,k+1}^m}{R_{h_2,k}^m} \middle| \mathcal{D}_k\right] \\ &= \sigma_k^{m_1,m_2} \frac{R_{i,k}^m}{R_{i,k}^m} R_{i,k}^m} \left(1 - w_{i,k}^m - w_{i,k}^m + \frac{R_{i,k}^m R_{i,k}^m}{R_{i,m}^m} \frac{I^{-k-1}}{R_{h_2,k}^m} \frac{w_{h,k}^m w_{h,k}^m R_{h,k}^m}{R_{h,k}^m} \right) \end{split}$$

$$\Longrightarrow \mathsf{E}\Big[\hat{\boldsymbol{\sigma}}_{k}^{m_{1},m_{2}}\Big|\mathcal{D}_{k}\Big] = \frac{\boldsymbol{\sigma}_{k}^{m_{1},m_{2}}}{\boldsymbol{Z}_{k}^{m_{1},m_{2}}} \sum_{i=0}^{I-1-k} \frac{\boldsymbol{w}_{i,k}^{m_{1}} \boldsymbol{w}_{i,k}^{m_{2}}}{\boldsymbol{R}_{i,k}^{m_{1}} \boldsymbol{R}_{i,k}^{m_{2}}} \left(1 - \boldsymbol{w}_{i,k}^{m_{1}} - \boldsymbol{w}_{i,k}^{m_{2}} + \frac{\boldsymbol{R}_{i,k}^{m_{1}} \boldsymbol{R}_{i,k}^{m_{2}}}{\boldsymbol{R}_{i,k}^{m_{1},m_{2}}} \sum_{h=0}^{I-k-1} \frac{\boldsymbol{w}_{h,k}^{m_{1}} \boldsymbol{w}_{h,k}^{m_{2}} \boldsymbol{R}_{h,k}^{m_{1},m_{2}}}{\boldsymbol{R}_{h,k}^{m_{1}} \boldsymbol{R}_{h,k}^{m_{2}}} \right)$$

change order of summation in the fourth term

:)LSRM and Estimator 4.7

$$= \sigma_k^{m_1,m_2}$$

Remark 4.18 (estimation of the covariance parameter $\sigma_k^{m_1,m_2}$)

- Even if the real covariance parameter $\sigma_k^{m_1,m_2}$ lead to positive semi-defined covariance matrices

$$\left(\sigma_{k}^{m_{1},m_{2}}R_{i,k}^{m_{1},m_{2}}\right)_{0\leq m_{1},m_{2}\leq M}$$

the estimated values may not. In particular this may be the case if one eigenvalue of the real covariance matrix is (almost) equal to zero. Therefore, we always have to check the positive semi-definiteness of the estimated covariance matrices.

- The first part of the extrapolation goes back to Mack [22]. Roughly spoken it assumes that the variance parameter decay exponentially for later development periods.
- Depending on the data we may get better estimators if we introduce weights or use other extrapolations.

Stochastic Reserving

2021-04-26

- -Linear-Stochastic-Reserving methods
 - Ultimate uncertainty

+ Even if the real covariance parameter $\sigma_k^{m_1,m_2}$ lead to positive semi-defined covariance matrices

 $\left(\sigma_{k}^{m_{1},m_{2}}R_{i,k}^{m_{1},m_{2}}\right)_{0\leq m_{1},m_{2}\leq M}$

- the estimated values may not. In particular this may be the case if one eigenvalue of the real covariance matrix is (almost) equal to zero. Therefore, we always have to check the positive semi-definiteness of the estimated covariance matrices.
- The first part of the extrapolation goes back to Mack [22]. Roughly spoken it assumes that the variance parameter decay exponentially for later development periods.
- Depending on the data we may get better estimators if we introduce weights or use other extrapolations.
Swiss mandatory accident portfolio: part 2 of 3, see Example 4.13

We have four claim properties with exposures

$$\begin{split} \mathsf{ME:} \ \ & R_{i,k}^0 = R_{i,k}^{0,0} = \sum_{j=0}^k S_{i,j}^0 \\ \mathsf{IW:} \ \ & R_{i,k}^1 = R_{i,k}^{1,1} = \sum_{j=0}^k \left(\kappa^{j+1}S_{i,j}^3 + (1-\kappa^{j+1})S_{i,j}^1\right) \\ \mathsf{Sub:} \ \ & R_{i,k}^2 = R_{i,k}^{2,2} = \sum_{j=0}^k \left(S_{i,j}^0 + S_{i,j}^1 + S_{i,j}^2\right) \\ \mathsf{Salary:} \ \ & S_{i,0}^3 = P_i, \ S_{i,j}^3 = 0, \ \text{for} \ j > 0, \ \text{and} \\ & R_{i,k}^3 = R_{i,k}^{3,0} = R_{i,k}^{0,3} = R_{i,k}^{3,1} = R_{i,k}^{1,3} = R_{i,k}^{3,2} = R_{i,k}^{2,3} = R_{i,k}^{3,3} = 0 \end{split}$$

For the not yet defined exposures we take the total payments up to now, i.e. $R_{i,k}^{0,1} = R_{i,k}^{1,0} = R_{i,k}^{2,0} = R_{i,k}^{1,2} = R_{i,k}^{2,1} = \sum_{j=0}^{k} \left(S_{i,j}^{0} + S_{i,j}^{1} + S_{i,j}^{2} \right).$

Resulting ultimate uncertainty

- The estimated ultimate uncertainty varies much less then the Best Estimate reserves (5 % vs. 11 %).
- Although the estimated ultimate uncertainty is minimal for $\kappa \approx 0.3$ you should never use this as criteria to chose the reserving method. For this portfolio, I would go for $\kappa = 1$ (at least for the first development periods).
- For $\kappa = 0$ the ultimate uncertainty is slightly smaller than CLM on total payments (green circle on the left).

(1/3)

Stochastic Reserving

2021-04-26

- -Linear-Stochastic-Reserving methods
 - Ultimate uncertainty

We have four claim properties with exposures ME: $R_{i,k}^0 = R_{i,k}^{0,0} = \sum_{j=0}^{k} S_{i,j}^0$ Solary: $S_{i,0}^{1,0} = P_{ic} S_{i,j}^{2} = 0$, for j > 0, and $R_{i,4}^{1,0} = R_{i,4}^{1,0} = R_{i,4}^{1,3} = R_{i,4}^{1,3} = R_{i,4}^{1,3} = R_{i,4}^{2,3} = R_{i,4}^{2,3} = 0$ For the not yet defined exposures we take the total payments up to now, i.e. $R_{i,k}^{0,1} = R_{i,k}^{1,0} = R_{i,k}^{0,2} = R_{i,k}^{2,0} = R_{i,k}^{1,2} = R_{i,k}^{2,1} = \sum_{j=0}^{0} \left(S_{i,j}^{0} + S_{i,j}^{1} + S_{i,j}^{2} \right)$. The estimated ultimate uncertainty varies much less then the Best Estimate reserves. (5% vs. 11%). Although the estimated ultimate uncertainty is minimal for x ro 0.3 you should never use this as criteria to chose the reserving method. For this portfolio, I would go for $\kappa=1$ (at least for the first development periods). . For $\kappa=0$ the ultimate uncertainty is slightly smaller than CLM on total payments (green circle on the left).

Example 4.13: Ultimate uncertainty in dependence of κ

We always show the square root of uncertainties.

Even if it looks tempting you must not use the estimates of the ultimate uncertainty to evaluate which model is the best!

Example 4.19 (ECLRM vs. CLM: part 2 of 3, see Example 4.14)

In the first part we have compared the Best Estimate reserves. Now we want to look at the ultimate uncertainty.

For the weighing of uncertainties we define $R_{i,k}^{0,1} = R_{i,k}^{1,0}$ as arithmetic mean of payments and incurred losses.:

		CLM		ECLRM		
AP	payments	incurred	weighting	payments	incurred	weighting
0						
1	89423	2553	43873	194	14639	7695
2	234666	5186	109257	4557	5538	4825
3	255612	9264	114052	10569	12619	11170
4	261298	10874	112326	36825	38319	37335
5	323899	33243	128299	43971	44889	44284
6	274942	55884	100542	65091	65971	65477
7	373634	165086	187882	176720	176999	176835
8	492894	209163	249463	197790	197930	197841
9	468137	321566	292510	322922	323076	323017
Total	1517861	455802	676047	467964	472131	469518

Square root of the ultimate uncertainty	~			<i>c</i>		1	
	Sа	uare	root	ot	the	ultimate	uncertainty

$$\label{eq:second} \begin{split} & \text{Example 134}(ICMM + C.M.) and 2.4 A seconds 134(ICMM + C.M.) and 2.4 A second 134($$

• Taking the arithmetic mean

Linear-Stochastic-Reserving methods

Ultimate uncertaintv

Stochastic Reserving

2021-04-26

$$R_{i,k}^{m_1,m_2} := \frac{1}{2} \left(R_{i,k}^{m_1,m_1} + R_{i,k}^{m_2,m_2} \right)$$

for the coupling exposures works fine if $R_{i,k}^{m_1,m_1}$ and $R_{i,k}^{m_2,m_2}$ are similar. In general the geometric mean

$$R_{i,k}^{m_1,m_2} := \sqrt{R_{i,k}^{m_1,m_1} R_{i,k}^{m_2,m_2}}$$

usually works better.

- Although the Best Estimate reserves are similar, the ultimate uncertainties are not, in particular CLM on payments leads to a much higher ultimate uncertainty than the others.
- Again, you must not use estimates of the ultimate uncertainty to evaluate which model is the best.

Stochastic Reserving Lecture 8 (Continuation of Lecture 6) Linear-Stochastic-Reserving methods

René Dahms

ETH Zurich, Spring 2021

21 April 2021 (Last update: 26 April 2021) Stochastic Reserving

2021-04-26

Linear-Stochastic-Reserving methods

Ultimate uncertainty

Stochastic Reserving Lecture 8 (Continuation of Lecture 6) Linear-Stochastic-Reserving methods

René Dahms

ETH Zurich, Spring 2021

21 April 2021 (Last update: 26 April 2021)

4 Linear-Stochastic-Reserving methods

4.1 How do Linear-Stochastic-Reserving methods (LSRM) work

- 4.1.1 LSRM without stochastic
- 4.1.2 Stochastic behind LSRMs

4.2 Future development

- 4.2.1 Projection of the future development
- 4.2.2 Examples

4.3 Ultimate uncertainty

- 4.3.1 Mixing of claim properties
- 4.3.2 Ultimate uncertainty
- 4.3.3 Estimation of the covariance parameters
- 4.3.4 Examples

4.4 Solvency uncertainty

- 4.4.1 Estimation at time I + 1
- 4.4.2 Solvency uncertainty
- 4.4.3 Uncertainties of further CDR's

4.5 Examples

4.6 Estimation of correlation of reserving Risks

- 4.6.1 Avoiding correlation matrices for the reserving risks
- 4.6.2 Using LSRMs to estimate a correlation matrix

4.7 Literature

Stochastic Reserving

2021-04-26

Linear-Stochastic-Reserving methods

- -Ultimate uncertainty
 - -Lecture 8: Table of contents

4 Linear-Stochastic-Reserving methods

4.1 How do Unard Schutzerving (MUDODS 4.1 LSRM without machanic 4.1.1 LSRM without machanic 4.1.2 Stochastic bahind LSRMs 4.2 Future development 4.21 Projection of the future development 4.22 Examples 4.3 Ultimate uncertainty 4.14 Examples 4.4 Solvency uncertainty 4.4.1 Estimation at time *I* + 1 4.4.2 Solvency uncertainty 4.4.3 Uncertainties of further CDR's 64.3 Uncertainties of further CDR's 4.5 Examples 4.6 Estimation of correlation of reserving Risks 4.6 1 Avoiding correlation matrices for the reserving risks 4.6 2 Using LSRMs to estimate a correlation matrix 4.7 Ulterature

Consistent estimation over time

In this section we want to look at the solvency uncertainty, i.e. the uncertainty of the claims development result

$$\mathsf{CDR}_i^{I+1} := \sum_{m=0}^M \alpha_i^m \sum_{k=I-i}^{J-1} \left(\widehat{S}_{i,k+1}^{m,I} - \widehat{S}_{i,k+1}^{m,I+1} \right) \quad \text{and} \quad \mathsf{CDR}^{I+1} := \sum_{i=0}^I \mathsf{CDR}_i^{I+1},$$

where the additional upper index represents the time of estimation and α^m_i are $\mathcal{D}^I\text{-measurable real numbers.}$

In order to do so, the estimates have to be consistent. That means we do not change our (relative) believes into the old development periods and only put some credibility $w_{I-k:k}^{m,I+1}$ to the at time I+1 newly encountered development:

Assumption 4.B

There exist $\mathcal{D}^I \cap \mathcal{D}_k$ -measurable weights $0 \leq w_{I-k,k}^{m,I+1} \leq 1$ with

•
$$R_{I-k,k}^m = 0$$
 implies $w_{I-k,k}^{m,I+1} = 0$,
• $w_{i,k}^{m,I+1} = (1 - w_{I-k,k}^{m,I+1}) w_{i,k}^{m,I}$ for $0 \le i \le I - 1 - k$.

- We do not allow an estimation time dependence of the mixing weights.
- The variance minimizing weights, defined in Estimator 4.7, fulfil Assumption 4.B.

Lemma 4.20 (Estimation of development factors at time I + 1)

Let Assumptions 4.A and 4.B be fulfilled. Then the at time I+1 estimated development factors

$$\widehat{f}_{k}^{m,I+1} := \sum_{i=0}^{I-k} w_{i,k}^{m,I+1} \frac{S_{i,k+1}^{m}}{R_{i,k}^{m}} = (1 - w_{I-k,k}^{m,I+1}) \widehat{f}_{k}^{m,I} + w_{I-k,k}^{m,I+1} \frac{S_{I-k,k+1}^{m}}{R_{I-k,k}^{m}} \sum_{k=0}^{I-k} w_{I-k,k}^{m,I+1} \sum_{k=0}^{I-k}$$

satisfy:

1.
$$\mathsf{E}\Big[\widehat{f}_{k}^{m,I+1}\Big|\mathcal{D}^{I}\Big] = \mathsf{E}\Big[\widehat{f}_{k}^{m,I+1}\Big|\mathcal{D}_{k}^{I}\Big] = (1 - w_{I-k,k}^{m,I+1})\widehat{f}_{k}^{m,I} + w_{I-k,k}^{m,I+1}f_{k}^{m} =: \bar{f}_{k}^{m}$$
2. For every tuple $\widehat{f}_{k_{1}}^{m_{1},I+1}, \dots, \widehat{f}_{k_{r}}^{m_{r},I+1}$ with $k_{1} < k_{2} < \dots < k_{r}$ we get
$$\mathsf{E}\Big[\widehat{f}_{k_{1}}^{m_{1},I+1} \cdots \widehat{f}_{k_{r}}^{m_{r},I+1}\Big|\mathcal{D}^{I}\Big] = \mathsf{E}\Big[\widehat{f}_{k_{1}}^{m_{1},I+1} \cdots \widehat{f}_{k_{r}}^{m_{r},I+1}\Big|\mathcal{D}^{I}_{k_{1}}\Big] = \overline{f}_{k_{1}}^{m_{1}} \cdots \overline{f}_{k_{r}}^{m_{r}}$$

which implies that the estimators are pairwise \mathcal{D}^{I} -conditionally uncorrelated.

Remark 4.21

Because of part 1. of Lemma 4.20, we will use the estimates $\widehat{f}_k^m := \widehat{f}_k^{m,I}.$

©R. Dahms (ETH Zurich, Spring 2021)

$$\begin{split} & \text{Lamon 4.2}(2) \left(2 \log (\log n) \right) \text{ of } development Ratio at tom 1 - 1 \right) \\ & \text{Lamon 4.2}(2) \left(2 \log (\log n) \right) \text{ of } de \text{ bolds That to be one is 1 + 1 solvent development Ratio at the set of the set of$$

$$\begin{split} \mathsf{E}\Big[\widehat{f}_{k}^{m,I+1} \Big| \mathcal{D}^{I}\Big] &= \mathsf{E}\Big[\mathsf{E}\Big[\widehat{f}_{k}^{m,I+1} \Big| \mathcal{D}_{k}^{I}\Big] \Big| \mathcal{D}^{I}\Big] = (1 - w_{I-k,k}^{m,I+1})\widehat{f}_{k}^{m,I} + w_{I-k,k}^{m,I+1} \frac{\mathsf{E}\Big[\mathsf{E}\Big[S_{I-k,k+1}^{m}\Big| \mathcal{D}_{k}^{I}\Big] \Big| \mathcal{D}^{I}\Big]}{R_{I-k,k}^{m}} \\ &= (1 - w_{I-k,k}^{m,I+1})\widehat{f}_{k}^{m,I} + w_{I-k,k}^{m,I+1}f_{k}^{m} = \overline{f}_{k}^{m} \end{split}$$

$$\begin{split} \mathsf{E}\Big[\widehat{f}_{k_1}^{m_1,I+1}\cdots \widehat{f}_{k_r}^{m_r,I+1}\Big|\mathcal{D}^I\Big] &= \mathsf{E}\Big[\widehat{f}_{k_1}^{m_1,I+1}\cdots \widehat{f}_k^{m_r-1,I+1}\mathsf{E}\Big[\widehat{f}_{k_r}^{m_r,I+1}\Big|\mathcal{D}^I_{k_r}\Big]\Big|\mathcal{D}^I\Big] \\ &= \mathsf{E}\Big[\widehat{f}_{k_1}^{m_1,I+1}\cdots \widehat{f}_k^{m_{r-1},I+1}\overline{f}_{k_r}^{m_r}\Big|\mathcal{D}^I\Big] \\ &= \cdots = \overline{f}_{k_1}^{m_1}\cdots \overline{f}_{k_r}^{m_r} \end{split}$$

and similar for $\mathcal{D}^{I}_{k_{1}}$ instead of $\mathcal{D}^{I}.$

Lemma 4.22 (Best Estimate reserves)

Let Assumptions 4.A and 4.B be fulfilled. Then the at time I+1 estimated claim properties satisfy

$$\bar{S}_{i,k+1}^m := \mathsf{E}\Big[\widehat{S}_{i,k+1}^{m,I+1} \Big| \mathcal{D}^I\Big] = \mathcal{F}_{i,k}^{m,I+1}(\bar{\mathbf{f}}) \, \mathcal{F}^I(\mathbf{f}) \, \mathbf{S}^I.$$

Hence, we will use the estimates

$$\widehat{\mathsf{E}}\left[\widehat{S}_{i,k+1}^{m,I+1} \middle| \mathcal{D}^{I}\right] = \widehat{\bar{S}}_{i,k+1}^{m} \coloneqq \mathcal{F}_{i,k}^{m,I+1}\left(\widehat{\mathbf{f}}\right) \mathcal{F}^{I}\left(\widehat{\mathbf{f}}^{I}\right) \mathbf{S}^{I} = \mathcal{F}_{i,k}^{m,I}\left(\widehat{\mathbf{f}}^{I}\right) \mathbf{S}^{I},$$

which implies $\widehat{\mathsf{E}}[\mathsf{CDR}^{I+1}|\mathcal{D}^{I}] := 0$. That means, we have Best Estimate reserves.

Notation

As always we will use
$$\widehat{S}_{i,k}^{m,I+1}:=S_{i,k}^m$$
 for $i+k\leq I+1$ and

$$\widehat{R}^{m,I+1}_{i,k} := \Gamma^m_{i,k} \widehat{\mathbf{S}}^{i+k,I+1} \qquad \text{ and } \qquad \widehat{R}^{m_1,m_2,I+1}_{i,k} := \Gamma^{m_1,m_2}_{i,k} \widehat{\mathbf{S}}^{i+k,I+1}.$$

©R. Dahms (ETH Zurich, Spring 2021)

Stochastic Reserving Linear-Stochastic-Reserving methods

Е

At estimation time I + 1 we have

$$\widehat{\boldsymbol{\beta}}_{i,k+1}^{m,I+1} = \mathcal{F}_{i,k}^{m,I+1}\left(\widehat{\mathbf{f}}^{I+1}\right) \mathbf{S}^{I+1}$$

Induction: If $i + k \leq I$ then $\widehat{S}_{i,k+1}^{m,I+1} = S_{i,k+1}^m$ and therefore $\mathbf{E} \Big[\widehat{S}_{i,k+1}^{m,I+1} \Big| \mathcal{D}^I \Big] = \mathbf{E} \Big[S_{i,k+1}^m \Big| \mathcal{D}^I \Big] = \underbrace{f_k^m R_{i,k}^m}_{\mathbf{D} \mathbf{LSRM}} = \mathcal{F}_{i,k}^{m,I}(\mathbf{f}) \mathbf{S}^I.$

Now assume that Lemma 4.22 is fulfilled for all i + k < n. Then we get for i + k = n

$$\begin{split} \begin{bmatrix} \widehat{S}_{i,k+1}^{m,I+1} \middle| \mathcal{D}^I \end{bmatrix} &= \mathsf{E} \Big[\widehat{f}_k^{I+1} \widehat{R}_{i,k}^{m,I+1} \middle| \mathcal{D}^I \Big] \\ &= \mathsf{E} \Big[\mathsf{E} \Big[\widehat{f}_k^{I+1} \middle| \mathcal{D}_k^I \Big] \widehat{R}_{i,k}^{I+1} \middle| \mathcal{D}^I \Big] \\ &= \mathsf{E} \Big[\widehat{f}_k \widehat{R}_{i,k}^m \middle| \mathcal{D}^I \Big] \\ &= \mathcal{F}_{i,k}^{m,n}(\overline{\mathbf{f}}) \, \mathsf{E} \Big[\widehat{\mathbf{S}}^n \middle| \mathcal{D}^I \Big] \\ &= \mathcal{F}_{i,k}^{m,n}(\overline{\mathbf{f}}) \, \mathcal{F}^{n \leftarrow I+1}(\overline{\mathbf{f}}) \, \mathcal{F}^I(\mathbf{f}) \, \mathsf{S}^I \end{split}$$

induction hypothesis

$$= \mathcal{F}_{i,k}^{m,I+1}(\bar{\mathbf{f}}) \, \boldsymbol{\mathcal{F}}^{I}(\mathbf{f}) \, \mathbf{S}^{I}.$$

Note, a proof without induction can be done by a combination of the tower property, the multilinearity of $\mathcal{F}^{n}(\mathbf{f})$, see Lemma 4.9, and the product formula of Lemma 4.20.

Decomposition of the solvency uncertainty

$$\begin{split} \mathsf{mse}_{0|\mathcal{D}^{I}}\big[\mathsf{CDR}^{I+1}\big] = \underbrace{\mathsf{Var}\!\left[\sum_{m=0}^{M}\sum_{i=0}^{I}\sum_{k=I-i}^{J-1}\!\alpha_{i}^{m}\widehat{S}_{i,k+1}^{m,I+1}\middle|\mathcal{D}^{I}\right]}_{\mathsf{random error}} \\ + \underbrace{\left(\sum_{m=0}^{M}\sum_{i=0}^{I}\sum_{k=I-i}^{J-1}\!\alpha_{i}^{m}\left(\widehat{S}_{i,k+1}^{m,I} - \mathsf{E}\!\left[\widehat{S}_{i,k+1}^{m,I+1}\middle|\mathcal{D}^{I}\right]\right)\right)^{2}}_{\mathsf{parameter error}} \end{split}$$

The solvency uncertainty of a single accident period or a single claim property can be obtained by choosing corresponding mixing parameters α_i^m .

Stochastic Reserving

2021-04-26

- Linear-Stochastic-Reserving methods
 - Solvency uncertainty

Taylor approximation of next years estimates

Recall the (multi-linear) functional:

$$U(\mathbf{g})\mathbf{x} := \sum_{m=0}^{M} \sum_{i=0}^{I} \alpha_i^m \left(\sum_{k=0}^{I-i} x_{i,k}^m + \sum_{k=I-i}^{J-1} \mathcal{F}_{i,k}^{m,I}(\mathbf{g}) \mathbf{x} \right)$$

Then we have

$$\begin{split} U(\mathbf{f})\mathbf{S}^{I} &= \sum_{m=0}^{M} \sum_{i=0}^{I} \alpha_{i}^{m} \sum_{k=0}^{J} \mathsf{E}[S_{i,k}^{m} | \mathcal{D}^{I}], \\ U(\widehat{\mathbf{f}}^{I})\mathbf{S}^{I} &= \sum_{m=0}^{M} \sum_{i=0}^{I} \alpha_{i}^{m} \sum_{k=0}^{J} \widehat{S}_{i,k}^{m,I}, \qquad U(\mathbf{F}^{I+1})\mathbf{S}^{I} = \sum_{m=0}^{M} \sum_{i=0}^{I} \alpha_{i}^{m} \sum_{k=0}^{J} \widehat{S}_{i,k}^{m,I+1}, \\ \widehat{\mathsf{CDR}}^{I+1} &\approx \sum_{l=0}^{M} \sum_{h=0}^{I} \sum_{j=I-h}^{J-1} \partial_{h,j}^{l} U(\widehat{\mathbf{f}}^{I}) \mathbf{S}^{I} \left(F_{h,j}^{l,I+1} - \widehat{f}_{j}^{l,I}\right) \\ &= \sum_{l=0}^{M} \sum_{h=0}^{I} \partial_{h,I-h}^{l} U(\widehat{\mathbf{f}}^{I}) \left(F_{h,I-h}^{l} - \widehat{f}_{I-h}^{l,I}\right) + \sum_{l=0}^{M} \sum_{h=0}^{I} \sum_{j=I-h+1}^{J-1} \partial_{h,j}^{l} U(\widehat{\mathbf{f}}^{I}) w_{I-j,j}^{l,I+1} \left(F_{I-j,j}^{l} - \widehat{f}_{j}^{l,I}\right), \end{split}$$

where \mathbf{F}^{I+1} is the vector with coordinates

$$F_{i,k}^{m,I+1} := \left\{ \begin{array}{ll} F_{i,k}^m, & \text{for } i+k=I\\ \widehat{f}_k^{m,I+1}, & \text{for } i+k>I \end{array} \right.$$

©R. Dahms (ETH Zurich, Spring 2021)

For k = I - i we get, see Lemma 4.20,

$$F_{i,I-i}^{m,I+1} - \hat{f}_{I-i}^{m,I} = F_{i,I-i}^m - \hat{f}_{I-i}^{m,I}$$

and for k > I - i it is

$$\begin{split} F_{i,k}^{m,I+1} - \widehat{f}_k^{m,I} &= \widehat{f}_k^{m,I+1} - \widehat{f}_k^{m,I} = (1 - w_{I-k,k}^{m,I+1}) \widehat{f}_k^{m,I} + w_{I-k,k}^{m,I+1} F_{I-k,k}^m - \widehat{f}_k^{m,I} \\ &= w_{I-k,k}^{m,I+1} \left(F_{I-k,k}^m - \widehat{f}_k^{m,I} \right). \end{split}$$

Note, since

$$F_{i,I-i}^{m,I+1} = F_{i,I-i}^m = \frac{S_{i,I-i+1}^m}{R_{i,I-i}^m}$$

we get

$$\mathcal{F}_{i,I-i}^{m,I}\left(\mathbf{F}^{I+1}\right)\mathbf{S}^{I} = F_{i,I-i}^{m,I+1}R_{i,I-i}^{m} = S_{i,I-i+1}^{m}.$$

That means, the operator $U(\mathbf{F}^{I+1})$ (re)contructs in the first step the I + 1-th diagonal of the claim property triangles.

Linear approximation of the CDR

If we replace in the linear approximation of the ultimate, i.e. in

$$\sum_{m=0}^{M} \sum_{i=0}^{I} \alpha_i^m \sum_{k=0}^{J} \left(\widehat{S}_{i,k}^{m,I} - S_{i,k}^m \right) \approx \sum_{l=0}^{M} \sum_{h=0}^{I} \sum_{j=I-h}^{J-1} \partial_{h,j}^l U(\widehat{\mathbf{f}}) \mathbf{S}^I \left(F_{h,j}^l - \widehat{f}_j^{l,I} \right),$$

the term
$$\left(F_{h,j}^{l} - \widehat{f}_{j}^{l,I}\right)$$
 by
 $\widetilde{F}_{h,j}^{l,I} - \widetilde{\widehat{f}}_{h,j}^{l,I} := \begin{cases} F_{I-j,j}^{l} - \widehat{f}_{j}^{l,I}, & \text{for } j = I - h, \\ w_{I-j,j}^{l,I+1} \left(F_{I-j,j}^{l} - \widehat{f}_{j}^{l,I}\right), & \text{for } j > I - h, \end{cases}$

$$= \left(\mathbf{1}_{j=I-h} + \mathbf{1}_{j>I-h} w_{I-j,j}^{l,I+1}\right) \left(F_{I-j,j}^{l} - \widehat{f}_{j}^{l,I}\right).$$

we get the linear approximation of the CDR, i.e.

$$\begin{split} \widehat{\mathsf{CDR}}^{I+1} &\approx \sum_{l=0}^{M} \sum_{h=0}^{I} \partial_{h,I-h}^{l} U\!\left(\widehat{\mathbf{f}}^{I}\right) \!\left(F_{h,I-h}^{l} - \widehat{f}_{I-h}^{l,I}\right) \\ &+ \sum_{l=0}^{M} \sum_{h=0}^{I} \sum_{j=I-h+1}^{J-1} \partial_{h,j}^{l} U\!\left(\widehat{\mathbf{f}}^{I}\right) \! w_{I-j,j}^{l,I+1} \left(F_{I-j,j}^{l} - \widehat{f}_{j}^{l,I}\right). \end{split}$$

The term $\widetilde{F}_{h,j}^{l,I} - \widetilde{f}_{h,j}^{l,I}$ depends on the accident period h only via the indicator functions $\mathbf{1}_{j=I-h}$ and $\mathbf{1}_{j>I-h}$.

Estimator 4.23 (Solvency uncertainty of all accident periods)

$$\begin{split} \mathsf{mse}_{0|\mathcal{D}^{I}} \Big[\widehat{\mathsf{CDR}} \Big] &= \mathsf{E} \left[\sum_{m=0}^{M} \left(\sum_{i=0}^{I} \sum_{k=0}^{J-1} \left(\widehat{S}_{i,k}^{m,I+1} - \widehat{S}_{i,k}^{m,I} \right) \right)^{2} \middle| \mathcal{D}^{I} \right] \\ &\approx \mathsf{E} \left[\left(\sum_{l=0}^{M} \sum_{h=0}^{I} \sum_{j=I-h}^{J-1} \partial_{h,j}^{l} U(\widehat{\mathbf{f}}^{I}) \mathbf{S}^{I} \left(\widetilde{F}_{h,j}^{l,I} - \widetilde{f}_{h,j}^{l,I} \right) \right)^{2} \middle| \mathcal{D}^{I} \right] \\ &\approx \sum_{l_{1},l_{2}=0}^{M} \sum_{j=0}^{J-1} \widehat{\sigma}_{j}^{l_{1},l_{2}} \left(\underbrace{\frac{\widehat{R}_{I-j,j}^{l_{1},l_{2}}}{\widehat{R}_{I-j,j}^{l_{1}}}_{random error} + \underbrace{\sum_{h=0}^{L-1} w_{h,j}^{l_{1}} w_{h,j}^{l_{2}} \frac{\widehat{R}_{h,j}^{l_{1},l_{2}}}{\widehat{R}_{h,j}^{l_{1}} \widehat{R}_{h,j}^{l_{2}}} \right) \\ &\sum_{h_{1}=I-j}^{I} \sum_{h_{2}=I-j}^{I} \left(\mathbf{1}_{j=I-h_{1}} + \mathbf{1}_{j>I-h_{1}} w_{I-j,j}^{l_{2},I+1} \right) \partial_{h_{1,j}}^{l_{1}} U(\widehat{\mathbf{f}}^{I}) \mathbf{S}^{I} \\ & \left(\mathbf{1}_{j=I-h_{2}} + \mathbf{1}_{j>I-h_{2}} w_{I-j,j}^{l_{2},I+1} \right) \partial_{h_{2,j}}^{l_{2}} U(\widehat{\mathbf{f}}^{I}) \mathbf{S}^{I} \end{split}$$

The red terms indicate the differences to our estimator of the ultimate uncertainty.

After the Taylor approximation we can exchange expectation and summation to get

and from the estimation of the ultimate uncertainty we know

$$\mathbf{E}\Big[\Big(F_{I-j_{1},j_{1}}^{l_{1}}-\hat{f}_{j_{1}}^{l_{1},I}\Big)\Big(F_{I-j_{2},j_{2}}^{l_{2}}-\hat{f}_{j_{2}}^{l_{2},I}\Big)\Big|\mathcal{D}^{I}\Big] \approx \mathbf{1}_{j_{1}=j_{2}}\hat{\sigma}_{j_{1}}^{l_{1},l_{2}}\Bigg(\frac{\hat{R}_{I-j,j}^{l_{1},l_{2}}}{\hat{R}_{I-j,j}^{l_{1}}\hat{R}_{I-j,j}^{l_{2}}}+\sum_{h=0}^{I-j-1}w_{h,j}^{l_{1}}w_{h,j}^{l_{2}}\frac{\hat{R}_{h,j}^{l_{1},l_{2}}}{\hat{R}_{h,j}^{l_{1}}\hat{R}_{h,j}^{l_{2}}}\Bigg).$$

Both together lead to the stated estimator.

Note, if it wasn't for different claim properties (indeces l_1 and l_2) the last two lines of the estimator would have been a square of a sum over accident periods.

Moreover, for the random error part we had in the ultimate uncertainty case only one sum over accident periods h from I - j to I, i.e. we had $h_1 = h_2$.

Chain-Ladder estimator for the solvency uncertainty

$$\mathsf{mse}_{0|\mathcal{D}^{I}}\left[\sum_{i=0}^{I}\widehat{\mathsf{CDR}}_{i}\right] \approx \sum_{j=0}^{J-1} \frac{\widehat{\sigma}_{j}^{2}}{\left(\widehat{f}_{j}^{I}\right)^{2}} \left(\frac{1}{C_{I-j,j}} + \sum_{h=0}^{I-j-1} \frac{\left(w_{h,j}^{I}\right)^{2}}{C_{h,j}}\right) \\ \left(\sum_{h=I-j}^{I} \left(\mathbf{1}_{j=I-h} + \mathbf{1}_{j>I-h} w_{I-j,j}^{I+1}\right) \widehat{C}_{h,J}^{I}\right)^{2}$$

LSRM estimator for the solvency uncertainty

$$\begin{split} \mathsf{mse}_{0|\mathcal{D}^{I}}\Big[\widehat{\mathsf{CDR}}\Big] &\approx \sum_{l_{1},l_{2}=0}^{M} \sum_{j=0}^{J-1} \widehat{\sigma}_{j}^{l_{1},l_{2}} \left(\frac{\widehat{R}_{I-j,j}^{l_{1},l_{2}}}{\widehat{R}_{I-j,j}^{l_{1}}\widehat{R}_{I-j,j}^{l_{2}}}\right) + \sum_{h=0}^{I-j-1} w_{h,j}^{l_{1}} w_{h,j}^{l_{2}} \frac{\widehat{R}_{h,j}^{l_{1},l_{2}}}{\widehat{R}_{h,j}^{l_{1}}\widehat{R}_{h,j}^{l_{2}}}\right) \\ &\sum_{h_{1}=I-j}^{I} \sum_{h_{2}=I-j}^{I} \left(\mathbf{1}_{j=I-h_{1}} + \mathbf{1}_{j>I-h_{1}} w_{I-j,j}^{l_{1}}\right) \partial_{h_{1},j}^{l_{1}} U\Big(\widehat{\mathbf{f}}^{I}\Big) \mathbf{S}^{I} \\ & \left(\mathbf{1}_{j=I-h_{2}} + \mathbf{1}_{j>I-h_{2}} w_{I-j,j}^{l_{2},I+1}\Big) \partial_{h_{2},j}^{l_{2}} U\Big(\widehat{\mathbf{f}}^{I}\Big) \mathbf{S}^{I} \right) \end{split}$$

Because we have several claim properties, squared terms for Chain-Ladder are replaced by products of claim properties and the double sum over them.

Estimation at time n

The development factors are estimated by

$$\hat{F}_{k}^{n,n} := \sum_{h=0}^{n-k-1} w_{h,k}^{m,n} F_{h,k}^{m}$$

with consistent future weights $w_{i,k}^{m,n}$, which means there exists \mathcal{D}_k^n -measurable weights $0 \le w_{i,k}^{m,n} \le 1$, for $I - k \le i \le n - k - 1$, with

$$\begin{array}{l} \bullet \ R^m_{i,k} = 0 \ \text{implies} \ w^{m,n}_{i,k} = 0, \\ \bullet \ w^{m,n}_{i,k} = (1 - w^{m,n}_{n-k,k}) w^{m,n-1}_{i,k}, \ \text{for} \ i+k < n. \end{array}$$

Then the estimate of the ultimate at time n is

$$\sum_{m=0}^{M} \sum_{i=0}^{I} \alpha_i^m \sum_{k=0}^{J} \widehat{S}_{i,k}^{m,n} = U(\mathbf{F}^n) \mathbf{S}^I$$

with

$$F_{i,k}^{m,n} := (\mathbf{F}^n)_{i,k}^m := \begin{cases} F_{i,k}^m, \text{ for } i+k < n, \\ \widehat{f}_k^{m,n}, \text{ for } i+k \ge n. \end{cases}$$

©R. Dahms (ETH Zurich, Spring 2021)

- Consistent weights mean, that for each future estimation time n we keep our relative believes in the old weights w^{m,n-1}_{i,k} and only choose some weights w^{m,n}_{n-k,k} for the newly observes development.
- Note, although if the weights are no longer \mathcal{D}^I measurable, we will consider them as constant in our estimations.

Taylor approximation of the n-th CDR

$$\begin{aligned} \mathsf{CDR}^{n} &:= \sum_{m=0}^{M} \sum_{i=0}^{I} \alpha_{i}^{m} \sum_{k=0}^{J-1} \left(\widehat{S}_{i,k}^{m,n} - \widehat{S}_{i,k}^{I} \right) \\ &\approx \sum_{l=0}^{M} \sum_{h=0}^{I} \sum_{j=I-h}^{J-1} \partial_{h,j}^{l} U\left(\widehat{\mathbf{f}}^{I} \right) \left(F_{i,k}^{m,n} - \widehat{f}_{k}^{m,I} \right) \\ &\approx \sum_{l=0}^{M} \sum_{j=0}^{J-1} \sum_{h=I-j}^{(n-j-1)\wedge I} \left(\partial_{h,j}^{l} U\left(\widehat{\mathbf{f}}^{I} \right) \mathbf{S}^{I} + \widehat{w}_{h,j}^{l,n} \sum_{i=n-j}^{I} \partial_{i,j}^{l} U\left(\widehat{\mathbf{f}}^{I} \right) \mathbf{S}^{I} \right) \left(F_{h,j}^{l} - \widehat{f}_{j}^{l} \right). \end{aligned}$$

Here we used that

$$\hat{f}_k^{m,n} := \sum_{i=0}^{n-k-1} w_{i,k}^{m,n} F_{i,k}^m = \sum_{i=I-k}^{n-k-1} w_{i,k}^{m,n} F_{i,k}^m + \left(1 - \sum_{i=I-k}^{n-k-1} w_{i,k}^{m,n}\right) \hat{f}_k^{m,I}.$$

Estimator 4.24 (of the uncertainty between two estimation times n_1 and n_2)

$$\begin{split} \widehat{\mathrm{mse}}[\,\mathrm{CDR}^{n_1,n_2}] &:= \sum_{l_1,l_2=0}^{M} \sum_{j=0}^{J-1} \widehat{\sigma}_{j}^{l_1,l_2} \left[\sum_{h=n_1-j}^{(n_2-j-1)\wedge I} \! \left(\partial_{h,j}^{l_1} U\!\left(\widehat{\mathbf{f}}^{I} \right) \mathbf{S}^{I} + \widehat{w}_{h,j}^{l_1,n_2} \sum_{i=n_2-j}^{I} \partial_{i,j}^{l_1} U\!\left(\widehat{\mathbf{f}}^{I} \right) \mathbf{S}^{I} \right) \right. \\ & \left(\partial_{h,j}^{l_2} U\!\left(\widehat{\mathbf{f}}^{I} \right) \mathbf{S}^{I} + \widehat{w}_{h,j}^{l_2,n_2} \sum_{i=n_2-j}^{I} \partial_{i,j}^{l_2} U\!\left(\widehat{\mathbf{f}}^{I} \right) \mathbf{S}^{I} \right) \frac{\widehat{R}_{h,j}^{l_1,l_2,I}}{\widehat{R}_{h,j}^{l_1,I} \widehat{R}_{h,j}^{l_2,I}} \\ & + \sum_{h=0}^{(n_1-j-1)\wedge I} \widehat{w}_{h,j}^{l_1,n_1} \widehat{w}_{h,j}^{l_2,n_1} \frac{\widehat{R}_{h,j}^{l_1,l_2,I}}{\widehat{R}_{h,j}^{l_1,I} \widehat{R}_{h,j}^{l_2,I}} \\ & \left(\sum_{i=n_1-j}^{I} \partial_{i,j}^{l_1} U\!\left(\widehat{\mathbf{f}}^{I} \right) \mathbf{S}^{I} - \frac{\Omega_{j}^{l_1,n_2}}{\Omega_{j}^{l_1,n_1}} \sum_{i=n_2-j}^{I} \partial_{i,j}^{l_1} U\!\left(\widehat{\mathbf{f}}^{I} \right) \mathbf{S}^{I} \right) \\ & \left(\sum_{i=n_1-j}^{I} \partial_{i,j}^{l_2} U\!\left(\widehat{\mathbf{f}}^{I} \right) \mathbf{S}^{I} - \frac{\Omega_{j}^{l_2,n_2}}{\Omega_{j}^{l_2,n_1}} \sum_{i=n_2-j}^{I} \partial_{i,j}^{l_1} U\!\left(\widehat{\mathbf{f}}^{I} \right) \mathbf{S}^{I} \right) \right], \end{split}$$
 where $\Omega_{j}^{l,n} = \sum_{i=0}^{I-j-1} \widehat{w}_{i,j}^{l,n}.$

The derivation can be obtained from the lecturer (unpublished working paper).

Remark 4.25

- If we take $n_1 = I$ and $n_2 = I + 1$ we get the same formula as in Estimator 4.23 (solvency uncertainty).
- If we take $n_1 = I$ and $n_2 = \infty$ we get the same formula as in Estimator 4.16 (ultimate uncertainty).
- In the Chain-Ladder case with variance minimizing weights we get the same formula as in Estimator 2.25.
- If the exposures $R^m_{i,k}$ do not depend on other accident periods $h \neq i$ then a similar approach like in the Chain-Ladder case may work to derive Estimator 4.24.
- Estimators for the uncertainty of the CDR between two estimation times are important for SST and Solvency II to estimate the MVM.

Stochastic Reserving

2021-04-26

- -Linear-Stochastic-Reserving methods
 - -Solvency uncertainty

Remark 4.25

- If we take n₁ = I and n₂ = I + 1 we get the same formula as in Estimator 4.23 (solvency uncertainty).
- If we take n₁ = I and n₂ = ∞ we get the same formula as in Estimator 4.16 (ultimate uncertainty).
- In the Chain-Ladder case with variance minimizing weights we get the same formula as in Estimator 2.25.
- If the exposures $R^m_{i,k}$ do not depend on other accident periods $h \neq i$ then a similar approach like in the Chain-Ladder case may work to derive Estimator 4.24.
- Estimators for the uncertainty of the CDR between two estimation times are important for SST and Solvency II to estimate the MVM.

Swiss mandatory accident portfolio: part 3 of 3, see Example 4.13

We have four claim properties with exposures

$$\begin{split} \mathsf{ME:} \ \ & R^0_{i,k} = R^{0,0}_{i,k} = \sum_{j=0}^k S^0_{i,j} \\ \mathsf{IW:} \ \ & R^1_{i,k} = R^{1,1}_{i,k} = \sum_{j=0}^k \left(\kappa^{j+1} S^3_{i,j} + (1-\kappa^{j+1}) S^1_{i,j} \right) \\ \mathsf{Sub:} \ \ & R^2_{i,k} = R^{2,2}_{i,k} = \sum_{j=0}^k \left(S^0_{i,j} + S^1_{i,j} + S^2_{i,j} \right) \\ \mathsf{Salary:} \ \ & S^3_{i,0} = P_i, \ S^3_{i,j} = 0, \ \text{for} \ j > 0, \ \text{and} \\ & R^3_{i,k} = R^{3,0}_{i,k} = R^{3,1}_{i,k} = R^{3,1}_{i,k} = R^{3,2}_{i,k} = R^{3,3}_{i,k} = R^{3,3}_{i,k} = 0 \end{split}$$

For the not yet defined exposures we take the total payments up to now, i.e. $R_{i,k}^{0,1} = R_{i,k}^{1,0} = R_{i,k}^{2,0} = R_{i,k}^{1,2} = R_{i,k}^{2,1} = \sum_{j=0}^{k} \left(S_{i,j}^{0} + S_{i,j}^{1} + S_{i,j}^{2} \right).$

Resulting solvency uncertainty

- The estimated ultimate and solvency uncertainties behave almost alike, but on a different level.
- Although the estimated solvency uncertainty is minimal for $\kappa \approx 0.35$ you should never use this as criteria to evaluate which model is the best. For this portfolio I, would go for $\kappa = 1$ (at least for the first development periods).
- For $\kappa = 0$ the solvency uncertainty is slightly smaller than CLM on total payments (small blue circle on the left).

Stochastic Reserving

2021-04-26

Linear-Stochastic-Reserving methods

Examples

We have four claim properties with exposures ME: $R_{i,k}^0 = R_{i,k}^{0,0} = \sum_{j=0}^{k} S_{i,j}^0$ $\begin{array}{l} & \mathrm{Mit:} & \sigma_{T_{k}}^{*} = R_{k,k}^{*} \equiv L_{k+0} \circ \mathrm{N}_{kj} \\ & \mathrm{Ni:} & R_{k,k}^{*} \equiv R_{k,k}^{*} \equiv \sum_{j=0}^{k} \left(s^{j+1} S_{k,j}^{*} + (1-s^{j+1}) S_{k,j}^{*} \right) \\ & \mathrm{Sakz} & R_{k,k}^{*} \equiv R_{k,k}^{*} \equiv \sum_{j=0}^{k} \left(S_{k,j}^{*} + S_{k,j}^{*} + S_{k,j}^{*} + S_{k,j}^{*} \right) \\ & \mathrm{Sakz} & S_{k,k}^{*} \equiv R_{k,k}^{*} \equiv R_{k,k}^{*} = R_{k,k}^{*} \equiv R_{k,k}^{*} = R_{k,k}^$ For the not yet defined exposures we take the total payments up to now, i.e. $R_{i,b}^{0,1} = R_{i,b}^{1,0} = R_{i,b}^{0,2} = R_{i,b}^{2,0} = R_{i,b}^{1,2} = R_{i,b}^{2,1} = \sum_{j=0}^{6} \left(S_{i,j}^{0} + S_{i,j}^{1} + S_{i,j}^{2} \right)$. The estimated ultimate and solvency uncertainties behave almost alike, but on a different level Although the estimated solvency uncertainty is minimal for x rs 0.35 you should never use this as criteria to evaluate which model is the best. For this portfolio I, would go for $\kappa = 1$ (at least or the first devices which makes a two bins, for this portion is , which y $\kappa = 1$ (at least or the first devices) portion (). • For $\kappa = 0$ the solvency uncertainty is slightly smaller than CLM on total payments.

(small blue circle on the left).
Example 4.13: Solvency uncertainty in dependence of κ

We always show the square root of uncertainties.

Be aware that each curve has its own scale. So although the curve of the solvency and the ultimate uncertainty cross each other, we always have that the solvency uncertainty is smaller than the ultimate uncertainty.

In our example the solvency uncertainty is about 70% of the ultimate uncertainty. In general this ratio usually lies between 50% (general liability) and 90% (NatCat). One minus this ratio represents the gain of information over one year in comparission to all unknown information about the reserves.

Example 4.26 (ECLRM vs. CLM: part 3 of 3, see Example 4.14)

In the first two parts we have compared the Best Estimate reserves and the ultimate uncertainty. Now we want to look at the solvency uncertainty. For the weighing of uncertainties we define $R_{i,k}^{0,1} = R_{i,k}^{1,0}$ as the arithmetic mean of payments and incurred losses:

		CLM		ECLRM			
AP	payments	incurred	weighting	payments	incurred	weighting	
0							
1	89423	2553	43873	194	14639	7695	
2	212847	4561	98690	4557	4679	4588	
3	131605	7825	57107	5663	6790	5994	
4	161223	6666	70958	33688	34303	33896	
5	145975	31325	54474	30612	31059	30763	
6	104800	45866	38046	42612	43110	42830	
7	230780	155175	155764	166162	166268	166206	
8	283765	150879	170125	138697	138755	138718	
9	229170	223154	181603	210928	211012	210980	
Total	1004481	347709	478785	346640	350692	348110	

Square root of the solvency uncertainty

• Taking the arithmetic mean

$$R_{i,k}^{m_1,m_2} := \frac{1}{2} \left(R_{i,k}^{m_1,m_1} + R_{i,k}^{m_2,m_2} \right)$$

for the coupling exposures works fine if $R_{i,k}^{m_1,m_1}$ and $R_{i,k}^{m_2,m_2}$ are similar. In general the geometric mean

$$R_{i,k}^{m_1,m_2} := \sqrt{R_{i,k}^{m_1,m_1} R_{i,k}^{m_2,m_2}}$$

usually works better.

- Although the Best Estimate reserves are similar, the solvency uncertainties are not, in particular CLM on payments leads to a much higher solvency uncertainty than the others.
- Again, you must not use estimates of the ultimate uncertainty to evaluate which model is the best.

Measurement of reserving risks under IFRS 17, SST and Solvency II

- In recent years the reserving risk has got more and more attention, for instance under IFRS 17, SST and Solvency II.
- Probably, the most common method to estimate reserving risk is the following:
 - 1. Make assumptions about the distribution family for the reserves for each portfolio.
 - 2. Estimate the corresponding parameters, for instance mean (Best Estimate reserves) and variance (mse + model error).
 - \Longrightarrow Calculate the reserving risk for each portfolio, for instance, value at risk or expected shortfall.
 - 3. Make assumptions on the correlation (or copula) of portfolios.
 - \Longrightarrow Calculate the reserving risk of the aggregation of all portfolios.
- In particular step 3 is usually based mostly on actuarial judgement.
- LSRMs can be used to avoid correlation matrices or to get some estimates of them.

- Linear-Stochastic-Reserving methods
 - -Estimation of correlation of reserving Risks

Measurement of reserving risks under IFRS 17, SST and Solvency II

- In recent years the reserving risk has got more and more attention, for instance under IFRS 17, SST and Solvency II.
- Probably, the most common method to estimate reserving risk is the following:
- 1. Make assumptions about the distribution family for the reserves for each portfolio.
- Estimate the corresponding parameters, for instance mean (Best Estimate reserves) and variance (mme + model error).
 ⇒ Calculate the reserving risk for each portfolio, for instance, value at risk
- Calculate the reserving risk for each portfolio, for instance, value at risk or expected shortfall.
 Make assumptions on the correlation (or copula) of portfolios.
- + In particular step 3 is usually based mostly on actuarial judgement.
- LSRMs can be used to avoid correlation matrices or to get some estimates of them.

Part of the correlation matrix of the SST-Standardmodel 2014

	MFH	MFK	Sach	ES-Pool	Haft	UVG	
MFH	1.00	0.15	0.15	0.15	0.25	0.50	
MFK	0.15	1.00	0.15	0.15	0.15	0.15	
Sach	0.15	0.15	1.00	0.15	0.15	0.15	•••
ES-Pool	0.15	0.15	0.15	1.00	0.15	0.15	
Haft	0.25	0.15	0.15	0.15	1.00	0.25	
UVG	0.50	0.15	0.15	0.15	0.25	1.00	
			÷				·

- The entries are based on actuarial judgement.
- The correlation matrix under Solvency II contains similar entries.

- Linear-Stochastic-Reserving methods
 - -Estimation of correlation of reserving Risks

	MEH	MFK	Sach	ES-Pool	Haft	UVG	
MFH	1.00	0.15	0.15	0.15	0.25	0.50	
MFK	0.15	1.00	0.15	0.15	0.15	0.15	
Sach	0.15	0.15	1.00	0.15	0.15	0.15	
ES-Pool	0.15	0.15	0.15	1.00	0.15	0.15	
Haft	0.25	0.15	0.15	0.15	1.00	0.25	
UVG	0.50	0.15	0.15	0.15	0.25	1.00	

· The entries are based on actuarial judgement.

The correlation matrix under Solvency II contains similar entries.

If we use LSRMs we can avoid correlation matrices for the reserve risks:

- 1. Set up a LSRM for all portfolios together. That means we have to specify coupling exposures $R_{i,k}^{m_1,m_2}$ for all $m_1 \neq m_2$, too. Here, heuristic arguments can help to do so. For instance, if you use the same method for claim properties m_1 and m_2 it may be appropriate to take the geometric mean of $R_{i,k}^{m_1,m_1}$ and $R_{i,k}^{m_2,m_2}$.
- 2. Chose a distribution family for the total reserve of all portfolios.
- 3. Estimate the corresponding parameter, for instance

 $\mathsf{mean} = \mathsf{Best} \; \mathsf{Estimate} \; \mathsf{reserves} \; \mathsf{and} \;$

variance = ultimate or solvency uncertainty + model error.

Here you may have to scale the variance in case that the Best Estimate reserves are not equal to the reserves estimated by the LSRM, see slide 56.

 \implies Calculate the reserving risk.

2021-04-26

- Linear-Stochastic-Reserving methods
 - -Estimation of correlation of reserving Risks

- If an out SDBA we can add correlation matrices for the reserve rate.
 Sa Gray A SDBA or all particles together threas more have been associated and approximately and the solution of the solution of
- ----- Calculate the reserving risk.

The formulas for the ultimate and for the solvency uncertainty have the form:

$$\sum_{m_1,m_2=0}^{M} \sum_{i_1,i_2=0}^{I} \alpha_{i_1}^{m_1} \alpha_{i_2}^{m_2} \beta_{i_1,i_2}^{m_1,m_2},$$

whereas α_i^m are arbitrary \mathcal{D}^I -measurable real numbers.

Moreover, since the uncertainties are defined as expectation of the square of some random variable they are non negative for all collections $(\alpha_i^m)_{0\leq i\leq I}^{0\leq m\leq M}$ of \mathcal{D}^I -measurable real numbers, which means that

$$\left(\sum_{i_1,i_2=0}^{I} \alpha_{i_1}^{m_1} \alpha_{i_2}^{m_2} \beta_{i_1,i_2}^{m_1,m_2}\right)^{0 \le m_1,m_2 \le M}$$

is a positive semidefinite matrix. We already take the diagonal elements of this matrix as variances of the reserving risk of one claim property. Therefore, it is appropriate to use the whole matrix as covariance matrix.

Stochastic Reserving Linear-Stochastic-Reserving methods Estimation of correlation of reserving Risks

The formulas for the ultimate and for the solvency uncertainty have the form:

$$-\sum_{m_1,m_2=0}^M\sum_{i_1,i_2=0}^I\alpha_{i_1}^{m_1}\alpha_{i_2}^{m_2}\beta_{i_1,i_2}^{m_1,m_2}$$

whereas a_i^{α} are arbitrary D^I -measurable real numbers. Moreover, since the uncertainties are defined as expectation of the square of some random variable they are non negative for all collections $(\alpha_i^{\alpha})_{i\in [n]} \leq d_i^{\alpha}$ of D^I -measurable real numbers, which means that

$$\left(\sum_{i_{1},i_{2}=0}^{I} \alpha_{i_{1}}^{m_{1}} \alpha_{i_{2}}^{m_{2}} \beta_{i_{1},i_{2}}^{m_{1},m_{2}}\right)^{0 \le m_{1}}$$

is a positive semidefinite matrix. We already take the diagonal elements of this matrix as variances of the reserving risk of one claim property. Therefore, it is appropriate to use the whole matrix as covariance matrix.

positive semidefinite: For any vector $oldsymbol{x} = (x_m)_{0 \leq m \leq M}$ we get

$$\begin{aligned} \boldsymbol{x}' \left(\sum_{i_1, i_2=0}^{I} \alpha_{i_1}^{m_1} \alpha_{i_2}^{m_2} \beta_{i_1, i_2}^{m_1, m_2} \right)^{0 \le m_1, m_2 \le M} \boldsymbol{x} &= \sum_{m_1, m_2=0}^{M} x_{m_1} \sum_{i_1, i_2=0}^{I} \alpha_{i_1}^{m_1} \alpha_{i_2}^{m_2} \beta_{i_1, i_2}^{m_1, m_2} x_{m_2} \\ &= \sum_{m_1, m_2=0}^{M} \sum_{i_1, i_2=0}^{I} \alpha_{i_1}^{m_1} x_{m_1} \alpha_{i_2}^{m_2} x_{m_2} \beta_{i_1, i_2}^{m_1, m_2} \ge 0. \end{aligned}$$

Estimating correlation of reserve risk, see LSRM_Cor_ActiveX.xlsx

Based on the example of article [28] by A. Gisler and M. Wüthrich with

$$R_{i,k}^{m_1,m_2} := \sqrt{\sum_{j=0}^k S_{i,j}^{m_1} \sum_{j=0}^k S_{i,j}^{m_2}}.$$

Estimated ultimate uncertainty correlation

				,				
m_1/m_2	0	1	2	3	4	5		
0	1.00	-0.15	0.01	0.23	-0.17	0.26		
1	-0.15	1.00	0.03	0.13	-0.03	-0.00		
2	0.01	0.03	1.00	0.04	0.06	-0.05		
3	0.23	0.13	0.04	1.00	-0.05	0.09		
4	-0.17	-0.03	0.06	-0.05	1.00	0.03		
5	0.26	-0.00	-0.05	0.09	0.03	1.00		
Estimated solvency uncertainty correlation								

m_1/m_2	0	1	2	3	4	5
0	1.00	0.04	0.05	0.30	-0.26	0.31
1	0.04	1.00	0.04	0.30	-0.10	0.00
2	0.05	0.04	1.00	0.09	0.08	-0.06
3	0.30	0.30	0.09	1.00	-0.08	0.16
4	-0.26	-0.10	0.08	-0.08	1.00	0.03
5	0.31	0.00	-0.06	0.16	0.03	1.00

2021-04-26

- Linear-Stochastic-Reserving methods
 - Estimation of correlation of reserving Risks

- The calculations can be found in the file 'LSRM_Cor_Dll.xlsx' (or 'LSRM_Cor_ActiveX.xlsx').
- Most of the correlations are negligible, except for the dependence related to

$$S_{i,k}^5$$
 vs. $S_{i,k}^0$ and $S_{i,k}^3$ vs. $S_{i,k}^0, S_{i,k}^1$ and $S_{i,k}^5$

and some diversification related to

$$S_{i,k}^0$$
 vs. $S_{i,k}^4$ and maybe $S_{i,k}^0$ vs. $S_{i,k}^1$ and $S_{i,k}^4$.

- Strictly taken, the model is not valid, because of some negative eigenvalues of the covariance matrices $(\widehat{\sigma}_k^{m_1,m_2} R_{i,k}^{m_1,m_2})^{0 \leq m_1,m_2 \leq M}$ for $k \in \{6,8,9\}$. But the results mainly depend on the development periods k = 0 and k = 1, only. Moreover, except for k = 6 the negative eigenvalues are almost zero, which means that it is more a problem of the estimation than a model problem.
- The estimated correlations are estimated under the assumption that the claim properties fulfil Assumptions 4.A and 4.B, which usually is not the case, for instance because of inflation or other diagonal effects. Therefore, in practice we should always think of adding some model error in terms of a positive correlation.

Literature

[19] Aloise Gisler and Mario V. Wüthrich. Credibility for the Chain Ladder Reserving Method. Astin Bull., 38(2):565–600, 2008.

[20] René Dahms.

Implementation of LSRMs under GPL 3. (http://sourceforge.net/projects/lsrmtools/).

[21] René Dahms.

Linear stochastic reserving methods. *Astin Bull.*, 42(1):1–34, 2012.

[22] Thomas Mack.

Distribution-free calculation of the standard error of chain ladder reserving estimates. *Astin Bull.*, 23:213–115, 1991.

2021-04-26

Linear-Stochastic-Reserving methods

-Literature

Literature

[18] Aloss Galer and Mario V. Withrich. Credbillty for the Chain Ladder Reserving Method. Amin Built, 38(2):555–630, 2008.

[20] Hans Dahmi. Implementation of LSRMs under GPL 3. (http://sourceforge.net/projects/larmtools/).

21] Rané Dahme. Linear stochastic reserving methods.

Antin Bull, 42(1):1-34, [22] Thomas Mack.

Distribution free calculation of the standard error of chain ladder reserving estimates. Astin Bull, 23:213-115, 1991. Stochastic Reserving Lecture 9 Poission-Model

René Dahms

ETH Zurich, Spring 2021

28 April 2021 (Last update: 26 April 2021)

Stochastic Reserving Lecture 9 Poission-Model

René Dahms ETH Zurich, Spring 2022

28 April 2021 (Last update: 26 April 2021)

5 Poisson-Model

- 5.1 Modelling the number of reported claims
- 5.2 Projection of the future outcome
- 5.3 Ultimate uncertainty of the Poisson-Model
- 5.4 Generalised linear models and reserving
- 5.5 Literature

Lecture 9: Table of contents

5 Poisson-Model

5.1 Modeling the number of reported claims 5.2 Projection of the future outcome 5.3 Ultimate uncertainty of the Poisson-Model 5.4 Generalised linear models and reserving 5.5 Literature

Number of occurred claims

- Assume that for each policy a claim occurs during the year with some probability $p \in (0, 1)$, that we have at most one claim per policy and that claims are independent.
- Then the number of claims N which occurred during the year is Binomial-distributed with parameter p and R, where the later represents the number of policies, i.e.

$$\mathsf{P}(N=n) = \binom{R}{n} p^n (1-p)^{R-n} \underbrace{\approx \frac{\mu^n}{n!} e^{-\mu}, \quad \text{with } \mu = Rp}_{\text{for small } p}$$

- Therefore, we could assume that the number of claims which occurred during a year is Poisson-distributed.
- Similar arguments can be applied with the number claims that have been reported during a year.

- Poisson-Model
 - -Modelling the number of reported claims

Number of occurred claims

- Assume that for each policy a claim occurs during the year with some probability $p\in(0,1),$ that we have at most one claim per policy and that claims are independent.
- Then the number of claims N which occurred during the year is Binomial-distributed with parameter p and R, where the later represents the number of policies, i.e.

$$\mathbb{P}(N = n) = {\binom{R}{n}}p^n(1-p)^{R-n} \underbrace{\approx \frac{\mu^n}{n!}e^{-\mu}}_{\text{for small }p} \text{ with } \mu = Rp$$

- Therefore, we could assume that the number of claims which occurred during a year is Poisson-distributed.
- Similar arguments can be applied with the number claims that have been reported during a year.

Assumption 5.A (Poisson-Model)

Assume that there are parameters $\mu_0, \ldots, \mu_I > 0$ and $\gamma_0, \ldots, \gamma_J > 0$ such that i)^{Poi} $S_{i,k}$ are independent Poisson-distributed random variables with

$$\mathsf{E}\big[S_{i,k}\big] = \gamma_k \mu_i.$$

ii)^{Poi} $\sum_{k=0}^{J} \gamma_k = 1.$

Remark 5.1

- The restriction on $S_{i,k}$ to be an integer is not so restrictive at all. Even for payments we can always argue that they are a multiple of one Rappen or Cent.
- The Poisson-Model cannot deal with negative claim properties $S_{i,k}$ which is very restrictive, in particular for incurred losses.
- The assumption of independent claim properties $S_{i,k}$ even within the same accident period is also very restrictive.
- The Poisson-Model can deal with incomplete triangles, for which some upper left part is missing.

• In the Poisson-Model we always have $\operatorname{Var} \left| S_{i,k} \right| = \mathsf{E} \left| S_{i,k} \right| = \gamma_k \mu_i$.

Poisson-Model

2021-04-26

-Modelling the number of reported claims

Parameters of the Poisson-Model Since

$$\mathsf{E}[C_{i,J}] = \sum_{k=0}^{J} \mathsf{E}[S_{i,k}] = \sum_{k=0}^{J} \mu_i \gamma_k = \mu_i$$

the parameter:

- μ_i represents the expected ultimate outcome of accident period *i*, and
- γ_k represents the expected fraction of the ultimate outcome that have manifested (or will manifest) itself during development period k (reporting or cashflow pattern).

- Poisson-Model
 - Modelling the number of reported claims

Parameters of the Poisson-Model

 $E[C_{i,J}] = \sum_{k=0}^{J} E[S_{i,k}] = \sum_{k=0}^{J} \mu_i \gamma_k = \mu_i$

the parameter:

Since

- μ_i represents the expected ultimate outcome of accident period i_i and
- 7k represents the expected fraction of the ultimate outcome that have manifested (or will manifest) itself during development period k (reporting or cashflow pattern).

Probability of the observed triangle

$$\mathsf{P}\left((S_{i,k})_{i+k\leq I} = (x_{i+k})_{i+k\leq I}\right) = \prod_{i+k\leq I} \frac{(\mu_i \gamma_k)^{x_{i,k}}}{x_{i,k}!} e^{-\mu_i \gamma_k}$$

Maximum likelihood (ML) for the Poisson-Model

The maximum likelihood estimators for the parameters are those $\hat{\mu}_i$ and $\hat{\gamma}_k$ for which the probability of the observed triangle is maximal.

In order to get shorter formulas we will maximize the logarithm of the probability. Therefore, we set its partial derivatives with respect to each parameter to zero and try to solve the resulting system of linear equations:

$$0 = \frac{\partial \log \mathsf{P}\left((S_{i,k})_{i+k \le I}\right)}{\partial \mu_i} = \sum_{k=0}^{(I-i)\wedge J} \frac{S_{i,k}}{\mu_i} - \gamma_k \iff \mu_i \sum_{k=0}^{(I-i)\wedge J} \gamma_k = \sum_{k=0}^{(I-i)\wedge J} S_{i,k} = C_{i,(I-i)\wedge J}$$
$$0 = \frac{\partial \log \mathsf{P}\left((S_{i,k})_{i+k \le I}\right)}{\partial \gamma_k} = \sum_{i=0}^{I-k} \frac{S_{i,k}}{\gamma_k} - \mu_i \qquad \Longleftrightarrow \qquad \gamma_k \sum_{i=0}^{I-k} \mu_i = \sum_{i=0}^{I-k} S_{i,k}.$$
(5.1)

We denote the solution (if it exists) by $\hat{\mu}_i$ and $\hat{\gamma}_k$.

©R. Dahms (ETH Zurich, Spring 2021)

One can proof that if the observed data are not too strange then there exists an unique solution of (5.1), which represents a maximum.

An example for 'too strange' is $S_{i,k} = 0$ for all observed accident and development periods.

Estimator 5.2 (for the future outcome within the Poisson-Model)

$$\begin{split} \widehat{S}_{i,k}^{\text{Poi}} &:= \widehat{\mathsf{E}} \big[S_{i,k} \big] := \widehat{\mu}_i \widehat{\gamma}_k \\ \widehat{C}_{i,J}^{\text{Poi}} &:= \widehat{\mathsf{E}} \big[C_{i,J} | \mathcal{D}^I \big] := C_{i,I-i} + \sum_{k=I-i+1}^J \widehat{S}_{i,k}^{\text{Poi}}. \end{split}$$

Theorem 5.3 (Poisson-Model vs. Chain-Ladder method) Assume that there exists an unique positive solution of (5.1). Then

$$\widehat{S}_{i,k}^{\mathsf{Poi}} = \widehat{S}_{i,k}^{\mathsf{CLM}},$$

where $\widehat{S}_{i,k}^{\rm CLM}$ denotes the Chain-Ladder-projection corresponding to the variance minimizing weights.

tor 5.2 (for the future outcome within the Poisson-Model)

$$\hat{S}_{i,k}^{\text{Poi}} := \hat{\mathbb{E}}[S_{i,k}] := \hat{\mu}_i \hat{\gamma}_k$$

 $\hat{C}_{i,J}^{\text{Poi}} := \hat{\mathbb{E}}[C_{i,J}|\mathcal{D}^I] := C_{i,J-i} + \sum_{k=J-i+1}^{J} \hat{S}_{i,k}^{\text{Poi}}$.

Theorem 5.3 (Poisson-Model vs. Chain-Ladder method) Assume that there exists an unique positive solution of (5.1). Then

 $\widehat{S}_{i,k}^{p_{\text{GI}}} = \widehat{S}_{i,k}^{\text{CLM}}$,

where \hat{S}^{CLM}_{Lk} denotes the Chain-Ladder-projection corresponding to the variance minimizing weights.

Lemma

$$\sum_{i=0}^{I-k} C_{i,k} = \sum_{i=0}^{I-k} \hat{\mu}_i \sum_{j=0}^k \hat{\gamma}_j \quad \text{and} \quad \sum_{i=0}^{I-k} C_{i,k-1} = \sum_{i=0}^{I-k} (C_{i,k} - S_{i,k}) = \sum_{i=0}^{I-k} \hat{\mu}_i \sum_{j=0}^{k-1} \hat{\gamma}_j, \qquad \text{for all } i+k \leq I$$

Proof of the above lemma (by induction): Start with k = J

$$\sum_{i=0}^{I-J} C_{i,J} = \sum_{i=0}^{I-J} \sum_{j=0}^{J} S_{i,j} = \sum_{i=0}^{I-J} \hat{\mu}_i \sum_{j=0}^{J} \hat{\gamma}_j.$$

Now assume that the lemma is true for some k > 0 then we get I-(k-1) I-k

$$\sum_{i=0}^{I-k-1} C_{i,k-1} = \sum_{i=0}^{I-k} C_{i,k-1} + C_{I-(k-1),k-1} = \sum_{i=0}^{I-k} C_{i,k} - \sum_{i=0}^{I-k} S_{i,k} + \sum_{j=0}^{k-1} S_{I-(k-1),j}$$
$$= \sum_{i=0}^{I-k} \hat{\mu}_i \sum_{j=0}^{k} \hat{\gamma}_j - \hat{\gamma}_k \sum_{i=0}^{I-k} \hat{\mu}_i + \hat{\mu}_{I-(k-1)} \sum_{j=0}^{k-1} \hat{\gamma}_k = \sum_{i=0}^{I-(k-1)} \sum_{j=0}^{k-1} \hat{\mu}_i \hat{\gamma}_j.$$

(5.1)

Proof of Theorem 5.3:

$$\widehat{C}_{i,J}^{\text{Poi}} = \underbrace{C_{i,I-i} + \widehat{\mu}_i}_{k=I-i+1} \underbrace{\sum_{k=I-i+1}^{J} \widehat{\gamma}_k}_{k=I-i+1} = C_{i,I-i} + \underbrace{\frac{C_{i,I-i}}{\sum_{k=0}^{I-i} \widehat{\gamma}_k}}_{k=I-i+1} \underbrace{\sum_{k=I-i+1}^{J} \widehat{\gamma}_k}_{k=I-i+1} = C_{i,I-i} \left(1 + \frac{\sum_{k=I-i+1}^{J} \widehat{\gamma}_k}{\sum_{k=0}^{I-i} \widehat{\gamma}_k}\right)$$

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \textbf{Estimator 5.2} \\ \textbf{Estimator 5.2} \\ = C_{i,I-i} \frac{\sum_{k=0}^{J} \hat{\gamma}_{k}}{\sum_{k=0}^{I-i} \hat{\gamma}_{k}} = C_{i,I-i} \frac{\sum_{k=0}^{I-i+1} \hat{\gamma}_{k}}{\sum_{k=0}^{I-i} \hat{\gamma}_{k}} & \cdots & \frac{\sum_{k=0}^{J} \hat{\gamma}_{k}}{\sum_{k=0}^{J-1} \hat{\gamma}_{k}} = C_{i,I-i} \underbrace{\frac{\sum_{h=0}^{I-(I-i+1)} C_{i,I-i+1}}{\sum_{h=0}^{I-(I-i+1)} C_{i,I-i}}}_{\textbf{above lemma}} & \cdots & \underbrace{\frac{\sum_{h=0}^{I-J} C_{i,J}}{\sum_{h=0}^{I-J} C_{i,J-1}}}_{\textbf{above lemma}} \end{array}$$

Corollary 5.4 (Poisson-Model vs. Chain-Ladder method) Taking CLM as LSRM with the variance minimizing weights we have

$$\widehat{S}_{i,k}^{\mathsf{CLM}} = \widehat{\mathsf{E}}\left[S_{i,k}\right] = \widehat{f}_{k-1}(1+\widehat{f}_{k-2})\cdots(1+\widehat{f}_{I-i})C_{i,I-i}.$$

Combining this with Estimator 5.2 and Theorem 5.3 we get

Proof of the last statement: From the proof of Theorem 5.3 we know that

$$1 + \widehat{f}_k = \frac{\sum_{j=0}^{k+1} \widehat{\gamma}_j}{\sum_{j=0}^k \widehat{\gamma}_j}.$$

From this we compute

$$\widehat{f}_k = \frac{\sum_{j=0}^{k+1} \widehat{\gamma}_j}{\sum_{j=0}^k \widehat{\gamma}_j} - 1 = \frac{\widehat{\gamma}_{k+1}}{\sum_{j=0}^k \widehat{\gamma}_j} = \underbrace{\frac{\widehat{\gamma}_{k+1}}{1 - \sum_{j=k+1}^J \widehat{\gamma}_j}}_{\sum_{j=0}^J \widehat{\gamma}_j = 1}$$

(1/3)

Ultimate uncertainty

$$\begin{split} \operatorname{mse}\left[\sum_{i=0}^{I} \widehat{C}_{i,J}^{\operatorname{Poi}}\right] &= \operatorname{E}\left[\left(\sum_{i+k>I} \left(S_{i,k} - \widehat{S}_{i,k}^{\operatorname{Poi}}\right)\right)^{2}\right] \\ &= \operatorname{E}\left[\left(\sum_{i+k>I} \left(S_{i,k} - \operatorname{E}[S_{i,k}]\right) - \sum_{i+k>I} \left(\widehat{S}_{i,k}^{\operatorname{Poi}} - \operatorname{E}[S_{i,k}]\right)\right)^{2}\right] \\ &\approx \operatorname{E}\left[\left(\sum_{i+k>I} \left(S_{i,k} - \operatorname{E}[S_{i,k}]\right) - \sum_{i+k>I} \left(\widehat{S}_{i,k}^{\operatorname{Poi}} - \operatorname{E}\left[\widehat{S}_{i,k}^{\operatorname{Poi}}\right]\right)\right)^{2}\right] \\ &= \operatorname{E}\left[\left(\sum_{i+k>I} \left(S_{i,k} - \operatorname{E}[S_{i,k}]\right)\right)^{2}\right] + \operatorname{E}\left[\left(\sum_{i+k>I} \left(\widehat{S}_{i,k}^{\operatorname{Poi}} - \operatorname{E}\left[\widehat{S}_{i,k}^{\operatorname{Poi}}\right]\right)\right)^{2}\right] \\ &- 2\operatorname{E}\left[\left(\sum_{i+k>I} \left(S_{i,k} - \operatorname{E}[S_{i,k}]\right)\right)\left(\sum_{i+k>I} \left(\widehat{S}_{i,k}^{\operatorname{Poi}} - \operatorname{E}\left[\widehat{S}_{i,k}^{\operatorname{Poi}}\right]\right)\right)\right] \\ &= \underbrace{\operatorname{Var}\left[\sum_{i+k>I} S_{i,k}\right]}_{\operatorname{random error}} + \underbrace{\operatorname{Var}\left[\sum_{i+k>I} \widehat{S}_{i,k}^{\operatorname{Poi}}\right]}_{\operatorname{parameter error}} - \underbrace{0}_{\operatorname{independence of past and future} \end{split}$$

Poisson-Model

2021-04-26

-Ultimate uncertainty of the Poisson-Model

Random error

Since all $S_{i,k}$ are independent we get

$$\mathsf{Var}\!\left[\sum_{i+k>I}S_{i,k}\right] = \sum_{i+k>I}\mathsf{Var}\!\left[S_{i,k}\right] = \sum_{i+k>I}\gamma_k\mu_i \approx \sum_{i+k>I}\widehat{\gamma}_k\widehat{\mu}_i.$$

Parameter error

In order to analyse the parameter error we use the following Tylor expansion:

$$\ln(z) \approx \ln(z_0) + \frac{1}{z_0}(z - z_0) \quad \text{for } z_0 = 1 \text{ and } z = \frac{\widehat{\gamma}_k \widehat{\mu}_i}{\gamma_k \mu_i}$$

Therefore, we get

$$\widehat{\gamma}_k \widehat{\mu}_i \approx \gamma_k \mu_i \left(\ln \left(\widehat{\gamma}_k \widehat{\mu}_i \right) - \ln \left(\gamma_k \mu_i \right) + 1 \right).$$

Finally, taking the covariance it follows

$$\begin{aligned} \mathsf{Cov}[\widehat{\gamma}_{k_1}\widehat{\mu}_{i_1},\widehat{\gamma}_{k_2}\widehat{\mu}_{i_2}] &\approx \gamma_{k_1}\mu_{i_1}\gamma_{k_2}\mu_{i_2}\mathsf{Cov}[\ln\left(\widehat{\gamma}_{k_1}\widehat{\mu}_{i_1}\right),\ln\left(\widehat{\gamma}_{k_2}\widehat{\mu}_{i_2}\right)]\\ &\approx \widehat{\gamma}_{k_1}\widehat{\mu}_{i_1}\widehat{\gamma}_{k_2}\widehat{\mu}_{i_2}\mathsf{Cov}[\ln\left(\widehat{\gamma}_{k_1}\widehat{\mu}_{i_1}\right),\ln\left(\widehat{\gamma}_{k_2}\widehat{\mu}_{i_2}\right)].\end{aligned}$$

The last covariance term can be estimated by the inverse of the Fisher information matrix ${f I}$

$$\mathsf{Cov}[\widehat{\gamma}_{k_1}\widehat{\mu}_{i_1},\widehat{\gamma}_{k_2}\widehat{\mu}_{i_2}] \approx \widehat{\gamma}_{k_1}\widehat{\mu}_{i_1}\widehat{\gamma}_{k_2}\widehat{\mu}_{i_2}\left(\mathbf{I}^{-1}\right)_{(i_1,k_1),(i_2,k_2)}.$$

Poisson-Model

2021-04-26

-Ultimate uncertainty of the Poisson-Model

(3/3)

Estimator 5.5 (of the ultimate uncertainty)

Remark 5.6

• The ultimate uncertainty of a single accident period i can be estimated by

$$\widehat{\mathrm{mse}}\left[\widehat{C}_{i,J}^{\mathsf{Poi}}\right] \approx \underbrace{\sum_{k=I-i+1}^{J} \widehat{\gamma}_k \widehat{\mu}_i}_{\mathrm{random \ error}} + \underbrace{\sum_{k_1, k_2=I-i+1}^{J} \widehat{\gamma}_{k_1} \widehat{\mu}_i \widehat{\gamma}_{k_2} \widehat{\mu}_i \left(\mathbf{I}^{-1}\right)_{(i,k_1),(i,k_2)}}_{\mathrm{parameter \ error}}.$$

- Using the Fisher information matrix for the estimation of the parameter error is a standard approach in the theory of generalised linear models (GLMs). An introduction to generalised linear models can be found in [23].
- The inverse of the Fisher information matrix is a standard output of most GLM-software.

Poisson-Model

2021-04-26

-Ultimate uncertainty of the Poisson-Model

(1/2)

The Poisson-Model as generalised linear model (GLM)

In order to deal with GLMs it is not necessary to know the underlying distribution exactly. It is enough to assume that it belongs to the 'exponential dispersion family' and that all $S_{i,k}$ are independent with

$$\mathsf{E}[S_{i,k}] = \mathsf{Var}[S_{i,k}] = \gamma_k \mu_i.$$

Overdispersed Poisson-Model

The restriction on the variance to be equal to the expectation can be softened by taking

$$\mathsf{E} ig[S_{i,k} ig] = \gamma_k \mu_i$$
 and $\mathsf{Var} ig[S_{i,k} ig] = \varphi_k \gamma_k \mu_i$

where $\varphi_k > 0$ is called the dispersion parameter. The estimates for the future development are the same as for the Poisson-Model, but the estimates for the ultimate uncertainty will change.

Poisson-Model

-Generalised linear models and reserving

The Poisson-Model as generalised linear model (GLM

In order to deal with GLMs it is not necessary to know the underlying distribution exactly. It is enough to assume that it belongs to the 'exponential dispersion family' and that all $S_{i,k}$ are independent with

 $E[S_{i,k}] = Var[S_{i,k}] = \gamma_k \mu_i$

Overdispersed Poisson-Mod

The restriction on the variance to be equal to the expectation can be softened by taking

 $\mathsf{E}[S_{i,k}] = \gamma_k \mu_i \qquad \text{and} \qquad \mathsf{Var}[S_{i,k}] = \varphi_k \gamma_k \mu_i,$

where $\varphi_k > 0$ is called the dispersion parameter. The estimates for the future development are the same as for the Poisson-Model, but the estimates for the ultimate uncertainty will change.

GLMs in general

In general we could assume that

$$\mathsf{E}\big[S_{i,k}\big] = x_{i,k} \qquad \text{and} \qquad \mathsf{Var}\big[S_{i,k}\big] = \frac{\varphi_{i,k}}{\omega_{i,k}} V(x_{i,k}),$$

where

- $\varphi_{i,k} > 0$ are the dispersion parameters (unknown),
- $\omega_{i,k}>0$ are known weights in order to compensate for different volumes and
- $V(\cdot)$ is an appropriate variance function.

Poisson-Model

2021-04-26

-Generalised linear models and reserving

GLMs in general In general we could assume that $E[S_{i,k}] = x_{i,k}$ and $Var[S_{i,k}] = \frac{\varphi_{i,k}}{\omega_{i,k}}V(x_{i,k})$, where • $\varphi_{1,k} > 0$ are the dispersion parameters (unknown), + $\omega_{i,k} > 0$ are known weights in order to compensate for different volumes and V(·) is an appropriate variance function.

Literature

[23] McCullagh, P. and Nelder, J.A. Generalised Linear Models. Chapman & Hall, London, 1989.

Literature

[23] McCullagh, P. and Nelder, J.A. Generalised Linear Models. Chapman & Hall, London, 2009 Stochastic Reserving Lecture 10 Bootstrapping

René Dahms

ETH Zurich, Spring 2021

5 May 2021 Jürg Schelldorfer is standing in

(Last update: 26 April 2021)

2021-04-26

Stochastic Reserving Lecture 10 Bootstrapping

René Dahms

ETH Zurich, Spring 2021

5 May 2021 Jürg Schelldorfer is standing in

(Last update: 26 April 2021)

6 Bootstrap for CLM

- 6.1 Motivation
- 6.2 Chain-Ladder method and bootstrapping, variant 1
- 6.3 Bootstrapping Chain-Ladder step by step, variant 1
- 6.4 Chain-Ladder method and bootstrapping, variant 2
- 6.5 Bootstrapping Chain-Ladder step by step, variant 2
- 6.6 Possible problems with bootstrapping
- 6.7 Parametric vs. non-parametric bootstrap
- 6.8 Literature

Lecture 10: Table of contents

6 Bootstrap for CLM

6 Bootstrap for CLM 6.1 Motivation 6.2 Chinis-Ludder method and bootstrapping, variant 1 6.3 Bootstrapping Chain-Ludder strap by strap, variant 1 6.4 Chain-Ludder method and bootstrapping 6.5 Bootstrapping Chain-Ludder strap by strap, variant 2 6.6 Panalitis problems with bootstrapping 6.7 Panalitis problems with bootstrapping 6.1 Limitation

Approximation by the empirical distribution (resampling)

- Let $g(\mathbf{\Phi})$ be a (bounded) real function depending on the random vector $\mathbf{\Phi} = (\Phi_m)_{0 \le m \le M}$.
- We are interested in the distribution P of g.
- Resampling: Assume we know the distribution of Φ then we could sample an independent sequence $(\varphi^n)^{0 \le n \le N} = (\varphi^n_m)^{0 \le n \le N}_{0 \le m \le M}$ and approximate P by the empirical distribution

$$\mathsf{P^{emp}}(g \leq x) := \frac{\mathsf{number of } \varphi^n \text{ with } g(\varphi^n) \leq x}{N+1}$$

• Unfortunately, instead of the distribution of Φ we often only know a single realisation $(\varphi_m)_{0 \le m \le M}$.

If the function g is 'nice enough' it is well known that the empirical distribution converges to P in some sense.
 If φ_m are realisations of i.i.d. random variables one could take (φ_{π_m})_{0≤m≤M}, with some π ∈ {0, 1, ..., M}^{M+1}, instead of independent realisations of Φ, which leads us to

non-parametric bootstrap.

2021-04-26

Basic idea behind bootstrapping

- parametric bootstrap:
 - st make an assumption about the distribution family for ${m arPsi}$
 - * use the observation $(arphi_m)_{0\leq m\leq M}$ to estimate the corresponding parameters
 - resample
- non-parametric bootstrap:

Use the empirical distribution ${\sf P}_M$ generated by resampling the observation $(\varphi_m)_{0\leq m\leq M},$ i.e.

 $\mathsf{P}_M(g \le x)$

:

$$= \frac{\text{number of vectors } \pi \in \{0, 1, \dots, M\}^{M+1} \text{ with } g\left((\varphi_{\pi_m})_{0 \le m \le M}\right) \le x}{(M+1)^{M+1}}.$$

Parametric bootstrap:

- Which distribution family should we take?
- The estimation of the parameters of the underlying distribution of \varPhi based on a single observation is very uncertain.

Non-parametric bootstrap:

- In most cases the number $(M + 1)^{M+1}$ is too large. So instead of calculating all combinations, we use resampling replacement to approximate the emirical distribution.
- In some cases it is possible to prove that P_M converges in some sense to P as M goes to infinity. For instance, if Φ has independent identical distributed bounded components and

$$g((\Phi_m)_{0 \le m \le M}) := \frac{1}{\sqrt{M+1}} \sum_{m=0}^{M} \Phi_m.$$

The flying words 'to bootstrap' comes from

'to pull oneself up by one's bootstraps'

In our case we want to get the whole distribution by the observation of one realisation.

How to combine the Chain-Ladder method and bootstrapping

We have to find random variables, which

- can be assumed to be i.i.d. and
- define the reserves.

It goes back to the fairy tale by Baron Munchausen who claimed to saved himself from being drowned in a swamp by pulling on his own hair.

Recapitulation

Let $C_{i,k} := \sum_{j=0}^{k} S_{i,j}$. If we have i')^{CLM} $E[S_{i,k+1} | \mathcal{B}_{i,k}] = f_k C_{i,k}$, ii')^{CLM} $\operatorname{Var}[S_{i,k+1} | \mathcal{B}_{i,k}] = \sigma_k^2 C_{i,k}$ and iii')^{CLM} accident periods are independent. Then $\widehat{S}_{i,k} := \widehat{f}_{k-1}(1 + \widehat{f}_{k-2}) \cdot \ldots \cdot (1 + \widehat{f}_{I-i})C_{i,I-i}$ with $\widehat{f}_k := \sum_{i=0}^{I-1-k} \frac{C_{i,k}}{\sum_{i=0}^{I-1-k} C_{i,k}} \frac{S_{i,k+1}}{C_{i,k}}$

are \mathcal{D}_{I-i} -conditional unbiased estimators of $S_{i,k}$, for $I - i < k \leq J$.

Therefore, we get

$$S_{i,k+1} = f_k C_{i,k} + \sqrt{\sigma_k^2 C_{i,k}} \underbrace{\frac{S_{i,k+1} - f_k C_{i,k}}{\sqrt{\sigma_k^2 C_{i,k}}}}_{=: \mathbf{\Phi}_{i,k}},$$

where $\boldsymbol{\Phi}_{i,k}$ have mean zero and variance one.

We can look at $S_{i,k}$ as function of $\boldsymbol{\Phi} := \left(\boldsymbol{\Phi}_{i,k}\right)_{i+k < I, k < J}$ and some starting values, for instance $(C_{i,0})_{0 \le i \le I}$.

Bootstrap for CLM

-Chain-Ladder method and bootstrapping, variant 1

- In the last formula we still have some unknown parameters, i.e. f_k and σ_k^2 .
- $\pmb{\Phi}_{i,k}$ are the Pearson residuals.
- Some of the Pearson residuals have to be ignored, because they cannot have the same distribution like all other residuals. For instance:
 - $\pmb{\Phi}_{I,J-1}$ in the case where I = J, because it is equal to zero (deterministically).
 - all $\Phi_{i,k}$ for all development periods k where we know that all claims will be closed. For those k the residuals are deterministic and equal to zero.

(1/3)

Step 1: Chain-Ladder method

claim property: $S_{i,k}$ estimated development factors: \widehat{f}_k estimated variance parameters: $\widehat{\sigma}_k^2$

$S_{i,k}$	0	1	2	3	ultimate	reserve
0	100	100	50	0	250	0
1	300	190	88	0	578	0
2	100	85	37	0	222	37
3	200	150	70	0	420	220
\widehat{f}_k	0.75	0.2	0		1470	257
$\widehat{\sigma}_k^2$	6.67	0.70	0.09			

Step 2: Residuals

Pearson residuals inclusive variance adjustment:

$$\varphi_{i,k} := \frac{S_{i,k+1} - \widehat{f}_k C_{i,k}}{\sqrt{\widehat{\sigma}_k^2 C_{i,k}}} \sqrt{\frac{I-k}{I-k-1}}$$

correction by the empirical mean:

$$\begin{split} \varphi_{i,k}^* &:= \varphi_{i,k} - \frac{1}{\frac{I(I-1)}{2} - 1} \sum_{i+k < I, k < I-1} \varphi_{i,k} \\ &= \varphi_{i,k} - 0.24 \end{split}$$

	$arphi_{i,k}$	0	1	2	3
	0	1.29	1.19		
	1	-1.04	-0.76		
	2	0.51			
	3				
	$oldsymbol{arphi}_{i,k}^{*}$	0	1	2	3
-	$arphi^*_{i,k} = 0$	0 1.05	1 0.95	2	3
	$arphi^*_{i,k} \ 0 \ 1$	0 1.05 -1.28	1 0.95 -1.00	2	3
-	$arphi^*_{i,k} = egin{array}{c} arphi^*_{i,k} & arphi^*_{1,k} & arph$	0 1.05 -1.28 0.28	1 0.95 -1.00	2	3

Bootstrap for CLM

Bootstrapping Chain-Ladder step by step, variant 1

- No residuals for development periods k, where $\hat{\sigma}_k^2$ has to be approximated.
- Although $\Phi_{i,k}$ has zero mean and variance equal to one, its estimate $\varphi_{i,k}$ doesn't. The reason for this is that we do not know the parameters f_k and σ_k and use some estimators instead. Lets assume we know σ_k^2 and take the variance minimizing weights $w_{i,k}$:

$$\begin{aligned} &\operatorname{Var}\left[\frac{S_{i,k+1} - \hat{f}_k C_{i,k}}{\sqrt{\sigma_k^2 C_{i,k}}} \middle| \mathcal{D}_k \right] = \frac{1}{\sigma_k^2 C_{i,k}} \left(\operatorname{Var}\left[S_{i,k+1} \middle| \mathcal{D}_k\right] - 2C_{i,k} \operatorname{Cov}\left[S_{i,k+1}, \hat{f}_k \middle| \mathcal{D}_k\right] + C_{i,k}^2 \operatorname{Var}\left[\hat{f}_k \middle| \mathcal{D}_k\right] \right] \\ &= \frac{1}{\sigma_k^2 C_{i,k}} \left(\sigma_k^2 C_{i,k} - 2C_{i,k} \operatorname{Cov}\left[S_{i,k+1}, w_{i,k} \frac{S_{i,k+1}}{C_{i,k}} \middle| \mathcal{D}_k\right] + C_{i,k}^2 \sum_{h=0}^{I-k-1} \frac{w_{h,k}^2}{C_{h,k}^2} \operatorname{Var}\left[S_{h,k+1} \middle| \mathcal{D}_k\right] \right) \\ &= \left(1 - \underbrace{2 \frac{C_{i,k}}{\sum_{h=0}^{I-k-1} C_{h,k}}}_{w_{i,k} = \frac{C_{i,k}}{\sum_{h=0}^{I-k-1} C_{h,k}}}_{w_{i,k} = \frac{C_{i,k}}{\sum_{h=0}^{I-k-1} C_{h,k}}} \right) = \left(1 - \frac{C_{i,k}}{\sum_{h=0}^{I-k-1} C_{h,k}} \right) < 1 \end{aligned}$$
Therefore, we could take

$$\left(1 - \frac{C_{i,k}}{\sum_{h=0}^{I-k-1} C_{h,k}}\right)^{-1}$$

as variance adjustment factor. But since we don't know the variance parameter σ_k^2 we take $\sqrt{\frac{I-k}{I-k-1}}$ instead. This insures that $\begin{bmatrix} I & I-k-1 \\ \sum Var[n] & \sum Var[n] & I \end{bmatrix} = 1$ around due here σ_k^2

$$\frac{1}{I-k}\sum_{i=0}^{I-k-1} \operatorname{Var}\!\left[\boldsymbol{\varphi}_{i,k} \middle| \mathcal{D}_k\right] = 1 \qquad \text{provided we know } \sigma_k^2.$$

Step 3: Resampled residuals (non-parametric bootstrap)								
ant of mail-	$oldsymbol{arphi}_{i,k}^{*}$	0	1	2	3			
set of residuals:	0	0.28	-1.00	1.05				
	1	-1.00	0.95	-1.00				
$\{-1.28, -1.00, 0.28, 0.95, 1.05\}$	2	1.05	0.28	-1.28				
[1.20, 1.00, 0.20, 0.00, 1.00]	3	-1.28	0.28	0.95				

Step 4a: Resampled triangle and Chain-Ladder method without process variance

$S^* \cdot - S$		$S^*_{i,k}$	0	1	2	3	ultimate	reserve
$D_{i,0} = D_{i,0}$		0	100	82	25	4	211	0
$S^* = -\widehat{f} C^* + \sqrt{\widehat{c}^2 C^*} c^*$	i + h < I	1	300	184	114	13	611	13
$\mathcal{S}_{i,k+1} = \mathcal{J}_k \mathcal{O}_{i,k} + \sqrt{\mathcal{O}_k \mathcal{O}_{i,k} \varphi_{i,k}},$	$i + \kappa \ge 1$	2	100	100	42	5	247	47
C^* $\hat{L}^* C^*$	the Los T	3	200	146	72	9	428	228
$S_{i,k+1} := J_k \cup_{i,k},$	$i + \kappa > 1$	\widehat{f}_k^*	0.73	0.21	0.02		1497	288

Step 4b: Resampled triangle and Chain-Ladder method with process variance

$S_{i,0}^* := S_{i,0}$	$S_{i,k}^*$	0	1	2	3	ultimate	reserve
1,0	0	100	82	25	4	211	0
$S^*_{i,j} = \widehat{f}_i C^*_{i,j} + \sqrt{\widehat{\sigma}_i^2 C^*_{i,j}} i+k \leq 1$	1	300	184	114	6	604	6
$\mathcal{O}_{i,k+1}$. $\mathcal{O}_{k}\mathcal{O}_{i,k} + \sqrt{\mathcal{O}_{k}\mathcal{O}_{i,k}}\mathcal{P}_{i,k}$, $\ell + \ell \ell \leq 1$	2	100	100	45	-1	244	44
$G^* = \widehat{f^*} G^* = \sqrt{\widehat{\sigma}^2 G^*} G^* = i + h > i$. 3	200	103	77	15	394	194
$S_{i,k+1} := J_k C_{i,k} + \sqrt{\sigma_k C_{i,k} \varphi_{i,k}}, i+k > 1$	\widehat{f}_k^*	0.73	0.21	0.03		1453	244

		10.	0			2 1	
et of residuals:		_	- 43		33	1.05	
			-1.0	0 0	95	1.00	
$\{-1.28, -1.00, 0.28, 0.95, 1.05\}$					ς.		
Step 4a: Resampled triangle and Chain	Ladde	r met	hod w	rithou	t pro	cess var	ance
	81.	•	1	2	1	abimate	11100
5,0:=5,0		100	82	23	4	211	
Street Control PC at intering	1	300	184	114	11	611	
and the state of t		130	100	- 2	- 2	247	
$S_{i,k+1}^{*} := \overline{f}_{k}^{*}C_{i,k}^{*}, i+k > I$	-	200			-		~
	- 74		0.31	0.00		1440	
Step 4b: Resampled triangle and Chain	-Ladde	r meti	hod v	rith p	rocer	is varian	
$S_{-}^{*} := S_{-}$	24	0	1	2	1	abimate	-
1.0 1.0		330	82	25	4	211	
$S_{1,k+1}^{*} := f_{k}C_{1,k}^{*} + \sqrt{\beta_{k}^{2}C_{1,k}^{*}}\varphi_{1,k}^{*}, i+k \leq I$	- 5	300	184	114	- 5	808	
			200	- 22	- 22		
		200	-				5

In the case of parametric bootstrap we use the residuals in order to fit a distribution and use this distribution to get the resampled residuals.

Step 5: Repeat steps 3 and 4 and collect the resulting reserves

Reserves without process variance (sorted): Reserves with process variance (sorted):

$\{145, 146, 148, 1$	156, 156, 157, 159	, 165, 166, 167,
168, 168,		, 345, 346,
347, 347, 347, 3	349, 351, 352, 354	$,355,357,357\}$

$\{90, 106, 106, 1$	108, 116, 119, 122,	123, 124, 124,
129, 131,		, 375, 375,
375, 380, 380,	384, 388, 394, 395,	396, 397, 403}

©R. Dahms (ETH Zurich, Spring 2021)

Bootstrap for CLM

Bootstrapping Chain-Ladder step by step, variant 1

- without process variance: σ^2 represents the squared parameter estimation error
- with process variance: σ^2 represents the sum of the squared parameter estimation error and the process variance
- in this example the mean of the empirical distribution is almost equal to the Best Estimate of the Chain-Ladder method
- Other variants of bootstrap methods are
 - other starting values, for instance the last known diagonal,

$$- S_{i,k+1}^* := \widehat{f}_k^* \overline{C}_{i,k} + \sqrt{\widehat{\sigma}_k^2 C_{i,k}} \varphi_{i,k}^*$$

6 Bootstrap for CLM

Recapitulation: (overdispersed) Poisson-Model

If we have

i)^{Poi} $S_{i,k}$ are independent random variables, ii)^{Poi} the distribution of $S_{i,k}$ belongs to the exponential dispersion family and iii)^{Poi} $\operatorname{Var}\left[S_{i,k}\right] = \vartheta_k \operatorname{E}\left[S_{i,k}\right] = \vartheta_k \gamma_k \mu_i$. Then $\widehat{S}_{i,k} := \widehat{\gamma}_k \widehat{\mu}_i$, where $\widehat{\gamma}_k$ and $\widehat{\mu}_i$ solve (5.1) and $\sum_{k=0}^J \widehat{\gamma}_k = 1$, are unbiased estimators of $S_{i,k}$, for $I - i < k \leq J$.

Therefore, we get

$$S_{i,k} = \gamma_k \mu_i + \sqrt{\gamma_k \mu_i} \underbrace{\frac{S_{i,k} - \gamma_k \mu_i}{\sqrt{\gamma_k \mu_i}}}_{=: \mathbf{\Phi}_{i,k}},$$

where $\boldsymbol{\Phi}_{i,k}$ have mean zero and variance ϑ_k . We can look at $S_{i,k}$ as function of $\boldsymbol{\Phi} := (\boldsymbol{\Phi}_{i,k})_{i+k \leq I, i \leq I, k \leq J}$.

• In the last formula we still have some unknown parameters, i.e. γ_k , μ_i and ϑ_k .

Step 1: Chain-Ladder method (Poisson-Model)

	$S_{i,k}$	0	1	2	3	ultimate $(\widehat{\mu}_i)$	reserve
claim property: $S_{i,h}$	0	100	100	50	0	250	0
actimated payment pattern: $\hat{\alpha}$	1	300	190	88	0	578	0
estimated payment pattern. γ_k	2	100	85	37	0	222	37
estimated ultimate: $\hat{\mu}_i$	3	200	150	70	0	420	220
	$\widehat{\gamma}_k$	0.48	0.36	0.17	0.00	1470	257

Step 2: Residuals

Residuals inclusive variance adjustment:	$arphi_{i,k}$	0	1	2	3
$\boldsymbol{\varphi}_{i,k} := \frac{S_{i,k} - \widehat{\gamma}_k \widehat{\mu}_i}{\sqrt{\widehat{\gamma}_k \widehat{\mu}_i}} \underbrace{\sqrt{\frac{I - k}{\sum_{h=0}^{I-k} \frac{\left(S_{h,k} - \widehat{\gamma}_k \widehat{\mu}_h\right)^2}{\widehat{\gamma}_k \widehat{\mu}_h}}}_{=:\sqrt{\widehat{\vartheta}_k}}$	0 1 2 3	-1.48 1.26 -0.47	1.13 -1.14 0.64	1.18 -0.78	
correction by the empirical mean:	$oldsymbol{arphi}_{i,k}^{*}$	0	1	2	3
1 5	0	-1.52	1.09	1.14	
$arphi^*_{i,k} := arphi_{i,k} - rac{1}{(I+2)(I+1)}$ $\sum arphi_{i,k}$	1	1.22	-1.19	-0.82	
$\frac{1}{2} = 2 i + k \leq I, i < I, k < I$	3	-0.51	0.00		
$= arphi_{i,k} - 0.04$		1			

©R. Dahms (ETH Zurich, Spring 2021)

Stochastic Reserving Bootstrap for CLM Bootstrapping Chain-Ladder step by step, variant 2

- No residual for (i, k) = (I, 0), because it is equal to zero (deterministically).
- Although $\Phi_{i,k}$ has zero mean and variance equal to ϑ_k , its estimate $\varphi_{i,k}$ doesn't. The reason for this is that we do not know the parameters f_k and σ_k and use some estimators instead. The variance adjustment

$$\sqrt{\widehat{\vartheta}_{k}} = \sqrt{\frac{I-k}{\sum_{h=0}^{I-k} \frac{\left(S_{h,k} - \widehat{\gamma}_{k}\widehat{\mu}_{h}\right)^{2}}{\widehat{\gamma}_{k}\widehat{\mu}_{h}}}}$$

ensures that the empirical variance equals one, i.e. that

$$\frac{1}{I-k} \sum_{i=0}^{I-k} (\varphi_{i,k}^* - 0)^2 = 1.$$

Step 3: Resampled residuals (non-parametric bootstrap)

ant of uncidentia	$oldsymbol{arphi}_{i,k}^{*}$	0	1	2	3
set of residuals.	0	-0.51	-1.19	-1.52	1.09
	1	1.22	1.09	-1.19	-0.82
$\{-152 - 119 - 082 - 051 060 109 114 122\}$	2	-1.52	-0.51	1.22	-1.19
[1.02, 1.10, 0.02, 0.01, 0.00, 1.00, 1.11, 1.22]	3	1.22	-0.51	1.09	1.14

Step 4a: Resampled triangle and Chain-Ladder method without process variance

		$S_{i,k}^*$	0	1	2	3	ult. $(\widehat{\mu}_i^*)$	reserve
		0	107	69	22	0	198	0
$S_{i,k}^{\star} := \gamma_k \mu_i + \sqrt{\vartheta_k \gamma_k \mu_i \varphi_{i,k}^{\star}},$	$i+k \leq I,$	1	233	235	73	0	541	0
S * → ⇒ ⇒ ÷ ÷ ÷ ÷	i + h > I	2	72	71	21	0	164	21
$\mathcal{D}_{i,k} := \gamma_k \mu_i ,$	$i + \kappa > 1$	3	237	216	67	0	520	283
		$\widehat{\gamma}_k^*$	0.44	0.36	0.11	0.00	1423	304

Step 4b: Resampled triangle and Chain-Ladder method with process variance

	$S_{i,k}^*$	0	1	2	3	ultimate	reserve
$S^* := \widehat{\alpha}_1 \widehat{\mu}_1 + \sqrt{\widehat{\beta}_1} \widehat{\alpha}_2 \widehat{\mu}_2 o^* \qquad i+k < I$	0	107	69	22	0	198	0
$\mathcal{D}_{i,k} = \gamma_k \mu_i + \sqrt{\mathcal{D}_k \gamma_k \mu_i \varphi_{i,k}}, i + \kappa \leq 1,$	1	233	235	73	0	541	0
	2	72	71	50	0	193	50
$S_{i,k}^* := \gamma_k^* \mu_i^* + \sqrt{\vartheta_k \gamma_k \mu_i \varphi_{i,k}^*}, i+k > I$	3	237	200	87	0	525	288
	$\widehat{\gamma}_k^*$	0.44	0.36	0.11	0.00	1456	337

				Y	•	- 1	3	
let of residuals:				0	4.82	-118	110	1.09
				1	1.22	1.09	1.18	0.82
$\{-1.52, -1.19, -0.82\}$	-0.51, 0.60, 1.09	1.14, 1	1.22}	2	1.83	-0.84	1.22	1.10
				- 1	1.33	-0.80	1.08	1.14
Step 4a: Resampled	triangle and Ch	ain-Lac	ider r	netho	d wit	hout p	mocess v	anian ce
		2.	0	1	2	1	-ah. (27)	
		0	227	69	22	0	298	
$2C^{*} = J^{*}h^{*} + \Lambda h^{*}J^{*}h$	$(\varphi_{ik}, i+k \le k)$	1	211	235	71	•	545	
St. := 5727.	1+4>1		72	71	- 25		264	- 2
The second second		- 1	217	234	67		\$23	28
		- 5	D.64	0.39	0.11	0.00	1421	30
Step 4b: Resampled	triangle and Ch	ais-Las	dder r	netho	d wit	h proc	ass varia	ince
	-	S.,	0	1	2	1	white the	-
r	1	0	721	60	22	0	144	
NY Julya + A and July	WATE LANDY	1	211	235	71	•	541	
A		2	72	71	50	•	195	50
$g_{1k} = g_{kl} + \sqrt{g_{kl}}$	$k_i \varphi_{i,k}^{*}$, $i+k > 1$	- 1	217	200	37		121	268

In the case of parametric bootstrap we use the residuals in order to fit a distribution and use this distribution to get the resampled residuals.

Step 5: Repeat steps 3 and 4 and collect the resulting reserves

Reserves without process variance (sorted): Reserves with process variance (sorted):

$\{139, 153, 154, 1$	155, 157, 157, 1	61, 162, 164, 165
166, 166,		, 378, 380,
381, 384, 385, 3	386, 387, 388, 3	89,400,402,447}

$\{86, 92, 95,$	97, 99, 101, 102, 1	05, 109, 111,
117, 117,		,420,427,
428, 430, 432.	,449,451,459,460	,466,472,481}

©R. Dahms (ETH Zurich, Spring 2021)

2021-04-26

Bootstrap for CLM

Bootstrapping Chain-Ladder step by step, variant 2

- without process variance: σ^2 represents the squared parameter estimation error
- with process variance: σ^2 represents the sum of the squared parameter estimation error and the process variance
- in this example the mean of the empirical distribution is almost equal to the Best Estimate of the Chain-Ladder method
- Another version of bootstrapping is to take

$$S_{i,k}^* := \widehat{\gamma}_k^* \widehat{\mu}_i^* + \sqrt{\widehat{\vartheta}_k \widehat{\gamma}_k^* \widehat{\mu}_i^*} \varphi_{i,k}^*, \quad i+k > I.$$

Possible problems with bootstrapping

- Following the bootstrap idea strictly would imply that instead applying the standard Chain-Ladder method automatically we had to hire some experienced reserving actuaries and let them estimate the reserves for each resampled triangle.
- If the mean of the resampled empirical distribution is not equal to the Best-Estimate we have to rescale
 - * each resampled outcome individually or
 - * the resampled empirical distribution
- Exclude non-random areas otherwise the resulting variance will be too small. For example, if we know that all claims will be settled after 10 years we should exclude all residuals (all deterministic and equal to zero) after development year 10.
- We may exclude resampled triangles which are not possible. For instance, if we have payments without subrogation then we know that all payments will be non-negative. Therefore, we may exclude resampled triangles with negative entries.

Possible problems with bootstrapping

- Following the bootstrap idea strictly would imply that instead applying the standard Chain-Ladder method automatically we had to hire some experienced reserving actuaries and let them estimate the reserves for each resempted triangle.
- If the mean of the resampled empirical distribution is not equal to the Best-Estimate we have to rescale
 each meanpled outcome individually or
 - each resampled outcome individually
 the resampled empirical distribution
- Exclude non-random areas otherwise the resulting variance will be too small. For ocample, if we know that all claims will be settled after 10 years we should exclude all residuals (all deterministic and equal to zero) after development year 10.
- We may exclude resampled triangles which are not possible. For instance, if we have payments without subrogation then we know that all payments will be non-negative. Therefore, we may exclude resampled triangles with negative entries.

In the case of the last bullet point it could even happen that the cumulative payments get negative.
Bootstrapped probabilities (inclusive process variance) of both variants Variant 1 (ResQ output) Variant 2 (ResQ output)

The bootstrapped distribution using variant 1 looks a bit too symmetric. Therefore, I would prefer variant 2 in this case.

©R. Dahms (ETH Zurich, Spring 2021)

2021-04-26

- Bootstrap for CLM
 - -Possible problems with bootstrapping

Parametric bootstrap

- We can resample triangles with extreme behaviour even if we only observe very small residuals.
- We have to make an assumption about the distribution of the reserves.

Non-parametric bootstrap

- If we only observe very small residuals the bootstrapped empirical distribution may be too 'nice'. We may underestimate uncertainties.
- We do not have to make an assumption about the distribution of the residuals.

Up to now there is no proof that either of the presented bootstrapping variants converge in some sense to the real distribution of the reserves. On the contrary there are empirical studies, where

- a Poisson distribution was chosen to generate a triangle
- the resulting bootstrap distribution and the real distribution of the reserves has been compared

The results indicate, that the uncertainty may be underestimated by bootstrapping.

Literature

- [24] Efron, B. and Tibshirani, R.J. An Introduction to the Bootstrap. Chapman & Hall, NY, 1993.
- [25] England, P.D. and Verrall, R.J.

Analytic and bootstrap estimates of prediction errors in claims reserving. *Insurance: Math. Econom.*, 25(3):281–293, 1999.

[26] England, P.D. and Verrall, R.J.

Stochastic claims reserving in gerneral insurance. British Actuarial Journal, 8(3):443–518, 2002.

Literature

[24] Efron, B. and Täubinani, R.J. An Introduction to the Eccentrap. Chapman & Hall, NY, 1993.

England, P.D. and Verrall, R.J.

Analytic and boottrap estimates of prediction errors in claims reserving. Insurance: Math. Econom., 25(3):281-293, 1999.

[28] England, P.D. and Verrall, R.J. Stochastic claims reserving in general insurance. *British Actuarial Journal*, 8(3):443–538, 2022. Stochastic Reserving Lecture 11 Mid-Year Reserving

René Dahms

ETH Zurich, Spring 2021

12 May 2021 (Last update: 26 April 2021)

2021-04-26

Stochastic Reserving Lecture 11 Mid-Year Reserving

René Dahms

ETH Zurich, Spring 2021

12 May 2021 (Last update: 26 April 2021)

7 Mid year reserving

7.1 Problem of mid-year reserving

7.2 Methods for mid-year reserving

- 7.2.1 Splitting or shifting of development periods
- 7.2.2 Extrapolation of the last diagonal
- 7.2.3 Shifting accident periods
- 7.2.4 Splitting of accident periods
- 7.2.5 Separating semesters
- 7.2.6 Separating the youngest semester
- 7.3 Conclusion
- 7.4 Literature

Lecture 11: Table of contents

7 Mid year reserving 7.1 Problem of mid-pare reserving 7.2 Hothook for mid-year reserving 7.2.1 Sptting, or shifting at development pariotic 7.2.1 Sptting, or shifting at development 7.2.4 Sptting, of accident periods 7.2.4 Sptinting, of accident periods 7.2.5 Supporting the youngut summers 7.2.4 Concision 7.4 Literature

Chain-Ladder method at year end

		developm 12 (0)	ent month 24 (1)	(periods) 36 (2)
eriods) O	,	100 	$f_1 = 2.5 \qquad f_1 = 250$	=1.4 → 350
nt years (pe T		200	500	700
accide 5		260	650	910

Chain-Ladder assumptions (Mack [22]):

- $\mathsf{E}[C_{i,k+1}|\mathcal{B}_{i,k}] = f_k C_{i,k}$
- Var $[C_{i,k+1}|\mathcal{B}_{i,k}] = \sigma_k^2 C_{i,k}$
- independent accident years (periods)

Chain-Ladder method at mid-year

- additional semester of experience
- new cells are incomplete
- \Rightarrow years are not comparable
- \Rightarrow Chain-Ladder will not work.

Mid year reserving

2021-04-26

-Problem of mid-year reserving

Problems

- forecast or closing
 - * If the method produces estimates for a closing the second semester of the latest accident year is missing for a forecast estimate.
 - * If the method produces estimates for a forecast the estimated ultimate for the latest accident year contains the estimate for the second semester, which has to be eliminated for a mid-year closing.
- generalisation to other dates during the year
- consistency at year end
- usability:
 - * discussion of the claims development result
 - * comparability of observed development factors
 - comparability of estimated development factors
 - * estimation error (ultimate and solvency uncertainties)
 - additional workload

If we have estimates for a forecast of the next year end closing then the estimated ultimate for the latest accident year contains the corresponding second semester. Usually, this has to be eliminated from the estimates if we want to use it for a mid-year closing (under USGAAP, PAA under IFRS 17 and many other accounting standards). Such an elimination is not always easy. Often one looks in the history to get an 'first to second semester ratio' which is then applyed at the forecast estimate of the latest accident year.

But one has to be careful. For instance, assume we expect one large claim per accident year. What do we do at end of June if

- we already observed one large claim for the latest accident year?
 - We should not transfer any part of this large claim into the second semester!
 - Should we account for the posibility of another large claim via IBNe/yR?
- we have not observed any large claim for the latest accident year?
 - How much of the IBNe/yR for large claims should we take into account for the first semester?

Assume we have complete data for each semester

©R. Dahms (ETH Zurich, Spring 2021)

For the numerical example we took for each accident semester the following non-random development pattern $% \left({{\left[{{{\rm{s}}_{\rm{m}}} \right]}_{\rm{m}}} \right)$

development month	6	12	18	24	30	36	42	
cumulative	25	75	100	150	175	175	175	
incremental	25	50	25	50	25	0	0	

and accident semester volumes

accident semester	1H 0	2H 0	1H 1	2H 1	1H 2	2H 2	1H 3
volume	1	1	2	2	2.6	2.6	3

We take this easy and non-random example in order to illustrate issues and possible solutions. A more realistic example with random data would make it much harder to understand the effects. Moreover, we cannot expect that a method will work fine in practice, if it fails (to some degree) for such an easy example.

Problem 7.1 (Mid-year reserving)

What can we do at the end of the first semester in order to estimate reserves that correspond to the reserves at year end, which are estimated by Chain-Ladder on the basis of the 12x12 triangle (12 accident months within on accident period and the same for development periods)?

2021-04-26

-Mid year reserving LProblem of mid-year reserving

Problem 7.1 (Mid-year reserving)

What can we do at the end of the first semester in order to estimate reserves that correspond to the reserves at year end, which are estimated by Chain-Ladder on the basis of the 12x12 triangle (12 accident months within on accident period and the same for development periods)?

7.2 Methods for mid-year reserving
 7.2.1 Splitting or shifting of development periods

Step by step

Results

- Ultimate: PY = 1960, CY = 1050, Total = $3010 \checkmark$ for forecasts
- Reserves: PY = 505, CY = 975, Total = 1480
- The development factors in the third triangle are the products of two corresponding development factors of the second, i.e.

$$7 = 4 \cdot \frac{7}{4}, \qquad \frac{13}{7} = \frac{10}{7} \cdot \frac{13}{10}, \qquad \frac{14}{13} = \frac{14}{13} \cdot 1.$$

(1/2)

From an ultimate point of view, it does not matter if we look at development periods

- 6, 12, 18, 24 ..., or
- 6, 18, 30 ...

7 Mid year reserving	7.2 Methods for mid-year reserving └── 7.2.1 Splitting or shifting of development periods
----------------------	--

Properties

- results in a forecast
- easy to generalise to other dates during the year $oldsymbol{\ominus}$
- it is consistent with the yearly Chain-Ladder at year end, because shifting and splitting results in the same (estimated) ultimates ☺
- usability:
 - * claims development result can be discussed ${igedown i}$
 - * observed and estimated development factor can only be compared if we use split development periods, but this goes along with much larger triangles
 - * although, in theory the estimated prediction errors are the same for split and shifted data in practice often less values for split data are
 - observed 😕
 - split data triangles can get very huge, for instance for a forecast at the end of November

(2/2)

	Stochastic Reserving
26	Mid year reserving
4	Methods for mid-year reserving
<u>L</u>	
202	

 $=\sigma$,*2

Denote by $C_{i,k}$ the cumulative values for accident year i at the end of development semester k and by $C_{i,k}^*$ the cumulative values for accident year i at the end of development year k. Moreover, let

$$\mathcal{B}_{i,k} := \sigma\left(C_{i,j}, \ 0 \le j \le k\right) \qquad \text{and} \qquad \mathcal{B}_{i,k}^* := \sigma\left(C_{i,j}^*, \ 0 \le j \le k\right)$$

the corresponding information of the past. Then we have

$$C^*_{i,k} = C_{i,2k+1}$$
 and $\mathcal{B}^*_{i,k} \subseteq \mathcal{B}_{i,2k+1}$

Assume that the semester data $C_{i,k}$ satisfies the Chain-Ladder assumptions, i.e.

- $\mathbf{E}[C_{i,k+1}|\mathcal{B}_{i,k}] = f_k C_{i,k}$
- Var $[C_{i,k+1}|\mathcal{B}_{i,k}] = \sigma_k^2 C_{i,k}$
- accident years are independent.

Then $C_{i,k}^*$ satisfies the Chain-Ladder assumptions, too:

$$\begin{split} \bullet & \mathbf{E}\Big[C_{i,k+1}^{*} \Big| \mathcal{B}_{i,k}^{*}\Big] = \mathbf{E}\Big[\mathbf{E}\Big[C_{i,2(k+1)+1} \Big| \mathcal{B}_{i,2k+1}\Big] \Big| \mathcal{B}_{i,k}^{*}\Big] = \mathbf{E}\Big[f_{2k+2}f_{2k+1}C_{i,2k+1} \Big| \mathcal{B}_{i,k}^{*}\Big] = f_{2k+2}f_{2k+1}C_{i,k}^{*} \\ \bullet & \operatorname{Var}\Big[C_{i,k+1}^{*} \Big| \mathcal{B}_{i,k}^{*}\Big] = \mathbf{E}\Big[\operatorname{Var}\Big[C_{i,2(k+1)+1} \Big| \mathcal{B}_{i,2k+2}\Big] \Big| \mathcal{B}_{i,k}^{*}\Big] + \operatorname{Var}\Big[\mathbf{E}\Big[C_{i,2(k+1)+1} \Big| \mathcal{B}_{i,2k+2}\Big] \Big| \mathcal{B}_{i,k}^{*}\Big] \\ & = \mathbf{E}\Big[\sigma_{2k+2}^{2}C_{i,2k+2} \Big| \mathcal{B}_{i,k}^{*}\Big] + \operatorname{Var}\Big[f_{2k+2}C_{i,2k+2} \Big| \mathcal{B}_{i,k}^{*}\Big] \\ & = \sigma_{2k+2}^{2}\mathbf{E}\Big[\mathbf{E}\big[C_{i,2k+2} \Big| \mathcal{B}_{i,2k+1}\Big] \Big| \mathcal{B}_{i,k}^{*}\Big] \\ & \quad + f_{2k+2}^{2}\left(\operatorname{Var}\Big[\mathbf{E}\big[C_{i,2k+2} \Big| \mathcal{B}_{i,2k+1}\big] \Big| \mathcal{B}_{i,k}^{*}\Big] + \mathbf{E}\Big[\operatorname{Var}\big[C_{i,2k+2} \Big| \mathcal{B}_{i,k+1}\big] \Big| \mathcal{B}_{i,k}^{*}\Big] \Big) \\ & = \sigma_{2k+2}^{2}f_{2k+1}C_{i,k}^{*} + f_{2k+2}^{2}(0 + \sigma_{2k+1}^{2}C_{i,k}^{*} + G_{2k+2}^{*}f_{2k+1} + f_{2k+2}^{2}\sigma_{2k+1}^{2}\Big) C_{i,k}^{*} \end{split}$$

accident years are independent.

But in practice one often observes $\sigma_k^{\,*2} > \sigma_{2k+2}^2 f_{2k+1} + f_{2k+2}^2 \sigma_{2k+1}^2$

7.2 Methods for mid-year reserving 7.2.2 Extrapolation of the last diagonal

(1/2)

Step by step

Results

- Ultimate: PY = 1960, CY = 1050, Total = $3010 \checkmark$ for forecasts
- Reserves: PY = 505, CY = 975, Total = 1480
- The estimated development factors in the third triangle are almost the best predictions of the corresponding estimates of the following year end closure, based on the information available at end of June.

- −Mid year reserving └──Methods for mid-year reserving

end closure, based on the information available at end of June

7 Mid year reserving 7.2 Methods for mid-year reserving 7.2 Extrapolation of the last diagonal
--

Properties

- results in a forecast
- easy to generalise to other dates during the year 🙂
- it is consistent (end in some way almost optimal) with the yearly Chain Ladder at year end ^(C)
- usability:
 - 🔹 claims development result can be discussed 🙂
 - observed and estimated development factor of the third triangle are the same as at year end
 - since ultimates are the same as for split or shifted development periods, the same estimates for prediction errors can be used
 - st not so easy to implement with standard reserving software $oldsymbol{\Theta}$

(2/2)

Properties
- each to a format
- or any agrounding to other datas during the pare
- it is a cancilated for some way dense optimulty with the pare). Claim
- it is a cancilated for some way dense optimulty with the pare). Claim
- is a constrained or advectory of the soft of the soft integras are to
- in a constrained or advectory of the soft of the soft integras are to
- in a constrained or advectory of the soft of the soft integras are to
- in a constrained or advectory of the soft of the soft integras are to
- in a constrained or advectory of the soft of the soft integras are to
- in a constrained or advectory of the soft of the soft integras are to
- in a constrained or advectory of the soft of the soft integras are to
- in a constrained or advectory of the soft o

Using the same notation like in the case of split development periods we get

$$\begin{split} \hat{f}_k &= \frac{\sum_{i=0}^{I-k} \hat{C}^*_{i,k+1}}{\sum_{i=0}^{I-k} C^*_{i,k}} = \frac{\sum_{i=0}^{I-k-1} C^*_{i,k+1} + \hat{f}^{hy}_{2k+2} C_{I-k,2k+2}}{\sum_{i=0}^{I-k} C^*_{i,k}} \\ &= \frac{\sum_{i=0}^{I-k-1} C^*_{i,k}}{\sum_{i=0}^{I-k-1} C^*_{i,k}} \hat{f}^{ye}_k + \left(1 - \frac{\sum_{i=0}^{I-k-1} C^*_{i,k}}{\sum_{i=0}^{I-k} C^*_{i,k}}\right) \frac{C_{I-k,2k+2}}{C_{I-k,2k+1}} \hat{f}^{hy}_{2k+2}. \end{split}$$

That means the estimated development factors \hat{f}_k are a weighted mean of the estimated development factors \hat{f}_k^{ye} from last year end closing and the newly observed development $\frac{C_{I-k,2k+2}}{C_{I-k,2k+1}}$ multiplied by the estimated development of the second half year \hat{f}_{2k+2}^{hy} .

Moreover, one can show that the weights $\frac{\sum_{i=0}^{I-k-1} C_{i,k}^*}{\sum_{i=0}^{I-k} C_{i,k}^*}$ are almost the best weights α_k in order to forecast the

estimated development factors \widehat{f}_k^{ye+1} of the next year end closing, i.e. α_k that minimize (see [27] for details)

$$\mathsf{E}\bigg[\left((1-\alpha_k)\widehat{f}_k^{ye} + \alpha_k \frac{C_{I-k,2k+2}}{C_{I-k,2k+1}}\widehat{f}_{2k+2}^{hy} - \widehat{f}_k^{ye+1}\right)^2 \bigg| C_{i,j} \text{ known at end of June}\bigg]$$

7.2.3 Shifting accident periods

Step by step

Results

- Ultimate: "PY" = 1505, "CY" = 980, Total = 2514 (2485)
- Reserves: "PY" = 245, "CY" = 710, Total = 994 (955)
- correct values in red
- · should give estimates for closings, but only if 'volumes are stable'

2021-04-26

-Mid year reserving —Methods for mid-year reserving

S	
F	kesults Ultimate: "PY" = 1505, "CY" = 980, Total = 2514 (2485) Reserves: "PY" = 245, "CY" = 710, Total = 994 (955)
	 correct values in red should give estimates for closings, but only if 'unlumes are stable'

Properties

- results in closing figures, but only if 'volumes are stable'
- easy to generalise to other dates during the year igvee
- it is not consistent with the yearly Chain Ladder at year end 😑
- usability:
 - * a discussion of the claims development result is almost impossible 😣 😣
 - observed and estimated development factors at mid year and at year end are not alike
 - * estimation errors can be estimated by the standard formulas ${igodot}$
 - * may be useful in a merger and acquisition process at mid year, if no other information except for triangles are available

The method is inconsistent with the yearly Chain-Ladder for the same reasons as the method of split accident years, see next method (subsection 11.2.4).

Step by step

Results

- Ultimate: PY = 1960, CY = 525, Total = 2485 (\checkmark for closings)
- Reserves: PY = 505, CY = 450, Total = 955
- should give estimates for closings, but only if 'volumes are stable'

2021-04-26

-Mid year reserving —Methods for mid-year reserving

7 Mid year reserving	7.2 Methods for mid-year reserving └ 7.2.4 Splitting of accident periods	(2/2)

Properties

- results in closing figures, but only if 'volumes are stable'
- easy to generalise to other dates during the year igodot
- it is, except for strange situation, not consistent with the yearly Chain Ladder at year end
- Usability:
 - * claims development result can be discussed ${igedown i}$
 - observed and estimated development factor can only be compared if we always use the same split, but this goes along with much larger triangles
 - uncertainties can be estimated by standard formulas
 - split data triangles can get very huge, for instance for a estimation at the end of November

	Stochastic Reserving
-26	Mid year reserving
-04	Methods for mid-year reserving
2021	

· results in closing figures, but only if 'volumes are stable easy to generalise to other dates during the year · it is, except for strange situation, not consistent with the yearly Chain Ladder at year end 😔 Usability: · claims development result can be discussed Q · observed and estimated development factor can only be compared if we always use the same split, but this goes along with much larger triangles · split data triangles can get very huge, for instance for a estimation at the and of November 🔒

Denote by $C_{i,k}$ the cumulative values for accident semester i at the end of development semester k and by $C_{i,k}^*$ the cumulative values for accident year i at the end of development year k. Moreover, let

$$\mathcal{B}_{i,k} := \sigma\left(C_{i,j}, \ 0 \leq j \leq k\right) \qquad \text{and} \qquad \mathcal{B}^*_{i,k} := \sigma\left(C^*_{i,j}, \ 0 \leq j \leq k\right)$$

the corresponding information of the past. Then we have

$$C^*_{i,k} = C_{2i,2k+1} + C_{2i+1,2k} \qquad \text{and} \qquad \mathcal{B}^*_{i,k} \subseteq \sigma \left(\mathcal{B}_{2i,2k+1} \cup \mathcal{B}_{2i+1,2k} \right)$$

Assume that $C_{i,k}$ and $C_{i,k}^*$ satisfy the Chain-Ladder assumptions, i.e.

• $\mathbf{E}[C_{i,k+1}|\mathcal{B}_{i,k}] = f_k C_{i,k}$ • Var $[C_1, \dots, [R_{n-1}] = \sigma^2 C$

$$\operatorname{Var}\left[\mathbb{C}_{i,k+1} | \mathcal{B}_{i,k} \right] = \sigma_k \mathbb{C}_{i,k}$$

accident semester are independent.

•
$$\mathsf{E}\left[C_{i,k+1}^* \middle| \mathcal{B}_{i,k}^*\right] = g_k C_{i,k}^*$$

• $\mathsf{Var}\left[C_{i,k+1}^* \middle| \mathcal{B}_{i,k}^*\right] = \tau_i^2 C_i^*$

- $|O_{i,k+1}|O_{i,k}| = r_k O_{i,k}$
- accident years are independent.

Then we get: 9

$$\begin{aligned} & \mathcal{L}_{k}(C_{2i,2k+1} + C_{2i+1,2k}) = g_{k}C_{i,k}^{*} = \mathsf{E}\Big[C_{2i,2(k+1)+1} + C_{2i+1,2(k+1)}\Big|\mathcal{B}_{i,k}^{*}\Big] \\ & = \mathsf{E}\Big[\mathsf{E}\Big[C_{2i,2(k+1)+1} + C_{2i+1,2(k+1)}\Big|\mathcal{B}_{2i,2k+1}, \mathcal{B}_{2i+1,2k}\Big]\Big|\mathcal{B}_{i,k}^{*}\Big] \\ & = \mathsf{E}\Big[f_{2k+2}f_{2k+1}C_{2i,2k+1} + f_{2k+1}f_{2k}C_{2i+1,2k}\Big|\mathcal{B}_{i,k}^{*}\Big]. \end{aligned}$$
(7.1)

Therefore, it follows

$$0 = (g_k - f_{2k+2}f_{2k+1})\mathsf{E}[C_{2i,2k+1}|\mathcal{D}] + (g_k - f_{2k+1}f_{2k})\mathsf{E}[C_{2i+1,2k}|\mathcal{D}],$$
(7.2)

for each σ -algebra $\mathcal{D} \subseteq \mathcal{B}_{i k}^*$.

	Stochastic Reserving
-26	Mid year reserving
-04	Methods for mid-year reserving
021	

Moreover, multiplying (7.1) by $(C_{2i,2k+1} + C_{2i+1,2k})$, resorting the terms and using (7.2) we get and

$$0 = (g_k - f_{2k+2}f_{2k+1})\mathsf{Var}\big[C_{2i,2k+1}\big|\mathcal{D}\big] + (g_k - f_{2k+1}f_{2k})\mathsf{Var}\big[C_{2i+1,2k}\big|\mathcal{D}\big] + (g_k - f_{2k}f_{2k})\mathsf{Var}\big[C_{2i+1,2k}\big|\mathcal{D}\big] + (g_k - f_{2k}f_{2k})\mathsf{Var}\big[C_{2k}f_{2k},\mathsf{Var}\big] + (g_k - f_{2k}f_{2k})\mathsf{Var}\big[C_{2k}f_{2k},\mathsf{Var}\big] + (g_k - f_{2k}f_{2k})\mathsf{Var}\big[C_{2k}f_{2k},\mathsf{Var}\big] + (g_k - f_{2k}f_{2k})\mathsf{Var}\big] + (g_k - f_{2k}f_$$

which is only possible if

- Var $[C_{i,k}] = 0$, which means that there is no randomness,
- $f_{2k+2} = f_{2k}$, which in practice implies $f_{2k+2} = f_{2k+1} = f_{2k} = 1$, or

$$\frac{\mathsf{Var}[C_{2i,2k+1}|\mathcal{D}]}{f_{2k}\mathsf{Var}[C_{2i+1,2k}|\mathcal{D}]} = -\frac{g_k - f_{2k+1}f_{2k}}{f_{2k}(g_k - f_{2k+2}f_{2k+1})} = \frac{\mathsf{E}[C_{2i,2k+1}|\mathcal{D}]}{f_{2k}\mathsf{E}[C_{2i+1,2k}|\mathcal{D}]} = \frac{\mathsf{E}[C_{2i,0}]}{\mathsf{E}[C_{2i+1,0}]}$$

where the last equation is true, because the second term is independent of the σ -algebra D and we can take the trivial σ -algebra. This means, first and second semesters are alike (not only in expectation, but also in expectation conditioned to all information of the past) up to a fixed factor.

All theses cases are very strange circumstances.

- -Mid year reserving —Methods for mid-year reserving

- · results in closing figures, but only if 'volumes are stable'
- easy to generalise to other dates during the year
- + it is, except for strange situation, not consistent with the yearly Chain Ladder at year end \varTheta
- Usability:
- · claims development result can be discussed Q
- · observed and estimated development factor can only be compared if we always use the same split, but this goes alone with much larger triangles. uncertainties can be estimated by standard formulas
- · split data triangles can get very huge, for instance for a estimation at the end of November
Step by step

Results

- Ultimate: PY = 1960, CY = 525, Total = $2485 \checkmark$ for closings
- Reserves: PY = 505, CY = 450, Total = 955

2021-04-26

-Mid year reserving └─Methods for mid-year reserving

7 Mid year reserving

Properties

- results in closing figures
- easy to generalise to other dates during the year Θ
- even at year end you will get different reserves looking at accident year or accident semesters
- usability:
 - * claims development result can be discussed Θ
 - * observed and estimated development factors at mid year and at year end are only comparable if we always use separated data
 - * standard formulas for estimating uncertainties will not work, because they cannot reflect dependencies (which in addition have to be specified)

between the triangles 😣

 we may end up with a lot of triangles, for instance at the end of November

Mid year reserving

2021-04-26

Methods for mid-year reserving

Poppet: - evalue in closing figures - even to generative to other during the year - even at year only out of efforts reserves looking at accident year - even the event of the event of the event of the event - even the event of the event of the event of the even of a - even of the event of the event of the even of a year of a - even of the event of the event of the even of the even of a - even of the event of the event of the even of the

□ 7.2.6 Separating the youngest semester

Step by step

Results

- Ultimate: PY = 1960, CY = 525, Total = 2485 \checkmark for closings
- Reserves: PY = 505, CY = 450, Total = 955

(1/2)

2021-04-26

-Mid year reserving └─Methods for mid-year reserving

7 Mid year reserving 7.2 Methods for mid-year reserving 7.2 Methods for mid-year reserving 7.2 Methods for mid-year reserving	
--	--

Properties

- resulting in closing figures
- easy to generalise for other dates during the year igvee
- at year end both triangles are the same and equal to the yearly triangle ⁽¹⁾
- usability:
 - * claims development results can be discussed ${igeepsilon}$
 - observed and estimated development factors for prior years at mid year and at year end are comparable ⁽²⁾
 - * standard formulas for estimating uncertainties will not work, because they cannot reflect dependencies (which in addition have to be specified)

between the triangles 😣

* not so easy to implement with standard reserving software

(2/2)

- -Mid year reserving
 - -Methods for mid-year reserving

- · resulting in closing figures • easy to generalise for other dates during the year 😡
- at year end both triangles are the same and equal to the yearly triangle
- usability:
- claims development results can be discussed 😡 · observed and estimated development factors for prior years at mid year and
- at year end are comparable 😡 · standard formulas for estimating uncertainties will not work, because they cannot reflect dependencies (which in addition have to be specified) between the triangles
- · not so easy to implement with standard reserving software

method	forecast or closing	generalisation to other dates	methodology consistent with year end	estimates consistent at year end	analysis of claims development result	dev. factors comparable to year end	estimation of uncertainties	workload
splitting development years	forecast	(√)	?	 Image: A start of the start of	 Image: A set of the set of the	×	(🗸)	can get huge
shifting development periods	forecast	\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark
extrapolating last diagonal	forecast	(√)	\checkmark	\checkmark	\checkmark	\checkmark	(🗸)	(√)
shifting accident periods	closing	\checkmark	×	\checkmark	×	×	\checkmark	\checkmark
splitting accident years	closing	(√)	×	×	\checkmark	×	(🗸)	can get huge
separation semesters	closing	(√)	?	×	\checkmark	×	×	can get huge
separating youngest semesters	closing	(√)	?	\checkmark	\checkmark	\checkmark	×	\checkmark

- (√) stands for 'yes, but' and refers to possible huge triangles, cannot be implemented (easily) in standard reserving software or other reasons
- My favourite for mid-year closings is the separation of the youngest semester, because
 - estimated ultimates (and the CDR), estimated development factors as well as observed development factors are comparable with year end figures based on yearly triangles
 - with some tricks it can be implemented in most standard reserving software
 - uncertainties should anyway be estimated separately
- My favourite for forecasts is the shifting of development periods, because
 - it can be implemented in most standard reserving software, which is not the case for the (correct) extrapolation of the last diagonal, which I would prefer if I had to implement a software

Literature

[27] René Dahms.

Chain-ladder method and midyear loss reserving. *ASTIN Bulletin*, 48(1):3–24, 2018.

Literature

[27] Bank Dahme. Chain-ladder method and midyear loss meaning. ASTIN Bulletin, 40(1):3–34, 2028.

Stochastic Reserving Lecture 12 CLM: Bayesian & credibility approach

René Dahms

ETH Zurich, Spring 2021

19 May 2021 (Last update: 26 April 2021)

2021-04-26

Stochastic Reserving Lecture 12 CLM: Bayesian & credibility approach

René Dahms

ETH Zurich, Spring 2021

19 May 2021 (Last update: 26 April 2021)

8 CLM: Bayesian & credibility approach

- 8.1 A Bayesian approach to the Chain-Ladder method
- 8.2 A credibility approach to the Chain-Ladder method
- 8.3 Example
- 8.4 Literature

Lecture 12: Table of contents

8 CLM: Bayesian & credibility approach 8.1 A Bayesian approach to the Chain-Ladder method 8.2 A credibility approach to the Chain-Ladder method 8.3 Example 8.4 Literature

Recapitulation of the Chain-Ladder method

Let
$$C_{i,k} := \sum_{j=0}^{k} S_{i,j}$$
. If we have
i) CLM $E[C_{i,k+1}|\mathcal{B}_{i,k}] = f_k C_{i,k}$,
ii) CLM $Var[C_{i,k+1}|\mathcal{B}_{i,k}] = \sigma_k^2 C_{i,k}$ and
iii) CLM accident periods are independent.
Then $\widehat{C}_{i,k+1} := \widehat{f}_k \cdot \ldots \cdot \widehat{f}_{I-i} C_{i,I-i}$ with
 $\widehat{f}_k := \sum_{i=0}^{I-1-k} \frac{C_{i,k}}{\sum_{h=0}^{I-1-k} C_{h,k}} \frac{C_{i,k+1}}{C_{i,k}}$

are \mathcal{D}_{I-i} -conditional unbiased estimators of $C_{i,k}$, for $I-i \leq k < J$.

But

this is only true if we assume that the development factors f_k are fixed. We now want to look at the Chain-Ladder method where they are assumed to be realisations of random variables φ_k with $\mathsf{E}[\varphi_k] = f_k.$ We denote by

$$\boldsymbol{\varphi} := (\varphi_0, \ldots, \varphi_{J-1})$$

the corresponding collections of all random development factors.

Note, everything will stay correct if we replace $\mathcal{B}_{i,k}$ with \mathcal{D}_k^{i+k} and skip the independence assumption.

Assumption 8.A (Bayesian Chain-Ladder method)

We assume that

$$\begin{array}{l} \mathrm{i})^{Bay} & \mathsf{E}[C_{i,k+1}|\varphi,\mathcal{B}_{i,k}] = \varphi_k C_{i,k}, \\ \mathrm{ii})^{Bay} & \mathsf{Var}[C_{i,k+1}|\varphi,\mathcal{B}_{i,k}] = \sigma_k^2(\varphi) C_{i,k}, \\ \mathrm{iii})^{Bay} & \textit{conditional given } \varphi \textit{ the accident periods are independent and } \\ \mathrm{iv})^{Bay} & \textit{For any selection } u_k \in \{1,\varphi_k,\varphi_k^2,\sigma_k^2(\varphi)\} \textit{ we have } \end{array}$$

$$\mathsf{E}[u_0 \cdot \ldots \cdot u_{J-1} | \mathcal{D}] = \mathsf{E}[u_0 | \mathcal{D}] \cdot \ldots \cdot \mathsf{E}[u_{J-1} | \mathcal{D}],$$

where \mathcal{D} is any claim information \mathcal{D}^n , \mathcal{D}_k , \mathcal{D}_k^n or $\mathcal{D}^n \cap \mathcal{D}_k$.

Remark 8.1

- We assume that the variance parameters σ_k^2 may depend on the random development factors φ .
- Conditionally given φ we have a standard Chain-Ladder method with development factors φ_k and variance parameters $\sigma_k^2(\varphi)$.

Note, everything will stay correct if we replace $\mathcal{B}_{i,k}$ with \mathcal{D}_k^{i+k} and skip the independence assumption.

Definition 8.2 (Bayes estimators)

Let Z be a random variable and \mathcal{D} some σ -algebra (for instance the information contained in some observations). The Bayes estimator Z^{Bay} of Z given \mathcal{D} is defined by

$$Z^{Bay} := \mathsf{E}[Z|\mathcal{D}].$$

Corollary 8.3

If Z^2 is integrable then the Bayes estimator is the D-measurable estimator that minimizes the conditionally, given D, mean squared error of prediction, i.e.

$$Z^{Bay} = \underset{\widehat{Z}}{\operatorname{argmin}} \mathsf{E}\Big[(Z - \widehat{Z})^2 \Big| \mathcal{D}\Big].$$

Estimator 8.4 (of the future outcome)

Under Assumption 8.A we get

$$C_{i,k+1}^{Bay} := \mathsf{E}\big[C_{i,k+1}|\mathcal{D}^I\big] = \mathsf{E}\big[\varphi_k|\mathcal{D}^I\big] \cdots \cdot \mathsf{E}\big[\varphi_{I-i}\big|\mathcal{D}^I\big]C_{i,I-i} =: \varphi_k^{Bay} \cdots \cdot \varphi_{I-i}^{Bay}C_{i,I-i}$$

CLM: Bayesian & credibility approach

A Bayesian approach to the Chain-Ladder method

- The corollary is true, because the conditional expectation is the orthogonal projection onto the subspace of all \mathcal{D} measurable functions (within the space of all square integrable functions).
- Proof of Estimator 8.4:

$$\begin{split} C^{Bay}_{i,k+1} &= \mathsf{E}\Big[C_{i,k+1}|\mathcal{D}^I\Big] = \mathsf{E}\Big[\mathsf{E}\Big[C_{i,k+1}|\varphi,\mathcal{D}^I\Big]\Big|\mathcal{D}^I\Big] \\ &= \underbrace{\mathsf{E}\Big[\varphi_k\cdot\ldots\cdot\varphi_{I-i}C_{i,I-i}\big|\mathcal{D}^I\Big]}_{} \end{split}$$

standard CLM for fixed development factors

$$=\underbrace{\mathsf{E}\Big[\varphi_{k}|\mathcal{D}^{I}\Big]\cdot\ldots\cdot\mathsf{E}\Big[\varphi_{I-i}\big|\mathcal{D}^{I}\Big]C_{i,I-i}}_{\mathrm{iv})^{Bay}},$$

Ultimate uncertainty in the Bayesian case

For the mean squared error of prediction of the ultimate outcome we get

$$\begin{aligned} \operatorname{nse}_{\mathcal{D}^{I}}\left[\sum_{i=0}^{I} C_{i,J}^{Bay}\right] &= \operatorname{E}\left[\operatorname{E}\left[\left(\sum_{i=0}^{I} \left(C_{i,J} - C_{i,J}^{Bay}\right)\right)^{2} \middle| \varphi, \mathcal{D}^{I}\right] \middle| \mathcal{D}^{I}\right] \\ &= \operatorname{E}\left[\operatorname{E}\left[\left(\sum_{i=0}^{I} \left(C_{i,J} - \operatorname{E}[C_{i,J}|\varphi, \mathcal{D}^{I}]\right) - \sum_{i=0}^{I} \left(C_{i,J}^{Bay} - \operatorname{E}[C_{i,J}|\varphi, \mathcal{D}^{I}]\right)\right)^{2} \middle| \varphi, \mathcal{D}^{I}\right] \middle| \mathcal{D}^{I}\right] \\ &= \operatorname{E}\left[\sum_{i=0}^{I} \operatorname{Var}[C_{i,J}|\varphi, \mathcal{D}^{I}] + \left(\sum_{i=0}^{I} \left(\operatorname{E}[C_{i,J}|\varphi, \mathcal{D}^{I}] - C_{i,J}^{Bay}\right)\right)^{2} \middle| \mathcal{D}^{I}\right] \\ &= \underbrace{\sum_{i=0}^{I} \operatorname{E}[\operatorname{Var}[C_{i,J}|\varphi, \mathcal{D}^{I}] \middle| \mathcal{D}^{I}]}_{\operatorname{random error}} + \underbrace{\operatorname{E}\left[\left(\sum_{i=0}^{I} \left(\operatorname{E}[C_{i,J}|\varphi, \mathcal{D}^{I}] - C_{i,J}^{Bay}\right)\right)^{2} \middle| \mathcal{D}^{I}\right]}_{\operatorname{parameter error}}.\end{aligned}$$

- - -A Bayesian approach to the Chain-Ladder method

Derivation of the random error

$$\begin{split} \mathsf{E}\big[\mathsf{Var}\big[C_{i,J}|\varphi,\mathcal{D}^{I}\big]\big|\mathcal{D}^{I}\big] = \underbrace{\sum_{k=I-i}^{J-1} \mathsf{E}\!\left[\!\prod_{j=k+1}^{J-1} \varphi_{j}^{2} \sigma_{k}^{2}(\varphi) \prod_{j=I-i}^{k-1} \varphi_{j} \middle| \mathcal{D}^{I}\right] C_{i,I-i}}_{\text{standard CLM, Estimator 2.9}} \\ = \underbrace{\sum_{k=I-i}^{J-1} \prod_{j=k+1}^{J-1} \mathsf{E}[\varphi_{j}^{2}|\mathcal{D}^{I}] \,\mathsf{E}[\sigma_{k}^{2}(\varphi)|\mathcal{D}^{I}]}_{iy)^{Bay}} \prod_{j=I-i}^{k-1} \mathsf{E}[\varphi_{j}|\mathcal{D}^{I}] C_{i,I-i}}. \end{split}$$

Derivation of the parameter error

$$\begin{split} & \mathsf{E} \Biggl[\Biggl(\sum_{i=0}^{I} \left(\mathsf{E} [C_{i,J} | \varphi, \mathcal{D}^{I}] - C_{i,J}^{Bay} \right) \Biggr)^{2} \middle| \mathcal{D}^{I} \Biggr] = \sum_{i_{1},i_{2}=0}^{I} C_{i_{1},I-i_{1}} C_{i_{2},I-i_{2}} \mathsf{Cov} \Biggl[\prod_{k=I-i_{1}}^{J-1} \varphi_{k}, \prod_{k=I-i_{2}}^{J-1} \varphi_{k} \middle| \mathcal{D}^{I} \Biggr] \\ & = \sum_{i_{1},i_{2}=0}^{I} C_{i_{1},I-i_{1}} C_{i_{2},I-i_{2}} \prod_{k=I-(i_{1} \wedge i_{2})}^{I-(i_{1} \wedge i_{2})-1} \mathsf{E} [\varphi_{k} | \mathcal{D}^{I}] \Biggl(\prod_{k=I-(i_{1} \wedge i_{2})}^{J-1} \mathsf{E} [\varphi_{k}^{2} | \mathcal{D}^{I}] - \prod_{k=I-(i_{1} \wedge i_{2})}^{J-1} \mathsf{E} [\varphi_{k} | \mathcal{D}^{I}]^{2} \Biggr). \end{split}$$

parameter error

CLM: Bayesian & credibility approach A Bayesian approach to the Chain-Ladder method

Note: Although accident periods are independent given \mathcal{D}^I and φ they are usually not independent given \mathcal{D}^I .

Problem 8.5

We still have to estimate

 $\mathsf{E}\big[\varphi_k|\mathcal{D}^I\big],\qquad \mathsf{E}\big[\varphi_k^2\big|\mathcal{D}^I\big]\qquad\text{and}\qquad \mathsf{E}\big[\sigma_k^2(\boldsymbol{\varphi})\big|\mathcal{D}^I\big].$

Distribution based models

On solution is to make an assumption on the joint distribution of $(C_{i,k})_{i+k \leq I}$ and φ and than calculate the a posteriori distribution of φ given \mathcal{D}^I , which then can be used to calculate the missing objects.

Credibility approximation

Another way is to look only at estimators \widehat{F}_{k}^{Cred} , which depends in an affine way on the observations $F_{i,k} = \frac{C_{i,k+1}}{C_{i,k}}$.

2021-04-26

-CLM: Bayesian & credibility approach

A Bayesian approach to the Chain-Ladder method

- $\bullet \ \ \, \text{Note, we know } \mathsf{E}\big[\varphi_k\big] = f_k, \ \, \text{but usually } \mathsf{E}\big[\varphi_k\big|\mathcal{D}^I\big] \neq f_k.$
- Even if we have a good model for the joint distribution of $(C_{i,k})_{i+k \leq I}$ and φ , the calculation of posteriori distributions is very hard, since we have only very few data.
- Looking at the credibility estimator instead of the Bayesian estimator means to look at the a orthogonal projection onto the affine subspace of \mathcal{D}^I generated by the link ratios $F_{i,k}$ instead of the projection onto \mathcal{D}^I itself.

Definition 8.6 (Credibility estimators of the development factors) $\widehat{F}_{k}^{Cred} := \operatorname*{argmin}_{\widehat{\varphi}=a_{k}+\sum_{i=0}^{I-k-1}a_{i,k}\frac{C_{i,k+1}}{C_{i,k}}} \mathsf{E}\left[\left(\varphi_{k}-\widehat{\varphi}\right)^{2}\middle|\mathcal{D}^{I}\right].$

Theorem 8.7 (Credibility estimator for the development factors) Let Assumption 8.A be fulfilled. Then

• the credibility estimators of the development factors are given by

• the corresponding mean squared error of prediction is given by

$$\mathsf{mse}_{\mathcal{D}_k} \left[F_k^{Cred} \right] := \mathsf{E} \left[\left(\varphi_k - F_k^{Cred} \right)^2 \middle| \mathcal{D}_k \right] = \alpha_k \frac{\sigma_k^2}{\sum_{i=0}^{I-k-1} C_{i,k}} = (1 - \alpha_k) \tau_k^2.$$

2021-04-26

-CLM: Bayesian & credibility approach

A credibility approach to the Chain-Ladder method

- Conditionally given \mathcal{D}_k , the random variables $F_{i,k} = \frac{C_{i,k+1}}{C_{i,k}}$, $i = 0, \ldots, I k 1$, fulfil the assumptions of the Bühlmann and Straub model (see [29, Section 4.2]). The first part of the theorem is the well known credibility estimator of Bühlmann and Straub and the second part is the corresponding mean square error of prediction (see [29, Chapter 4]).
- The case $\tau_k^2 \rightarrow \infty$, i.e. $\alpha_k = 1$, is called the non-informative priors. It corresponds to the standard Chain-Ladder method introduced in Section 2.
- Since F_k^{Cred} still depends on the unknown expectation $f_k=\mathsf{E}\big[\varphi_k\big]$ we don't mark it with a hat like other estimatior.

Estimator 8.8 (Credibility estimator of the future development)

$$\widehat{C}_{i,k}^{Cred} := \widehat{F}_{k-1}^{Cred} \cdot \ldots \cdot \widehat{F}_{I-i}^{Cred} C_{i,I-i}, \quad \text{for } i+k > I.$$

$$\begin{split} & \text{Estimation of the structural parameters } f_k, \ \sigma_k^2, \ \text{and } \tau_k^2, \ \text{see} \ [29, \ \text{Section 4.8}] \\ & \text{Either ask experts or if we have several similar portfolios } C_{i,k}^m, \ 0 \leq m \leq M, \ \text{we can take} \\ & \widehat{F}_k^{m,Cred} \coloneqq \widehat{\alpha}_k^m \widehat{f}_k^{m,\text{CLM}} + (1 - \widehat{\alpha}_k^m) \widehat{f}_k \quad \text{and} \quad \widehat{C}_{i,k}^{m,Cred} \coloneqq \widehat{F}_{k-1}^{m,Cred} \cdot \ldots \cdot \widehat{F}_{I-i}^{m,Cred} C_{i,I-i}^m \quad \text{with} \\ & \widehat{f}_k \coloneqq \left\{ \begin{array}{l} \frac{\sum_{m=0}^{M} \widehat{\alpha}_k^m \widehat{f}_k^{m,\text{CLM}}}{\sum_{m=0}^{M} \widehat{\alpha}_k^m}, \quad \text{if } \sum_{m=0}^{M} \widehat{\alpha}_k^m <> 0, \\ & \widehat{f}_k^{tot,\text{CLM}} \coloneqq \frac{\omega_{\bullet,k+1}^{\bullet}}{\omega_{\bullet,k}^{\bullet}}, \\ & \widehat{f}_k^{tot,\text{CLM}}, \quad \text{otherwise}, \end{array} \right. \\ & \widehat{\alpha}_k^m \coloneqq \frac{\omega_{\bullet,k}^m}{\omega_{\bullet,k}^m + \frac{\widehat{\sigma}_k^2}{\widehat{\tau}_k^2}} \quad (\coloneqq 0, \ \text{if } \widehat{\tau}_k^2 = 0), \quad c_k \coloneqq \frac{M}{M+1} \left(\sum_{m=0}^{M} \frac{\omega_{\bullet,k}^m}{\omega_{\bullet,k}^{\bullet}} \left(1 - \frac{\omega_{\bullet,k}^m}{\omega_{\bullet,k}^{\bullet}} \right) \right)^{-1}, \\ & \widehat{\tau}_k^2 \coloneqq \max \left\{ 0; c_k \left(\frac{M+1}{M} \sum_{m=0}^{M} \frac{\omega_{\bullet,k}^m}{\omega_{\bullet,k}^{\bullet}} \left(\widehat{f}_k^{m,\text{CLM}} - \widehat{f}_k^{tot,\text{CLM}} \right)^2 - \frac{(M+1)\widehat{\sigma}_k^2}{\omega_{\bullet,k}^{\bullet}} \right) \right\}, \\ & \widehat{\sigma}_k^2 \coloneqq \frac{1}{M+1} \sum_{m=0}^{M} \frac{1}{I-k-1} \sum_{i=0}^{I-k-1} C_{i,k}^m \left(\frac{C_{i,k+1}^m}{C_{i,k}^m} - \widehat{f}_k^{m,\text{CLM}} \right)^2, \\ & \omega_{\bullet,k}^m \coloneqq \sum_{i=0}^{I-k-1} C_{i,k}^m \quad \text{and} \quad \omega_{\bullet,k}^{\bullet} \coloneqq \sum_{m=0}^{M} \omega_{\bullet,k}^m. \end{split}$$

©R. Dahms (ETH Zurich, Spring 2021)

2021-04-26

- CLM: Bayesian & credibility approach
 - -A credibility approach to the Chain-Ladder method

- In the case of non-informative priors, i.e. $\tau_k^2 \to \infty$, the estimators of the future development are the same as for the standard Chain-Ladder method introduced in Section 2.
- $\hat{f}_k^{tot,\mathsf{CLM}} = \frac{\omega_{\bullet,k+1}}{\omega_{\bullet,k}^{\bullet}}$ are the standard estimates of the development factors of the combined portfolio $\sum_{m=0}^M C_{i,k}^m$.
- The factors c_k are normalizing factors that makes the estimators $\hat{\tau}_k$ unbiased (conditioned $\hat{\tau}_k > 0$).

Remark 8.10 (conection to the standard CLM)

In the case of non-informative priors, i.e. $\tau_k^2 \to \infty$, the random error is slightly bigger than in the standard CLM case, whereas the parameter error is the same.

In the case of non-informative pions, i.e. $\tau_k^2 \to \infty$, the random error is slightly bigger than in the mandaed CLM case, whereas the parameter error is the same.

First, like in the Bayesian case, we decompose the mse $mse_{\mathcal{D}I}\left[\sum_{i=0}^{I} C_{i,J}^{Cred}\right] = \underbrace{\sum_{i=0}^{I} \mathbb{E}\left[\operatorname{Var}\left[C_{i,J}|\varphi,\mathcal{D}^{I}\right]|\mathcal{D}^{I}\right]}_{\text{random error}} + \underbrace{\mathbb{E}\left[\left(\sum_{i=0}^{I} \left(\mathbb{E}\left[C_{i,J}|\varphi,\mathcal{D}^{I}\right] - C_{i,J}^{Cred}\right)\right)^{2} \middle|\mathcal{D}^{I}\right]}_{\text{parameter error}}\right]_{\text{parameter error}}$ The random error is the same like in the Bayesian case and for the second term we take the summation out of the expectation. In order to estimate it we take $\mathbb{E}\left[\sigma_{k}^{2}(\varphi)\middle|\mathcal{D}^{I}\right] \approx \sigma_{k}^{2}$ and $\mathbb{E}\left[\varphi_{k}\middle|\mathcal{D}^{I}\right] \approx \widehat{F}_{k}^{Cred}$. Moreover, we estimate $\mathbb{E}\left[\left(\varphi_{j}-\mathbb{E}\left[\varphi_{j}\middle|\mathcal{D}^{I}\right]\right)^{2}\middle|\mathcal{D}^{I}\right] + \left(\mathbb{E}\left[\varphi_{k}\middle|\mathcal{D}^{I}\right]\right)^{2} \approx \widehat{\alpha}_{j}\frac{\widehat{\sigma}_{j}^{2}}{\sum_{i=0}^{I-j-1}C_{i,j}} + \left(\widehat{F}_{j}^{Cred}\right)^{2}$. Finally, we compute $\mathbb{E}\left[\left(\int_{i=0}^{J-1} \mathbb{E}\left[\nabla_{i}^{Cred} - \int_{i=0}^{J-1} \varphi_{i}\right)\right)\left(\int_{i=0}^{J-1} \mathbb{E}\left[\nabla_{i}^{Cred} - \int_{i=0}^{J-1} \varphi_{i}\right)\left(\int_{i=0}^{J-1} \mathbb{E}\left[\nabla_{i}^{Cred} - \int_{i=0}^{J-1} \varphi_{i}\right)\right] = \mathbb{E}\left[\left(\nabla_{i}^{T-1} \mathbb{E}\left[\nabla_{i}^{Cred} - \int_{i=0}^{J-1} \varphi_{i}\right)\right)\left(\nabla_{i}^{T-1} \mathbb{E}\left[\nabla_{i}^{Cred} - \int_{i=0}^{J-1} \varphi_{i}\right)\right] = \mathbb{E}\left[\nabla_{i}^{T-1} \mathbb{E}\left[\nabla_{i}^{Cred} - \nabla_{i}^{T-1} \mathbb{E}\left[\nabla_{i}^{T-1} \mathbb{E}\left[\nabla_{i}^{Cred} - \nabla_{i}^{T-1} \mathbb{E}\left[\nabla_{i}^{T-1} \mathbb{E}\left[\nabla_{i}^{Cred} - \nabla_{i}^{T-1} \mathbb{E}\left[\nabla_{i}^{T-1} \mathbb{E}\left$

$$\begin{split} & \left[\left(\sum_{k=I-i_{1}}^{J-1} F_{k}^{Bay} - \prod_{k=I-i_{1}}^{J-1} F_{k}^{Day} - \prod_{k=I-i_{2}}^{J-1} F_{k}^{Bay} - \prod_{k=I-i_{2}}^{J-1} \varphi_{k} \right) \right| \mathcal{D}^{I} \right] = \mathsf{Cov} \left[\prod_{k=I-i_{1}}^{J-1} \varphi_{k}, \prod_{k=I-i_{2}}^{J-1} \varphi_{k} \right| \mathcal{D}^{I} \right] \\ & = \prod_{k=I-(i_{1} \wedge i_{2})}^{I-(i_{1} \wedge i_{2})-1} \mathsf{E} \Big[\varphi_{k} | \mathcal{D}^{I} \Big] \left(\prod_{k=I-(i_{1} \wedge i_{2})}^{J-1} \mathsf{E} \Big[\varphi_{k}^{2} | \mathcal{D}^{I} \Big] - \prod_{k=I-(i_{1} \wedge i_{2})}^{J-1} \mathsf{E} \Big[\varphi_{k} | \mathcal{D}^{I} \Big]^{2} \right) \end{split}$$

and replace all unknown parameters by they estimates and take the factors $\left(\widehat{C}_{i,J}^{Cred}
ight)^2$ and $\widehat{C}_{i_1,J}^{Cred}\widehat{C}_{i_2,J}^{Cred}$ out.

Pricing of similar subportfolios

- In [28] a example of a portfolio was discussed that consists of six subportfolios, 'BU A'...'BU F'. Results and figures are copied from this article.
- For reserving we would usually combine all six of them to get the law of large numbers more volume to get working.
- But in pricing we need individual premiums for each subportfolio.
- On way to do so is to use the introduced credibility reserving.

BU	rese	rves	\sqrt{mse}		
	CLM	Cred	CLM	Cred	
А	486	504	657	498	
В	235	244	288	402	
C	701	517	411	520	
D	1029	899	844	729	
E	495	621	397	596	
F	40	25	140	149	
sum	2987	2810			
overall CLM	2746		1418		
LSRM	2987		1353		

For LSRM we coupled the individual Chain-Ladder projections by $R_{i,k}^{m_1,m_2} := \sqrt{C_{i,k}^{m_1}}$

2021-04-26

-CLM: Bayesian & credibility approach

- The total reserves differ only by 6%, but per subportfolio the differences are much larger (up to 46%).
- The CLM reserves for the combined portfolio are even smaller.
- The mse of the combined portfolios is about 25 % larger than the sum of the individual ones. This may be a hint that the estimated reserves of the subportfolios are correlated.
- The LSRM leads to almost the same results as the overall CLM.
- In the file 'Example_Cor_Dll.xlsx' (or 'Example_Cor_ActiveX.xlsx'), see Example on slide 147, the CLM and the LSRM estimates are (re)calculated. The presented figures for CLM, which are taken from the original article [28], differ slightly from the recalculated once, because of rounding effects.
Correlation of the estimated reserves

Estimated ultimate uncertainty correlation

				-		
ΒU	A	В	С	D	Е	F
Α	1.00	-0.15	0.01	0.23	-0.17	0.26
В	-0.15	1.00	0.03	0.13	-0.03	-0.00
С	0.01	0.03	1.00	0.04	0.06	-0.05
D	0.23	0.13	0.04	1.00	-0.05	0.09
Е	-0.17	-0.03	0.06	-0.05	1.00	0.03
F	0.26	-0.00	-0.05	0.09	0.03	1.00

We see that at least the estimated reserves for subportfolio BU A are correlated to the others.

2021-04-26

CLM: Bayesian & credibility approach

-Example

BU	A	В	С	D	E	F
A	1.00	-0.15	0.01	0.23	-0.17	0.26
В	-0.15	1.00	0.03	0.13	-0.03	-0.00
c	0.01	0.03	1.00	0.04	0.05	-0.05
D	0.23	0.13	0.04	1.00	-0.05	0.09
E	-0.17	-0.03	0.05	-0.05	1.00	0.03
F	0.26	-0.00	-0.05	0.09	0.03	1.00

Comparison of the estimated development pattern (1/2)

The individual CLM development pattern are smoothed by the credibility approach:

©R. Dahms (ETH Zurich, Spring 2021)

2021-04-26

CLM: Bayesian & credibility approach

-Example

Comparison of the estimated development pattern (2/2)

The credibility approach shifts the individual CLM development pattern into the direction of the overall CLM pattern:

©R. Dahms (ETH Zurich, Spring 2021)

2021-04-26

CLM: Bayesian & credibility approach

-Example

Literature

[28] Aloise Gisler and Mario V. Wüthrich. Credibility for the Chain Ladder Reserving Method. Astin Bull., 38(2):565–600, 2008.

[29] Bühlmann, H. and Gisler, A. A Course in Credibility Theory and its Applications. Universitext, Springer Verlag, 2005.

2021-04-26

CLM: Bayesian & credibility approach

Literature

[28] Aloise Galer and Mario V. Withrich. Credibility for the Chain Ladder Reserving Method. Artin Bull, 38(2) 565-600, 2008. [29] Bühlmann, H. and Galer, A. A Course in Credibility Theory and its Applications.

Stochastic Reserving Lecture 13 Separation of Large and Small Claims

René Dahms

ETH Zurich, Spring 2021

26 April 2021 (Last update: 26 April 2021)

2021-04-26

Stochastic Reserving Lecture 13 Separation of Large and Small Claims

René Dahms

ETH Zurich, Spring 2021

26 April 2021 (Last update: 26 April 2021)

9 Separation of small and large claims

9.1 What is the problem with large claims

9.2 How to separate small from large claims

- 9.2.1 Small and large by latest information
- 9.2.2 Ever and never large by latest information
- 9.2.3 Small and large now
- 9.2.4 Ever and never large up to now
- 9.2.5 Ever large up to now and never large by latest information
- 9.2.6 Attritional and excess
- 9.2.7 Separation methods summary
- 9.3 Estimation methods for small and large claims
- 9.4 Modelling the transition from small to large
- 9.5 Literature

Lecture 13: Table of contents

Separation of small and Large claims
Here is the problem with large plant
Here is the problem with large plant
Second and plant plant plant plant
Second and plant plant
Second and plant plant
Second and plant plant
Second and pl

Increments of incurred losses with individual Chain-Ladder development factors

	included losses of all claims		(ever) large claims excluded
i∖k	0 1 2 3 4	i∖k	0 1 2 3 4
0	296 7.5% 22 -3.0% -10 -4.4% -14 -6.1% -18	0	269 4.4% 12 -3.8% -11 -5.7% -15 -7.9% -20
1	285 <u>1.6</u> % 5 - <u>5.9</u> % -17 - <u>7.2</u> % -20	1	274 <u>1.2</u> % 3 - <u>6.4</u> % -18 - <u>7.5</u> % -19
2	259 <u>4.4</u> % 11 - <u>8.0</u> % -22	2	250 4.5% 11 -8.0% -21
3	277 5.9% 16	3	254 <u>3.3</u> % 8
4	268	4	263

- We see a huge variability within the individual development factors at the first development period.
 - * What are the reasons for this behaviour?
 - * Are the first two exceptional extremes?
 - * How often may they occur? Once in four years or once in 40 years?
- One possible reason is the behaviour of large claims.
- After eliminating all large claims it seems, that only the second observed development factor of the first development period is still out of line.
- Accident period 4 still contains a claim which will become large in three years. But such claims are excluded for accident periods 0 and 1! Therefore accident periods are not comparable!
- The example is taken from [30], but only the first five calendar periods.

- —Separation of small and large claims
 - —What is the problem with large claims

(2/2)

Aims of separating small and large claims

- 1. Get a smooth triangle of small claims.
- 2. Do not transfer too much reserves to the triangle of large claims.

Both aims contradict each other. Therefore, we have to find a good balance.

Aims of separating small and large claims 1. Get a smooth triangle of small claims. 2. Do not transfer too much reserves to the triangle of large claims. Both aims contradict each other. Therefore, we have to find a good balance.

Aim 1. could be easily fulfilled by defining all claims as large. And on the other hand aim 2. could be easily fulfilled by defining all claims as small.

General problems for separating large and small claims

- Should we compare payments or incurred losses with the threshold? In most cases we should take incurred losses, because payments usually exceed the threshold much later.
- The relations used, i.e. " \leq and >" or "< and \geq ".
- Completeness, i.e. no leftovers and no double counting.
- Consistency over time, i.e. are the separate developments of small and large claims comparable over all accident periods?
- Systematic over- or underestimation. This often goes along with the consistency over time.
- The choice of the threshold, in particular in cases where the separation method is not continuous with respect to the threshold.
- Does the separation lead to better estimates of the reserves? Usually, we would like to take large claims out in order to get a smooth but not trivial triangle of small claims, which then can be analysed by standard methods. Not trivial means that still a reasonable amount of reserves belong to small claims.

Terms like large and small claims are not consistently used in practice as well as in the literature. For instance, you could find

- large claim: large loss
 - catastrophic claim (or loss)
 - exceptional claim (or loss)
 - ...

small claims: • small losses

- normal claims (or losses)
- attritional claims (or losses)
- ...

Discussion of various separation methods

In this lecture we want to discuss various methods to separate small and large claims. Moreover, we want to highlight their advantages and drawbacks. In order to do so we will keep life simple and focus on the following deterministic portfolio (see Excel file "Large_and_Small.xlsx"):

- We fix a threshold of 400.
- The portfolio consists of three types of claims:
 - * 100 claims that never exceed the threshold (small claims).
 - * One claim that after some time exceeds the threshold, but will be finally settled below it (large claim 1).
 - * One claim that exceeds the threshold (large claim 2).

We will illustrate each separation method at the example of large claim 1 and discuss the advantages and drawbacks of the separation at the example of Chain-Ladder projections of separate incurred triangles containing small and large claims. Therefore, we denote by X_k the incurred loss of large claim 1 at (development) time k.

Using CLM is adequate, because we deal with a non random portfolio which is constant over time.

Deterministic development of the example portfolio

The development of payments and incurred losses are as follows:

incurred losses	0	1	2	3	4
small claim	10	15	18	18	18
large claim 1	300	700	800	350	350
large claim 2	500	800	900	950	950
paid to date	0	1	2	3	4
paid to date small claim	0 5	1 13	2 18	3 18	4
paid to date small claim large claim 1	0 5 10	1 13 100	2 18 500	3 18 350	4 18 350

Therefore, we expect the following outcome:

AP	paid	incurred	ultimate	reserves	IBN(e/y)R
0	3100	3100	3100	0	0
1	3100	3100	3100	0	0
2	2550	3500	3100	550	-400
3	1500	3000	3100	1600	100
4	510	1800	3100	2590	1300
total	10760	14500	15500	4740	1000

©R. Dahms (ETH Zurich, Spring 2021)

2021-04-26

—Separation of small and large claims

How to separate small from large claims

he development of pay	ments an	d inc	carred	losses	are as	follows		
	curred lo			1	2	3	4	
-	stall d	nic	- 30	15	18	18	18	
	large clai	n 1	300	700	800	350	350	
	large clai	n 2	500	800	900	950	950	
	and the s		i					
-	1000		ž					
	hanne chui		30	100	100	100		
	have chi			100	250	050	050	
Therefore, we expect th	followin	g out	tcome					
10	paid	incu	arred	ultim	ate 1	eserve	101	S(e/y)R
0	3100		3100	21	.00	(0
1	3100		3100	33	.00	0		0
	2550		3500	33	.00	556		-400
2	1500		3000	33	.00	1600		100
2 3					00	2500		1300
2 3 4	510		1800					

cumu	lative in 0	curred lo 1	osses of 2	100 sı 2	mall cla 3	aims 4
0	1000	1500	1800) 1	800	1800
1	1000	1500	1800) 1	800	
2	1000	1500	1800)		
3	1000	1500				
4	1000					
cumu	lative in	curred lo	sses of	large	claim 1	
	0	1	2	3	4	
0	300	700	800	350	350	_
1	300	700	800	350		
2	300	700	800			
3	300	700				
4	300					
cumu	lative in	curred lo	sses of	large	claim 2	2
cumu	lative in 0	curred lo 1	osses of 2	large 3	claim 2 4	2
cumu	lative in 0 500	curred lo 1 800	2 900	large 3 950	claim 2 4 950	<u>-</u>
cumu 0 1	lative in 0 500 500	curred lo 1 800 800	2 900 900	large 3 950 950	claim 2 4 950	2
cumu 0 1 2	lative in 0 500 500 500	curred lo 1 800 800 800	2 900 900 900	large 3 950 950	claim 2 4 950	<u>-</u>
cumu 0 1 2 3	lative in 0 500 500 500 500	2007 2000 2000 2000 2000 2000 2000	900 900 900 900	large 3 950 950	claim 2 4 950	!
cumu 0 1 2 3 4	lative in 0 500 500 500 500 500	curred lo 1 800 800 800 800 800	2 900 900 900 900	large 3 950 950	claim 2 4 950	: —
cumu 0 1 2 3 4 cumu	lative in 0 500 500 500 500 500 lative ind	curred lo 1 800 800 800 800 curred lo	2 900 900 900 900	large 3 950 950 all cla	claim 2 4 950 ims	:
cumu 0 1 2 3 4 cumu	lative in 0 500 500 500 500 500 1ative in 0	curred lo 1 800 800 800 800 800 curred lo 1	2 900 900 900 900	large 3 950 950 all cla	claim 2 4 950 .ims 3	2
cumu 0 1 2 3 4 cumu 0	lative in 0 500 500 500 500 500 lative in 0 1800	curred lo 1 800 800 800 800 curred lo 1 3000	2 900 900 900 900 0sses of : 2 3500	large 3 950 950 950 all cla	claim 2 950 ims 3 100	2
cumu 0 1 2 3 4 cumu 0 1	lative inc 0 500 500 500 500 500 lative inc 0 1800 1800	curred lo 1 800 800 800 800 curred lo 1 3000 3000	2 900 900 900 900 900 900 900 900 900 90	large 3 950 950 all cla	claim 2 4 950 .ims 3 100 100	4 3100
cumu 0 1 2 3 4 cumu 0 1 2	lative inc 0 500 500 500 500 100 1800 1800 1800 1800	curred lo 1 800 800 800 800 curred lo 1 3000 3000 3000	osses of 2 900 900 900 0 0 0 0 0 0 0 0 0 0 0 0	large 3 950 950 950 all cla 3 3	claim 2 4 950 ims 3 100 100	4 3100
cumu 0 1 2 3 4 cumu 0 1 2 3 4 cumu 3 4 cumu 3 4 cumu	lative in 500 500 500 500 500 1ative in 0 1800 1800 1800 1800	curred lo 1 800 800 800 800 curred lo 1 3000 3000 3000 3000	osses of 2 900 900 900 0 0 0 0 0 0 0 0 0 0 0 0	large 3 950 950 all cla	claim 2 4 950 iims 3 100 100	4 3100

cumu	alive	payment	5 101	100 2	man	Claim	5
	0	1		2		3	4
0	500	1300	1	800	18	00	1800
1	500	1300	1	800	18	00	
2	500	1300	1	800			
3	500	1300					
4	500						
cumu	lative	payment	s for	large	clair	n 1	
	0	1	2		3	4	
0	10	100	500	3	50	350	
1	10	100	500	3	50		
2	10	100	500				
3	10	100					
4	10						
cumu	lative	payment	s for	large	clair	n 2	
	0	1	2	-	3	4	
0	0	100	250	95	0	950	-
1	0	100	250	95	0		
2	0	100	250				
3	0	100					
4	0						
cumu	lative	payment	s for	all cla	aims		
	0	1		2		3	4
0	510	1500	2	550	31	.00	3100
1	510	1500	2	550	31	.00	
2	510	1500	2	550			
3	510	1500					
4	510						

aumoulation maximum fau 100 annull alaima

Small and large by latest information: Classification

claim is large at time $k \iff X_I > \text{threshold}$

Behaviour of large claim 1:

- We see that there are no leftovers and no double counting (at any point in time each part is either red or green). \bigcirc
- The classification depends on the estimation date (the colour of each block may change if we look at it one period later). Therefore, accident periods are not comparable, i.e. we don't have consistency over time.
- The separation is not continuous with respect to the threshold. 😣

First idea is to look at the latest information we have about each claim.

9.2 How to separate small from large claims 9.2.1 Small and large by latest information

- We see again that accident periods are not comparable, i.e. we don't have consistency over time.
- We have huge amounts in late development periods within the small triangle, which usually makes projections less stable. The reason for those amounts is the reclassification of a large claim as small in development period 3.

- —Separation of small and large claims
 - How to separate small from large claims

(3/3)

Small and large by latest information: Results

	expected	d results		estimated results			
AP	ultimate	reserves	ultimate	reserves	small res.	large res.	
0	3100	0	3100	0	0	0	
1	3100	0	3100	0	0	0	
2	3100	550	3283	733	-312	1044	
3	3100	1600	3259	1759	172	1588	
4	3100	2590	3106	2596	1542	1054	
total	15500	4740	15848	5088	1402	3686	

• Under- and overestimation. 😣

More than 75% of the reserves belong to the large triangle, which is usually less stable.

Conclusion (pros: 1 🙂 versus cons: 1 😕 and 4 😕 😕)

Do not use the separation method 'small and large by latest information' for the estimation of reserves.

- —Separation of small and large claims
 - How to separate small from large claims

Ever and never large by latest information: Classification

claim is large at time
$$k \iff \max_{j \le I}(X_j) > \mathsf{threshold}$$

Behaviour of large claim 1:

• We see that there are no leftovers and no double counting (at any point in time each part is either red or green). \bigcirc

- The classification depends on the estimation date (the colour of each block may change if we look at it one period later). Therefore, accident periods are not comparable, i.e. we don't have consistency over time.
- The separation is not continuous with respect to the threshold.

In order to get smoother triangles we have to avoid the reclassification of large claims as small. One way to do so is to take all claims as large which have exceeded the threshold at least once.

9.2 How to separate small from large claims ▲ 9.2.2 Ever and never large by latest information

(2/3)

- We see again that accident periods are not comparable, i.e. we don't have consistency over time.
- The triangle of small claims is much smoother.

- —Separation of small and large claims
 - How to separate small from large claims

9.2 How to separate small from large claims └ 9.2.2 Ever and never large by latest information

(3/3)

Ever and never large by latest information: Results

	expected	d results		estimated results			
AP	ultimate	reserves	ultimate	reserves	small res.	large res.	
0	3100	0	3100	0	0	0	
1	3100	0	3100	0	0	0	
2	3100	550	3100	550	0	550	
3	3100	1600	3100	1600	500	1100	
4	3100	2590	3153	2642	1830	813	
total	15500	4740	15553	4792	2330	2463	

• Under- and overestimation. 😕

More than 50% of the reserves belong to the large triangle, which is usually less stable.

Conclusion (pros: 1 \bigcirc \bigcirc and 1 \bigcirc versus cons: 1 \bigotimes and 3 \bigotimes \bigotimes)

Do not use the separation method 'ever and never large by latest information' for the estimation of reserves.

- —Separation of small and large claims
 - How to separate small from large claims

Small and large now: Classification

claim is large at time $k \iff X_k > \text{threshold}$

Behaviour of large claim 1:

• We see that there are no leftovers and no double counting (each part is either red or green).

• The classification does not depend on the estimation date (the colour of each block does not change if we look at it one period later). Therefore, accident periods are comparable, i.e. we have consistency over time.

The separation is not continuous with respect to the threshold.

The separation method 'ever and never large by latest information' may stabilise the triangles. But we still have inconsistent accident periods and therefore an under- or overestimation of reserves. In order to get consistent accident periods we could consider a claim as large at time k if it exceeds the threshold at this time.
9.2 How to separate small from large claims

└ 9.2.3 Small and large now

600

201

Small and large now: Projection

									0 1 2 3	4 0 1	2 3 4
small	0	1	2	3	4	large	0	1	2	3	4
0	1300	200	300	350	0	0	500	1000	200	-750	0
1	1300	200	300	350	0	1	500	1000	200	-750	0
2	1300	200	300	350	0	2	500	1000	200	-750	0
3	1300	200	300	350	0	3	500	1000	200	-750	0
4	1300	200	300	350	0	4	500	1000	200	-750	0
\widehat{f}_k	0.15	0.20	0.19	0.00		\widehat{f}_k	2.00	0.13	-0.44	0.00	

- We see again that accident periods are comparable, i.e. we have consistency over time.
- We have huge amounts in late development periods, which usually makes projections less stable. The reason for those amounts is the reclassification of a large claim as small.

- —Separation of small and large claims
 - How to separate small from large claims

9.2 How to separate small from large claims

└ 9.2.3 Small and large now

Small and large now: Results

	expected	results	estimated results					
AP	ultimate	reserves	ultimate	reserves	small res.	large res.		
0	3100	0	3100	0	0	0		
1	3100	0	3100	0	0	0		
2	3100	550	3100	550	350	200		
3	3100	1600	3100	1600	850	750		
4	3100	2590	3100	2590	1640	950		
total	15500	4740	15500	4740	2840	1900		

No systematic under- or overestimation. 🙂

• Still 40% of the reserves belong to the large triangle, which is usually less stable.

Conclusion (pros: 3 \bigcirc versus cons: 2 \bigotimes and 1 \bigotimes \bigotimes)

Do not use the separation method 'small and large now' for the estimation of reserves.

مغابيمهم الممغ

- —Separation of small and large claims
 - How to separate small from large claims

Ever and never large up to now: Classification

claim is large at time
$$k \Longleftrightarrow \max_{j \leq k} (X_j) > \mathsf{threshold}$$

Behaviour of large claim 1:

• We see that there are no leftovers and no double counting (each part is either red or green).

- The classification does not depend on the estimation date (the colour of each block does not change if we look at it one period later). Therefore, accident periods are comparable, i.e. we have consistency over time.
- The separation is not continuous with respect to the threshold.

Taking the separation method 'large and small now' we get consistent accident periods, but lose some stability of the projection. Therefore, lets try to combine the 'large and small now' with 'ever and never large by latest information'. That means we consider a claim as large at time k if it exceeded the threshold at least once up to time k.

(2/3)

- We see again that accident periods are comparable, i.e. we have consistency over time.
- The triangle of small claims is much smoother, in particular for late development periods. But claims that will become large in the future may have huge changes in incurred losses or payments during the time where they are still small.

- —Separation of small and large claims
 - How to separate small from large claims

Ever and never large up to now: Results

	expected	l results	estimated results						
AP	ultimate	reserves	ultimate	reserves	small res.	large res.			
0	3100	0	3100	0	0	0			
1	3100	0	3100	0	0	0			
2	3100	550	3100	550	0	550			
3	3100	1600	3100	1600	500	1100			
4	3100	2590	3100	2590	1290	1300			
total	15500	4740	15500	4740	1790	2950			

- No systematic under- or overestimation. 🙂
- More than 60% of the reserves belong to the large triangle, which is usually less stable. 🙁 😒

Conclusion (pros: 4 \odot versus cons: 2 \heartsuit and 1 \heartsuit \heartsuit)

If the threshold is chosen carefully, i.e. if not too much reserves are transferred to the large triangle, we can use the separation method 'ever and never large up to now' for the estimation of reserves.

©R. Dahms (ETH Zurich, Spring 2021)

Claims that will become large in the future may have huge changes in incurred losses or payments during the time where they are still small. Therefore, the triangle of small claims may not be so stable as expected.

In order to avoid this behaviour we have to take smaller threshold, which on the other side will transfer more reserves into the triangle of large claims.

(1/4)

Ever large up to now and never large by latest information

- If a claim has huge changes in payments or incurred losses before it exceeds the threshold the first time, it can disturb the triangle of small claims significantly.
- Therefore, 'ever and never large up to now' may not lead to smooth enough triangles of small claims and we would like to take all claims out that have exceeded the threshold at least once, i.e. we would like to use 'never large by latest information'.
- But as we have seen 'ever and never large by latest information' leads to not comparable accident periods and over- or underestimation of reserves.
- A compromise could be to put all claim that 'have never been large by latest information' into the triangle of small claims and all claims that 'were ever large up to now' into the triangle of large claims.
- Although this leads to not comparable accident periods within the triangle of small claims as well as leftovers, the corresponding **systematic overestimation** can often be controlled.

Ever large up to now and never large by latest information

- If a claim has huge changes in payments or incurred losses before it exceeds the threshold the first time, it can disturb the triangle of small claims significantly.
- Therefore, 'ever and never large up to now' may not lead to smooth enough triangles of small claims and we would like to take all claims out that have exceeded the threshold at least once, i.e. we would like to use 'never large by latest information'.
- But as we have seen 'ever and never large by latest information' leads to not comparable accident periods and over- or underestimation of reserves.
- A compromise could be to put all claim that 'have never been large by latest information' into the triangle of small claims and all claims that 'were ever large up to now' into the triangle of large claims.
- Although this leads to not comparable accident periods within the triangle of small claims as well as leftovers, the corresponding systematic overestimation can often be controlled.

The separation method 'ever and never large up to now', which combined the two methods

- ever and never large by latest information
- small and large now

has good properties but may still leave a lot of reserves within the triangle of large claims. On way to get around this is to take the following method.

Ever large up to now and never large by latest information: Classification

claim is large at time
$$k \iff \max_{j \le k}(X_j) >$$
 threshold
claim is small at time $k \iff \max_{j \le I}(X_j) \le$ threshold

Behaviour of large claim 1:

- We have leftovers: Large claims are not counted until they get large for the first time. 🥮
- The classification of small claims depends on the estimation date (the colour of each block may change if we look at it one period later). Therefore, accident periods are not comparable, i.e. we don't have consistency over time. The large triangle is consistent over time.
- The separation is not continuous with respect to the threshold.

- —Separation of small and large claims
 - How to separate small from large claims

9.2.5 Ever large up to now and never large by latest information

(3/4)

- We see again that accident periods of small claims are not comparable, i.e. we don't have consistency over time.
- The inconsistency over time leads to a systematic overestimation, because the claims that are not yet large are projected within the small triangle as IBNeR and within the large triangle as IBNyR. Therefore, the overestimation equals

$$540 = \underbrace{300} \cdot \underbrace{1.5 \cdot 1}$$

size at time k=0 cumulative development factors of small claims

The triangle of small claims is much smoother. ☺ ☺

- —Separation of small and large claims
 - How to separate small from large claims

9.2.5 Ever large up to now and never large by latest information

(4/4)

200

Ever large up to now and never large by latest information: Results

	expected	l results		estimated results					
AP	ultimate	reserves	ultimate	reserves	small res.	large res.			
0	3100	0	3100	0	0	0			
1	3100	0	3100	0	0	0			
2	3100	550	3100	550	0	550			
3	3100	1600	3100	1600	500	1100			
4	3100	2590	3640	3130	1830	1300			
total	15500	4740	16040	5280	2330	2950			

- Systematic overestimation, which often can be controlled. igsimeq \odot
- More than 60% of the reserves belong to the large triangle, which is usually less stable. But, since the small triangle is much more stable, we could increase the threshold and therefore transfer more reserves to the small triangle.

Conclusion (pros: 1 \bigcirc \bigcirc and 2 \bigcirc versus cons: 5 \bigcirc)

If we control the systematic overestimation the separation method 'ever large up to now and never large by latest information' can be used.

©R. Dahms (ETH Zurich, Spring 2021)

- —Separation of small and large claims
 - How to separate small from large claims

Attritional and excess: Classification

attritional part at time $k := \min(X_k, \text{threshold})$

excess part at time
$$k := X_k - \min(X_k, \text{threshold})$$

Behaviour of large claim 1:

- We see that there are no leftovers and no double counting (each part is either red or green).
- The classification does not depend on the estimation date (the colour of each block does not change if we look at it one period later). Therefore, accident periods are comparable, i.e. we have consistency over time.
- The separation is continuous with respect to the threshold. 🙂

Another method of separation is to split up large claims into a normal (attritional) and an exceptional (excess) part.

9.2 How to separate small from large claims

9.2.6 Attritional and excess

Attritional and excess: Projection

									0 1 2	3 4 0	1 2	3 4
attritional	0	1	2	3	4	excess	0	1	2	3	4	
0	1700	600	300	-50	0	0	100	600	200	-350	0	
1	1700	600	300	-50	0	1	100	600	200	-350	0	
2	1700	600	300	-50	0	2	100	600	200	-350	0	
3	1700	600	300	-50	0	3	100	600	200	-350	0	
4	1700	600	300	-50	0	4	100	600	200	-350	0	
\widehat{f}_k	0.35	0.13	-0.02	0.00		\widehat{f}_k	6.00	0.29	-0.39	0.00		

• We see again that accident periods are comparable, i.e. we have consistency over time.

- The triangle of small claims is much smoother, in particular for late development periods. But claims that will become large in the future may have huge changes in incurred losses or payments during the time where they are still small. 🙂 😓
- The triangle of large claims shows huge development. Therefore, most estimation methods will not work. 😕
- One method that often works for the excess part is ECLRM with additional virtual case reserves $R_{i,k}^{add}$ for not yet large claims:

$$R_{i,k}^{add} := \underbrace{(\widehat{N}_{i,J} - N_{i,k})}_{(\widehat{m}_{i,j} - \text{threshold})} \cdot \underbrace{(\widehat{m}_{i,j} - \text{threshold})}_{(\widehat{m}_{i,j} - \text{threshold})}$$

number of claims that will become large after time k mean ultimate of a large claim

(2/3)

- —Separation of small and large claims
 - How to separate small from large claims

9.2 How to separate small from large claims

9.2.6 Attritional and excess

Attritional and excess: Results

	expected	l results	estimated results						
AP	ultimate	reserves	ultimate	reserves	attritional res.	excess res.			
0	3100	0	3100	0	0	0			
1	3100	0	3100	0	0	0			
2	3100	550	3100	550	100	450			
3	3100	1600	3100	1600	1050	550			
4	3100	2590	3100	2590	2040	550			
total	15500	4740	15500	4740	3190	1550			

• No systematic under- or overestimation. 🙂

Conclusion (pros: 6 🙂 versus cons: 2 😕)

©R. Dahms (ETH Zurich, Spring 2021)

- —Separation of small and large claims
 - How to separate small from large claims

entity and reads 0 Unitation entity and reads entity and reads 0 1350 0 0 0 1 1350 0 0 0 0 2 1300 50 1300 100 100 0 2 1300 500 1300 10	ritiona	and exce	s: Result	s		1	ų,				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	expected results estimated results										
0 3500 0 3100 0 0 0 0 1 1200 0 3100 0 100 0 1 1200 0 1200 100 100 0 1 1200 1000 1100 100 0 1 1200 1000 1100 1000 1000 500 500 1 1200 2000 1100 2000 4200 500 1000 11000 4200 1500 Lum than 2516 of the rearrow helms to the large transfe, which is assubly fee state. ●	AP	ultimate	reserves	ultimate	reserves	attritional res.	excess res.				
1 3300 0 3000 0 0 0 2 3300 550 1300 450 450 450 4 1300 2500 1300 1400 1500 450 1300 4500 1300 1400 1300 450 1500 total 1300 4700 1300 4700 1300 1500 Lam shar 33% of the reserves belong to the Lege triangle, which is usually lies at the file € 1300 1500	0	3100	0	3100	0	0	0				
2 3300 556 3300 550 100 450 3 3300 1500 3300 550 100 550 4 3300 2500 3300 2500 2540 550 100 1550 440 1550 440 No systematic under or overstimation. ♥ Leas than 3% of the reserves belong to the large triangle, which is usually in stable ♥	1	3100	0	3100	0	0	0				
3 3100 1600 1500 550 4 3100 2560 3100 2600 550 total 1550 4740 2500 3100 1550 No systematic under- or overestiration. S Loss than 3% of the reserves belong to the large triangle, which is assally less table.	2	3100	550	3100	550	100	450				
4 3200 2500 3100 2560 2040 550 1 1500 4440 1550 4440 1550 1500 No systematic under- or overestimation. Image: triangle, which is usually less stable. Image: triangle, which is usually less stable. Image: triangle, which is usually less stable.	3	3100	1600	3100	1600	1050	550				
total 15500 4740 15500 4740 3100 1550 No systematic under- or overentimation. Leas thou 33% of the reserves belong to the large triangle, which is usually less stable.	4	3100	2590	3100	2590	2040	550				
No systematic under- or overestimation. O Less than 33% of the reserves belong to the large triangle, which is usually less stable. O	total 15500 4740 15500 4740 3190 1550										
	No systematic under- or overestimation. Less than 33% of the reserves belong to the large triangle, which is usually less stable.										

9 Separation of small and large claims

9.2 How to separate small from large claims └ 9.2.7 Separation methods summary

name	definition of large (th:=threshold)	leftovers or double	consistent accident periods	continuous in threshold	stable projections	under- or overes- timation	huge re- serves for large claims
large and small by latest information	large at time $k \Leftrightarrow X_I > th$	0		•			88
ever and never large by latest information	$\begin{array}{l} \text{large at time } k \\ \Leftrightarrow \\ \max_{j \leq I}(X_j) > \text{th} \end{array}$:	8	•	0	8	88
small and large now	large at time $k \Leftrightarrow X_k > th$	C	0	•	•	0	8
ever and never large up to now	large at time k \Leftrightarrow $\max_{j \le k}(X_j) > th$	0	C	8		C	•
ever large up to now and never large by latest information	$\begin{array}{c} \text{large at time } k \\ \Leftrightarrow \\ \max_{j \leq k}(X_j) > \text{th} \\ \text{small at time } k \\ \Leftrightarrow \\ \max_{j \leq I}(X_j) \leq \text{th} \end{array}$				0		
attritional and excess	attritional part $:= \min(X_k, th)$ excess part $:=$ $X_k - \min(X_k, th)$:	€	•••		€	00

Stochastic Reserving Separation of small and large claims How to separate small from large claims

The motivation story (from up to down of the table):

- first idea is to take latest information
- try to get smoother triangles
- try to get consistent accident periods
- try to combine the last two
- try to reduce the amount of reserves within the triangle of large claims
- split up each claims in a 'good' and a 'bad' part

I prefer the last two separation methods. But under special circumstances, for instance lack of data, it is possible that even the first one is the most suitable method.

Estimation methods for small (attritional) claims

- There are no general restrictions to the reserving methods used for small (or attritional) claims.
- Depending on the separation method it might be better to use the paid triangle instead of the incurred triangle, in particular if early development periods are disturbed by future large claims, which usually does not affect the payments as much as the incurred losses.

Estimation methods for large (excess) claims

- Often we have to be very careful with standard methods like CLM and ECLRM, in particular, if we don't have any large claim in early development periods.
- It is not unusual that the triangles of large claims are so unstable that we have to fall back on expert judgement in order to estimate the reserves.

Estimate overall uncertainties

- One way to estimate uncertainties is to couple the estimations of small and large claims, for instance by LSRMs.
- In practice, if we use expert judgement, it is often better to estimate uncertainties on an aggregated level.

- —Separation of small and large claims
 - -Estimation methods for small and large claims

Estimation methods for small (attritional) claim

- There are no general restrictions to the reserving methods used for small (or attritional) claims.
 Deconciliance on the secaration method it might be better to use the paid trianele
- Depending on the separation method it might be better to use the paid triangle instaad of the issured triangle, in particular if early development periods are disturbed by future large claims, which usually does not affect the payments as much as the incurred losses.

Estimation methods for large (excess) claims

- Often we have to be very careful with standard methods like CLM and ECLRM, in particular, if we don't have any large claim in early development periods.
- It is not unusual that the triangles of large claims are so unstable that we have to fail
- back on expert judgement in order to estimate the reserves.

Estimate overall uncertainties

- One way to estimate uncertainties is to couple the estimations of small and large claims, for instance by LSRMs.
- In practice, if we use expert judgement, it is often better to estimate uncertainties or an aggregated level.

Bifurcation of large and small losses: Basic idea

The separation methods we have seen up to now do not look at stochastic transition of claims from the triangle of small claims to the one of large claims. We now want to try to model these transitions and will follow the notation of U. Riegel [30]. The basic idea is to look separately at:

- the development of small claims conditioned given they are still small at the next period.
- the development of large claims without claims that just exceed the threshold the first time.
- the number of new large claims and their mean expected loss at the time they get large.

- —Separation of small and large claims
 - -Modelling the transition from small to large

Bifurcation of large and small losses: Basic idea

The separation methods we have seen up to now do not look at stochastic transition of claims from the triangle of small claims to the one of large claims. We now want to try to model these transitions and will follow the notation of U. Rogel [30]. The basic idea is to look separately at:

- the development of small claims conditioned given they are still small at the next period.
- the development of large claims without claims that just exceed the threshold the first time.
- the number of new large claims and their mean expected loss at the time they get large.

Bifurcation of large and small losses: Notations

- $P_{i,k}$ and $I_{i,k}$ denote the total cumulative payments and incurred losses of all claims of accident period i at development period k.
- We call a claim large at time k if its incurred loss did exceed the threshold at least once up to time k (ever large up to now).
- With $N_{i,k}$ we denote the number of large claims of accident period i up to development period k.
- We denote by $X_{i,\nu,k}^I$ and $X_{i,\nu,k}^P$ the incurred loss and the cumulative payments, respectively, of the ν -th large claim of accident period i at development periods k.
- $L_{i,k}^{(j)} := \sum_{\nu=1}^{N_{i,j}} X_{i,\nu,k}^I$ denotes the incurred losses at development period k of all up to time j large claims of accident period i.
- $A_{i,k}^{(j)} := P_{i,k} \sum_{\nu=1}^{N_{i,j}} X_{i,\nu,k}^P$ are the cumulative payments at development period k of all claims that are still small at time j.
- The information of incurred losses and payments of small and large claims as well as the individual information of already large claims is denoted by

$$\mathcal{B}_{i,k} := \sigma \left\{ P_{i,j}, I_{i,j}, X_{i,\nu,j}^P, X_{i,\nu,j}^I : j \le k, \nu \le N_{i,k} \right\}.$$

- Separation of small and large claims
 - -Modelling the transition from small to large

- + $P_{i,k}$ and $I_{i,k}$ denote the total cumulative payments and incurred losses of all claims of accident period i at development period k.
- . We call a claim large at time k if its incurred loss did exceed the threshold at least once up to time k (ever large up to now).
- With N_{i,k} we denote the number of large claims of accident period i up to development period k.
- . We denote by X^I_{int} and X^P_{int} the incurred loss and the cumulative payments, respectively, of the s-th large claim of accident period i at development periods k.
- + $L_{i,k}^{(j)} := \sum_{v=1}^{N_{i,j}} X_{i,v,k}^I$ denotes the incurred losses at development period k of $\begin{array}{ccc} & L_{i+1} & L_{i+1} \\ all up to time j large claims of accident period i. \\ * A_{i,k}^{(j)} := P_{i,k} - \sum_{i=1}^{N_{i+1}} X_{i,n,k}^{P}$ are the cumulative payments at development
- period k of all claims that are still small at time j.
- . The information of incurred losses and payments of small and large claims a well as the individual information of already large claims is denoted by

```
B_{i,k} := \sigma \{P_{i,i}, I_{i,i}, X^{P}_{i,p,i}, X^{I}_{i,p,i} : j \le k, \nu \le N_{i,k}\}
```

Bifurcation of large and small losses: Model (1 of 2)

- 1. Accident periods as well as individual claims are independent.
- 2. The number of large claims develop according to CLM, i.e.

$$\mathsf{E}[N_{i,k+1}|\mathcal{B}_{i,k}] = n_k N_{i,k}.$$

3. The cumulative payments of small claims as long as they stay small develop according to CLM, i.e.

$$\mathsf{E}\Big[A_{i,k+1}^{(k+1)}\Big|\mathcal{B}_{i,k}, A_{i,k}^{(k+1)}\Big] = a_k A_{i,k}^{(k+1)}.$$

4. The incurred losses of already large claims develop according to CLM, i.e.

$$\mathsf{E}\Big[L_{i,k+1}^{(k)}\Big|\mathcal{B}_{i,k}\Big] = l_k L_{i,k}^{(k)}.$$

5. Claims that just became large have a mean incurred loss of x_{k+1}^I and had mean cumulative payments x_k^P just before they got large, i.e.

 $\mathsf{E}\big[X_{i,\nu,k+1}^I\big|\mathcal{B}_{i,k}\big] = x_{k+1}^I \qquad \text{and} \qquad \mathsf{E}\big[X_{i,\nu,k}^P\big|\mathcal{B}_{i,k}\big] = x_k^P, \qquad \text{for } N_{i,k} < \nu \leq N_{i,k+1}.$

6. Assumptions on covariances.

—Separation of small and large claims

- We could use other LSRMs instead of CLM. But if so we may have to adapt the covariance conditions and the calculations may become even more complicated.
- The use of cumulative payments for the small claims is due to the German marked, where, because of the local statutory regulations (HGB), the history of incurred losses is often disturbed.
- Except for the additional conditioning for small claims and the different upper index for large claims the formulas are almost the same as for LSRMs.

Bifurcation of large and small losses: Model (2 of 2) We can rewrite the expectations as follows:

2.
$$\mathbb{E}[N_{i,k+1}|\mathcal{B}_{i,k}] = n_k N_{i,k}.$$
3.
$$\mathbb{E}\left[A_{i,k+1}^{(k+1)} \middle| \mathcal{B}_{i,k}\right] = a_k A_{i,k}^{(k)} - \underbrace{a_k(n_k-1)x_k^P N_{i,k}}_{\text{large claims right before becoming large}}$$

4.
$$\mathsf{E}\left[L_{i,k+1}^{(k+1)} \middle| \mathcal{B}_{i,k}\right] = l_k L_{i,k}^{(k)} + (n_k - 1) x_{k+1}^I N_{i,k}.$$

claims that just have become large

These formulas look like a LSRM but with up to two development factors per claim property.

Therefore, the same techniques will work and we can derive estimators for the ultimate outcome and for uncertainties.

Separation of small and large claims

-Modelling the transition from small to large

2. is unchanged.

2021-04-26

4.

$$\begin{aligned} \mathbf{3.} \qquad \mathbf{E} \Big[A_{i,k+1}^{(k+1)} \Big| \mathcal{B}_{i,k} \Big] &= \mathbf{E} \Big[\mathbf{E} \Big[A_{i,k+1}^{(k+1)} \Big| \mathcal{B}_{i,k}, A_k^{(k+1)} \Big] \Big| \mathcal{B}_{i,k} \Big] = a_k \mathbf{E} \Big[A_k^{(k+1)} \Big| \mathcal{B}_{i,k} \Big] \\ &= a_k \left(A_{i,k}^{(k)} - \mathbf{E} \left[\sum_{\nu = N_{i,k}+1}^{N_{i,k+1}} X_{i,\nu,k}^P \Big| \mathcal{B}_{i,k} \right] \right) \\ &= a_k \left(A_{i,k}^{(k)} - \mathbf{E} [N_{i,k+1} - N_{i,k} | \mathcal{B}_{i,k}] \mathbf{E} \Big[X_{i,N_{i,k+1},k}^P \Big| \mathcal{B}_{i,k} \Big] \right) \\ &= a_k A_{i,k}^{(k)} - a_k (n_k - 1) x_k^P N_{i,k} \end{aligned}$$

$$\begin{split} \mathsf{E} \Big[L_{i,k+1}^{(k+1)} \Big| \mathcal{B}_{i,k} \Big] &= \mathsf{E} \left[L_{i,k+1}^{(k)} + \sum_{\nu = N_{i,k}+1}^{N_{i,k+1}} X_{i,\nu,k+1}^{I} \Big| \mathcal{B}_{i,k} \right] \\ &= l_k L_{i,k}^{(k)} + \mathsf{E} \big[N_{i,k+1} - N_{i,k} \big| \mathcal{B}_{i,k} \big] \mathsf{E} \Big[X_{i,N_{i,k+1},k}^{I} \Big| \mathcal{B}_{i,k} \Big] \\ &= l_k L_{i,k}^{(k)} + (n_k - 1) x_k^{I} N_{i,k} \end{split}$$
Literature

[30] Ulrich Riegel.

A Bifurcation Approach for Attritional and Large Losses in Chain Ladder Calculations. *Astin Bull.*, 44(1):127–172, 2013.

Stochastic Reserving

2021-04-26

Separation of small and large claims

Literature

[30] Ulrich Rogel. A Bifurcation Approach for Attritional and Large Losses in Chain Ladder Calculation

Stochastic Reserving Lecture 14 Trail exams and examples

René Dahms

ETH Zurich, Spring 2021

2 June 2021 (Last update: 26 April 2021)

Stochastic Reserving

Stochastic Reserving Lecture 14 Trail examples

René Dahms

ETH Zurich, Spring 2021

2 June 2021 (Last update: 26 April 2021)

10 Examples & Trail Exam

10.1 Examples using LSRMTools

10.2 Trail exams

Stochastic Reserving

Lecture 14: Table of contents

10 Examples & Trail Exam 10.1 Examples using LSRMTools 10.2 Trail exams

Preparation (only if Covid-19 allow for it) Please bring your laptop with installed LSRMTools.

If you have problems to get the LSRMTools running be 30 minutes earlier and you will be helped. (only if Covid-19 allow for it)

Train exam If someone of you is brave enough we can make a trail examination.